Do Silviculture and Forest Management Affect the Genetic Diversity and Structure of Long-Impacted Forest Tree Populations?
Abstract
:1. Introduction
2. Genetic Impact of Silviculture and Forest Management Practices
2.1. Forest Management and Regeneration
2.2. Post-Fire Natural Regeneration
2.3. Artificial Regeneration
3. Management Systems: Seedling vs. Coppice Forests
4. Forest Management: Fragmentation and Over-Exploitation
5. Genetic Impact of Forestry Plantations
6. Conclusions and Perspectives
Acknowledgments
Conflicts of Interest
References
- Ratnam, W.; Rajora, O.P.; Finkeldey, R.; Aravanopoulos, F.; Bouvet, J.-M.; Vaillancourt, R.E.; Kanashiro, M.; Fady, B.; Tomita, M.; Vinson, C. Genetic effects of forest management practices: Global synthesis and perspectives. For. Ecol. Manag. 2014, 333, 52–65. [Google Scholar] [CrossRef]
- Kavaliauskas, D.; Fussi, B.; Westergren, M.; Aravanopoulos, F.; Finzgar, D.; Baier, R.; Alizoti, P.; Bozic, G.; Avramidou, E.; Konnert, M. The interplay between forest management practices, genetic monitoring, and other long-term monitoring systems. Forests 2018, 9, 133. [Google Scholar] [CrossRef]
- Savolainen, O.; Kärkkäinen, K. Effect of forest management on gene pools. In Population Genetics of Forest Trees; Springer: Berlin, Germany, 1992; pp. 329–345. [Google Scholar]
- Finkeldey, R.; Ziehe, M. Genetic implications of silvicultural regimes. For. Ecol. Manag. 2004, 197, 231–244. [Google Scholar] [CrossRef]
- Critical Ecosystem Partnership Fund (CEPF). Explore the Biodiversity Hotspots. Available online: https://www.cepf.net/our-work/biodiversity-hotspots (accessed on 19 February 2018).
- Palahi, M.; Mavsar, R.; Gracia, C.; Birot, Y. Mediterranean forests under focus. Int. For. Rev. 2008, 10, 676–688. [Google Scholar] [CrossRef]
- Barbéro, M.; Loisel, R.; Quezel, P.; Richardson, D.M.; Romane, F. Pines of the Mediterranean basin. In Ecology and Biogeography of Pinus; Cambridge University Press: Cambridge, UK, 1998; pp. 153–170. [Google Scholar]
- Fady-Welterlen, B. Is there really more biodiversity in Mediterranean forest ecosystems? Taxon 2005, 54, 905–910. [Google Scholar] [CrossRef]
- Aravanopoulos, F.; Bucci, G.; Akkak, A.; Blanco Silva, R.; Botta, R.; Buck, E.; Cherubini, M.; Drouzas, A.; Fernandez-Lopez, J.; Mattioni, C. Molecular population genetics and dynamics of chestnut (Castanea sativa) in Europe: Inferences for gene conservation and tree improvement. In Proceedings of the III International Chestnut Congress; Acta Horticulturae: Leiden, The Netherlands, 2005. [Google Scholar]
- Scarascia-Mugnozza, G.; Oswald, H.; Piussi, P.; Radoglou, K. Forests of the Mediterranean region: Gaps in knowledge and research needs. For. Ecol. Manag. 2000, 132, 97–109. [Google Scholar] [CrossRef]
- Bariteau, M.; Alptekin, U.; Aravanopoulos, F.; Asmar, F.; Bentouati, A.; Benzyane, M.; Derridj, A.; Ducci, F.; Isik, F.; Khaldi, A.; et al. Les ressources génétiques forestières dans le bassin Méditerranéen. Forêt Méditerranéenne 2003, 24, 148–158. [Google Scholar]
- Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, adaptability and transformability in social–ecological systems. Ecol. Soc. 2004, 9, 5. [Google Scholar] [CrossRef]
- Sasaki, T.; Furukawa, T.; Iwasaki, Y.; Seto, M.; Mori, A. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 2015, 57, 395–408. [Google Scholar] [CrossRef]
- Fabbio, G.; Merlo, M.; Tosi, V. Silvicultural management in maintaining biodiversity and resistance of forests in Europe—The Mediterranean region. J. Environ. Manag. 2003, 67, 67–76. [Google Scholar] [CrossRef]
- Yakovlev, I.; Fossdal, C.G.; Skrøppa, T.; Olsen, J.E.; Jahren, A.H.; Johnsen, O. An adaptive epigenetic memory in conifers with important implications for seed production. Seed Sci. Res. 2012, 22, 63–76. [Google Scholar] [CrossRef]
- Gomory, D.; Foffova, E.; Longauer, R.; Krajmerova, D. Memory effects associated with early-growth environment in Norway spruce and European larch. Eur. J. For. Res. 2015, 134, 89–97. [Google Scholar] [CrossRef]
- Johnsen, O.; Fossdal, C.G.; Nagy, N.; Molmann, J.; Daehlen, O.G.; Skroppa, T. Climatic adaptation in Picea abies progenies is affected by the temperature during zygotic embryogenesis and seed maturation. Plant Cell Environ. 2005, 28, 1090–1102. [Google Scholar] [CrossRef]
- Avramidou, E.V.; Doulis, A.G.; Aravanopoulos, F.A. Determination of epigenetic inheritance, genetic inheritance, and estimation of genome DNA methylation in a full-sib family of Cupressus sempervirens L. Gene 2015, 562, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Asuka, Y.; Tomaru, N.; Munehara, Y.; Tani, N.; Tsumura, Y.; Yamamoto, S. Half-sib family structure of Fagus crenata saplings in an old-growth beech–dwarf bamboo forest. Mol. Ecol. 2005, 14, 2565–2575. [Google Scholar] [CrossRef] [PubMed]
- El-Kassaby, Y.; Dunsworth, B.; Krakowski, J. Genetic evaluation of alternative silvicultural systems in coastal montane forests: Western hemlock and Amabilis fir. Theor. Appl. Genet. 2003, 107, 598–610. [Google Scholar] [CrossRef] [PubMed]
- Wickneswari, R.; Ho, W.; Lee, K.; Lee, C. Impact of disturbance on population and genetic structure of tropical forest trees. For. Genet. 2004, 11, 193–201. [Google Scholar]
- Lourmas, M.; Kjellberg, F.; Dessard, H.; Joly, H.; Chevallier, M.-H. Reduced density due to logging and its consequences on mating system and pollen flow in the African mahogany Entandrophragma cylindricum. Heredity 2007, 99, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Savolainen, O. Guidelines for gene conservation based on population genetics. In Forest and Society: The Role of Research, Proceedings of the XXI IUFRO World Congress, Kuala Lumpur, Malaysia, 7–12 August 2000; Malaysian XXI IUFRO World Congress Organising Committee: Kuala Lumpur, Malaysia, 2000; pp. 100–109. [Google Scholar]
- Robledo-Arnuncio, J.J.; Smouse, P.E.; Gil, L.; Alıa, R. Pollen movement under alternative silvicultural practices in native populations of Scots pine (Pinus sylvestris L.) in central Spain. For. Ecol. Manag. 2004, 197, 245–255. [Google Scholar] [CrossRef]
- Karlsson, C.; Örlander, G. Mineral nutrients in needles of Pinus sylvestris seed trees after release cutting and their correlations with cone production and seed weight. For. Ecol. Manag. 2002, 166, 183–191. [Google Scholar] [CrossRef]
- Adams, W.T.; Zuo, J.; Shimizu, J.Y.; Tappeiner, J.C. Impact of alternative regeneration methods on genetic diversity in coastal Douglas-fir. For. Sci. 1998, 44, 390–396. [Google Scholar]
- Morgante, M.; Vendramin, G.; Rossi, P. Effects of stand density on outcrossing rate in two Norway spruce (Picea abies) populations. Can. J. Bot. 1991, 69, 2704–2708. [Google Scholar] [CrossRef]
- Stoehr, M.U. Seed production of western larch in seed-tree systems in the southern interior of British Columbia. For. Ecol. Manag. 2000, 130, 7–15. [Google Scholar] [CrossRef]
- Perry, D.J.; Bousquet, J. Genetic diversity and mating system of post-fire and post-harvest black spruce: An investigation using codominant sequence-tagged-site (STS) markers. Can. J. For. Res. 2001, 31, 32–40. [Google Scholar] [CrossRef]
- Aravanopoulos, F. Wild fires as a factor contributing to the erosion of the forest gene pool: Towards a genetic holocaust? In Proceedings of the 14th Pan-Hellenic Forest Science Conference, Patra, Greece, 4–7 October 2009; Geotechnical Chamber of Greece: Patra, Greece, 2009; pp. 853–865. [Google Scholar]
- Krauss, S.L. Low genetic diversity in Persoonia mollis (Proteaceae), a fire-sensitive shrub occurring in a fire-prone habitat. Heredity 1997, 78, 41–49. [Google Scholar] [CrossRef] [PubMed]
- England, P.R.; Usher, A.V.; Whelan, R.J.; Ayre, D.J. Microsatellite diversity and genetic structure of fragmented populations of the rare, fire-dependent shrub Grevillea macleayana. Mol. Ecol. 2002, 11, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Uchiyama, K.; Goto, S.; Tsuda, Y.; Takahashi, Y.; Ide, Y. Genetic diversity and genetic structure of adult and buried seed populations of Betula maximowicziana in mixed and post-fire stands. For. Ecol. Manag. 2006, 237, 119–126. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A.; Panetsos, K.P.; Skaltsoyiannes, A. Genetic structure of Pinus brutia stands exposed to wild fires. Plant Ecol. 2004, 171, 175–183. [Google Scholar] [CrossRef]
- Rajora, O.; Pluhar, S. Genetic diversity impacts of forest fires, forest harvesting, and alternative reforestation practices in black spruce (Picea mariana). Theor. Appl. Genet. 2003, 106, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Konnert, M.; Fady, B.; Gomory, D.; A’Hara, S.; Wolter, F.; Ducci, F.; Koskela, J.; Bozzano, M.; Maaten, T.; Kowalczyk, J. Use and Transfer of Forest Reproductive Material in Europe in the Context of Climate Change; European Forest Genetic Resources Programme (EUFORGEN); Bioversity International: Rome, Italy, 2015; 86p. [Google Scholar]
- Cambell, R.K.; Sorensen, F.C. Genetic Implications of Nursery Practices. In Forest Nursery Manual: Production of Bareroot Seedlings; Duryea, M.L., Landis, T.D., Eds.; Martinus Nilhoff/Dr W. Junk Publ.: The Hague, The Netherlands; Boston, MA, USA; Lancaster, UK, 1984; p. 386. [Google Scholar]
- Ivetic, V.; Devetakovic, J.; Nonic, M.; Stankovic, D.; Sijacic-Nikolic, M. Genetic diversity and forest reproductive material—From seed source selection to planting. iForest 2016, 9, 801–812. [Google Scholar] [CrossRef]
- Acácio, V.; Holmgren, M.; Moreira, F.; Mohren, G. Oak persistence in Mediterranean landscapes: The combined role of management, topography, and wildfires. Ecol. Soc. 2010, 15, 40. [Google Scholar] [CrossRef]
- Almeida, M.; Sampaio, T.; Merouani, H.; Costa e Silva, F.; Nunes, A.; Chambel, M.; Branco, M.; Faria, C.; Varela, M.; Pereira, J. Influência da qualidade dos materiais de reprodução na reflorestação com sobreiro. In Gestão Ambiental e Eeconómica do Ecossistema Montado na Península Ibérica; Jornadas Técnicas: Madrid, Spain, 2005. [Google Scholar]
- Kandedmir, G.E.; Kandemir, I.; Kaya, Z. Genetic variation in Turkish red pine (Pinus brutia Ten.) seed stands as determined by RAPD markers. Silvae Genet. 2004, 53, 169–175. [Google Scholar] [CrossRef]
- Lise, Y.; Kaya, Z.; Isik, F.; Sabuncu, R.; Kandemir, I.; Onde, S. The impact of over-exploitation on the genetic structure of Turkish red pine (Pinus brutia Ten.) populations determined by RADP markers. Silva Fenn. 2007, 41, 211–220. [Google Scholar] [CrossRef]
- Bouffier, L.; Raffin, A.; Kremer, A. Evolution of genetic variation for selected traits in successive breeding populations of maritime pine. Heredity 2008, 101, 156–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Icgen, Y.; Kaya, Z.; Cengel, B.; Velioğlu, E.; Öztürk, H.; Önde, S. Potential impact of forest management and tree improvement on genetic diversity of Turkish red pine (Pinus brutia Ten.) plantations in Turkey. For. Ecol. Manag. 2006, 225, 328–336. [Google Scholar] [CrossRef]
- Amorini, E.; Manetti, M.; Turchetti, T.; Sansotta, A.; Villani, F. Impact of silvicultural system on Cryphonectria parasitica incidence and on genetic variability in a chestnut coppice in central Italy. For. Ecol. Manag. 2001, 142, 19–31. [Google Scholar] [CrossRef]
- Aravanopoulos, F.A.; Drouzas, A.D.; Alizoti, P.G. Electrophoretic and quantitative variation in chestnut (Castanea sativa Mill.) in Hellenic populations in old-growth natural and coppice stands. For. Snow Landsc. Res. 2001, 76, 429–434. [Google Scholar]
- Aravanopoulos, F.; Drouzas, A. Does forest management influence genetic diversity in chestnut (Castanea sativa Mill) populations? In Proceedings of the 11th Pan-Hellenic Forest Science Conference, Olympia, Greece, 1–3 October 2003; Geotechnical Chamber of Greece: Olympia, Greece, 2003; pp. 329–337. [Google Scholar]
- Mattioni, C.; Cherubini, M.; Micheli, E.; Villani, F.; Bucci, G. Role of domestication in shaping Castanea sativa genetic variation in Europe. Tree Genet. Genomes 2008, 4, 563–574. [Google Scholar] [CrossRef]
- Hill, W.G. Estimation of effective population size from data on linkage disequilibrium. Genet. Res. 1981, 38, 209–216. [Google Scholar] [CrossRef]
- Ducci, F.; Proietti, R.; Cantiani, P. Genetic and social structure within a Turkey oak coppice with standards. In Selvicoltura Sostenibile Nei Boschi Cedui; Annali CRA—Centro di Ricerca per la Selvicoltura: Arezzo, Italy, 2006; Volume 33, pp. 143–158. [Google Scholar]
- Papadima, A.; Drouzas, A.; Aravanopoulos, F. A gene flow study in natural seedling and coppice populations of Castanea sativa Mill. In Proceedings of the 13th Pan-Hellenic Forest Science Conference, Kastoria, Greece, 7–10 October 2007; Geotechnical Chamber of Greece: Kastoria, Greece, 2007; pp. 444–452. [Google Scholar]
- Alizoti, P.; Aravanopoulos, F.; Diamantis, S. Genetic variation of chestnut (Castanea sativa Mill) populations under different management practices for seedling quantitative traits. In Proceedings of the 9th Pan-Hellenic Conference of the Hellenic Plant Genetics and Breeding Scientific Society, Thermi, Greece, 30 October–2 November 2002; pp. 164–171. [Google Scholar]
- Valbuena-Carabaña, M.; González-Martínez, S.; Gil, L. Coppice forests and genetic diversity: A case study in Quercus pyrenaica Willd. from central Spain. For. Ecol. Manag. 2008, 254, 225–232. [Google Scholar] [CrossRef]
- Ortego, J.; Bonal, R.; Muñoz, A. Genetic consequences of habitat fragmentation in long-lived tree species: The case of the Mediterranean holm oak (Quercus ilex, L.). J. Hered. 2010, 101, 717–726. [Google Scholar] [CrossRef] [PubMed]
- Falconer, D.S.; Mackay, T.F.C. Introduction to Quantitative Genetics; Pearson/Prenctice Hall: New York, NY, USA, 1996; 464p. [Google Scholar]
- Young, A.; Boyle, T.; Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 1996, 11, 413–418. [Google Scholar] [CrossRef]
- Lowe, A.; Boshier, D.; Ward, M.; Bacles, C.; Navarro, C. Genetic resource impacts of habitat loss and degradation; reconciling empirical evidence and predicted theory for neotropical trees. Heredity 2005, 95, 255–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubreuil, M.; Riba, M.; Gonzalez-Martinez, S.C.; Vendramin, G.G.; Sebastiani, F.; Mayol, M. Genetic effects of chronic habitat fragmentation revisited: Strong genetic structure in a temperate tree, Taxus baccata (Taxaceae), with great dispersal capability. Am. J. Bot. 2010, 97, 303–310. [Google Scholar] [CrossRef] [PubMed]
- De Vita, A.; Bernardo, L.; Gargano, D.; Palermo, A.; Peruzzi, L.; Musacchio, A. Investigating genetic diversity and habitat dynamics in Plantago brutia (Plantaginaceae), implications for the management of narrow endemics in Mediterranean mountain pastures. Plant Biol. 2009, 11, 821–828. [Google Scholar] [CrossRef] [PubMed]
- Pautasso, M. Geographical genetics and the conservation of forest trees. Perspect. Plant Ecol. Evol. Syst. 2009, 11, 157–189. [Google Scholar] [CrossRef]
- Kramer, A.T.; Ison, J.L.; Ashley, M.V.; Howe, H.F. The paradox of forest fragmentation genetics. Conserv. Biol. 2008, 22, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization (FAO). State of the World’s Forests; FAO: Rome, Italy, 2011. [Google Scholar]
- Forest Stewardship Council (FSC). Strategic Review on the Future of Forest Plantations; FSC: Helsinki, Finland, 2012. [Google Scholar]
- Jürgensen, C.; Kollert, W.; Lebedys, A. Assessment of Industrial Roundwood Production from Planted Forests; Planted Forests and Trees Working Papers; FP/48/E; Food and Agriculture Organization (FAO): Rome, Italy, 2014. [Google Scholar]
- Lefèvre, F. Human impacts on forest genetic resources in the temperate zone: An updated review. For. Ecol. Manag. 2004, 197, 257–271. [Google Scholar] [CrossRef]
- El-Kassaby, Y.A. Domestication and genetic diversity-should we be concerned. For. Chron. 1992, 68, 687–700. [Google Scholar] [CrossRef]
- Olden, J.D.; Poff, N.L.; Douglas, M.R.; Douglas, M.E.; Fausch, K.D. Ecological and evolutionary consequences of biotic homogenization. Trends Ecol. Evol. 2004, 19, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Steinitz, O.; Robledo-Arnuncio, J.; Nathan, R. Effects of forest plantations on the genetic composition of conspecific native Aleppo pine populations. Mol. Ecol. 2012, 21, 300–313. [Google Scholar] [CrossRef] [PubMed]
- Lenormand, T. Gene flow and the limits to natural selection. Trends Ecol. Evol. 2002, 17, 183–189. [Google Scholar] [CrossRef]
- Savolainen, O.; Pyhäjärvi, T.; Knürr, T. Gene flow and local adaptation in trees. Ann. Rev. Ecol. Evol. Syst. 2007, 38, 595–619. [Google Scholar] [CrossRef]
- Allendorf, F.W.; Leary, R.F.; Spruell, P.; Wenburg, J.K. The problems with hybrids: Setting conservation guidelines. Trends Ecol. Evol. 2001, 16, 613–622. [Google Scholar] [CrossRef]
- Fady, B.; Brahic, P.; Cambon, D.; Gilg, O.; Rei, F.; Roig, A.; Royer, J.; Thévenet, J.; Turion, N. Valoriser et conserver le pin de salzmann en France. Forêt Méditerranéenne 2010, 31, 3–14. [Google Scholar]
- Al-Hawija, B.N.; Wagner, V.; Hensen, I. Genetic comparison between natural and planted populations of Pinus brutia and Cupressus sempervirens in Syria. Turk. J. Agric. For. 2014, 38, 267–280. [Google Scholar] [CrossRef]
- Oliver, T.H.; Heard, M.S.; Isaac, N.J.B.; Roy, D.B.; Procter, D.; Eigenbrod, F.; Freckleton, R.; Hector, A.; Orme, C.D.L.; Petchey, O.L.; et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 2015, 30, 673–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schaberg, P.G.; DeHayes, D.H.; Hawley, G.J.; Nijensohn, S.E. Anthropogenic alterations of genetic diversity within tree populations: Implications for forest ecosystem resilience. For. Ecol. Manag. 2008, 256, 855–862. [Google Scholar] [CrossRef]
- Cavers, S.; Cortell, J.E. The basis of resilience in forest tree species and its use in adaptive forest management in Britain. Forestry 2015, 88, 13–26. [Google Scholar] [CrossRef]
- Van Oppen, M.J.H.; Gates, R.D. Conservation genetics and the resilience of reef-building corals. Mol. Ecol. 2006, 15, 3863–3883. [Google Scholar] [CrossRef] [PubMed]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aravanopoulos, F.A. Do Silviculture and Forest Management Affect the Genetic Diversity and Structure of Long-Impacted Forest Tree Populations? Forests 2018, 9, 355. https://doi.org/10.3390/f9060355
Aravanopoulos FA. Do Silviculture and Forest Management Affect the Genetic Diversity and Structure of Long-Impacted Forest Tree Populations? Forests. 2018; 9(6):355. https://doi.org/10.3390/f9060355
Chicago/Turabian StyleAravanopoulos, Filippos A. (Phil). 2018. "Do Silviculture and Forest Management Affect the Genetic Diversity and Structure of Long-Impacted Forest Tree Populations?" Forests 9, no. 6: 355. https://doi.org/10.3390/f9060355
APA StyleAravanopoulos, F. A. (2018). Do Silviculture and Forest Management Affect the Genetic Diversity and Structure of Long-Impacted Forest Tree Populations? Forests, 9(6), 355. https://doi.org/10.3390/f9060355