A Flexible Height–Diameter Model for Tree Height Imputation on Forest Inventory Sample Plots Using Repeated Measures from the Past
Abstract
:1. Introduction
2. Materials and Methods
2.1. Basic Model and Model Variants
2.2. Matrix Formulation
2.3. Estimation of Fixed Effects and Model Calibration via BLUP
2.4. The Traditional Uniform Height Curve Method
2.5. Model Performance and Evaluation
3. Results
4. Discussion
4.1. Model Formulation and Calibration Strategy
4.2. Covariates
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
hm | |||||
---|---|---|---|---|---|
7.91 | 2 | 21.0 | 16 | 3.13 | Spruce/Fir |
9.31 | 2 | 22.8 | 16 | 3.13 | Spruce/Fir |
8.27 | 2 | 20.7 | 16 | 3.13 | Spruce/Fir |
10.85 | 2 | 29.3 | 16 | 3.13 | Spruce/Fir |
8.51 | 3 | 21.3 | 19 | 3.25 | Spruce/Fir |
9.77 | 4 | 26.4 | 21 | 3.27 | Spruce/Fir |
9.03 | 4 | 24.8 | 21 | 3.27 | Spruce/Fir |
9.44 | 4 | 24.6 | 21 | 3.27 | Spruce/Fir |
11.26 | 2 | 30.4 | 16 | 3.13 | Spruce/Fir |
12.40 | 3 | 35.1 | 19 | 3.25 | Spruce/Fir |
8.60 | 3 | 23.6 | 19 | 3.25 | Spruce/Fir |
12.08 | 3 | 34.2 | 19 | 3.25 | Spruce/Fir |
8.81 | 3 | 23.8 | 19 | 3.25 | Spruce/Fir |
12.45 | 4 | 39.4 | 21 | 3.27 | Spruce/Fir |
13.30 | 4 | 38.2 | 21 | 3.27 | Spruce/Fir |
8.69 | 4 | 24.6 | 21 | 3.27 | Spruce/Fir |
11.63 | 4 | 33.4 | 21 | 3.27 | Spruce/Fir |
9.86 | 3 | 25.7 | 19 | 3.25 | Spruce/Fir |
14.37 | 3 | 45.0 | 32 | 3.81 | Beech/other broadleafs |
13.59 | 2 | 41.6 | 30 | 3.73 | Beech/other broadleafs |
15.55 | 4 | 48.7 | 32 | 3.89 | Beech/other broadleafs |
Appendix C
References
- Köhl, M.; Magnussen, S.; Marchetti, M. Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory; Tropical Forestry; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-32571-0. [Google Scholar]
- Kershaw, J.A.; Ducey, M.J.; Beers, T.W.; Husch, B. Forest Mensuration; John Wiley & Sons, Ltd.: Chichester, UK, 2016; ISBN 9781118902028. [Google Scholar]
- Soares, P.; Tomé, M. Height-diameter equation for first rotation eucalypt plantations in Portugal. For. Ecol. Manag. 2002, 166, 99–109. [Google Scholar] [CrossRef]
- Mehtätalo, L.; de-Miguel, S.; Gregoire, T.G. Modeling height-diameter curves for prediction. Can. J. For. Res. 2015, 45, 826–837. [Google Scholar] [CrossRef]
- Curtis, R.O. Height-Diameter and height-diameter-age equations for second-growth douglas-fir. For. Sci. 1967, 13, 365–375. [Google Scholar] [CrossRef]
- Pretzsch, H. Forest Dynamics, Growth, and Yield. In Forest Dynamics, Growth and Yield; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–39. [Google Scholar]
- Arabatzis, A.A.; Burkhart, H.E. An evaluation of sampling methods and model forms for estimating height-diameter relationships in loblolly pine plantations. For. Sci. 1992, 38, 192–198. [Google Scholar]
- Temesgen, H.; Gadow, K.V. Generalized height–diameter models—An application for major tree species in complex stands of interior British Columbia. Eur. J. For. Res. 2004, 123, 45–51. [Google Scholar] [CrossRef]
- Larsen, D.R.; Hann, D.W.; Forest Research Laboratory of Oregon State University. Height-Diameter Equations for Seventeen Tree Species in Southwest Oregon; Forest Research Laboratory of Oregon State University. Height-Diameter Equations for Seventeen Tree Species in Southwest Oregon; Forest Research Laboratory, College of Forestry, Oregon State University: Corvallis, OR, USA, 1987; p. 49. [Google Scholar]
- Albert, M.; Schmidt, M. Climate-sensitive modelling of site-productivity relationships for Norway spruce (Picea abies (L.) Karst.) and common beech (Fagus sylvatica L.). For. Ecol. Manag. 2010, 259, 739–749. [Google Scholar] [CrossRef]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer: Berlin/Heidelberg, Germany, 2012; Volume 53, ISBN 9788578110796. [Google Scholar]
- Lappi, J.; Bailey, R.L. A height prediction model with random stand and tree parameters: An alternative to traditional site index methods. For. Sci. 1988, 34, 907–927. [Google Scholar]
- Lappi, J. Calibration of height and volume equations with random parameters. For. Sci. 1991, 37, 781–801. [Google Scholar]
- Saud, P.; Lynch, T.B.; Anup, K.C.; Guldin, J.M. Using quadratic mean diameter and relative spacing index to enhance height–diameter and crown ratio models fitted to longitudinal data. Forestry 2016, 89, 215–229. [Google Scholar] [CrossRef] [Green Version]
- Lappi, J. A longitudinal analysis of height/diameter curves. For. Sci. 1997, 43, 555–570. [Google Scholar]
- Castedo Dorado, F.; Diéguez-Aranda, U.; Barrio Anta, M.; Sánchez Rodríguez, M.; von Gadow, K. A generalized height–diameter model including random components for radiata pine plantations in northwestern Spain. For. Ecol. Manag. 2006, 229, 202–213. [Google Scholar] [CrossRef]
- Mehtätalo, L. A longitudinal height–diameter model for Norway spruce in Finland. Can. J. For. Res. 2004, 34, 131–140. [Google Scholar] [CrossRef]
- Nothdurft, A.; Kublin, E.; Lappi, J. A non-linear hierarchical mixed model to describe tree height growth. Eur. J. For. Res. 2006, 125, 281–289. [Google Scholar] [CrossRef]
- Lang, A. Bestandeskurven der Würtembergischen Forsteinrichtungsanstalt. Allg. Forst- und Jagdzeitung 1938, 114, 168–176. (In German) [Google Scholar]
- Hohenadl, W. Einführung in die Bestandesberechnung mit Hilfe von zwei Mittelstämmen. Forstwissenschaftliches Cent. 1939, 61, 261–280. (In German) [Google Scholar] [CrossRef]
- Kramer, H. Die Genauigkeit der Massenermittlung nach dem “Reihenverfahren”- zu dem gleichlautenden Beitrag von Oberforstmeister von Laer. Forst und Holzwirt 1964, 140–141. (In German) [Google Scholar]
- Von Laer, W. Die Genauigkeit der Massenermittlung nach dem “Reihenverfahren”. Forst und Holzwirt 1964, 139–140. (In German) [Google Scholar]
- Hui, G.Y.; Gadow, K. von Zur Entwicklung von Einhietshöhenkurven am Beispiel der Baumart Cunninghamia lanceolata. Allg. Forst- und Jagdzeitung 1993, 12, 218–220. [Google Scholar]
- Marschall, J. Einheitshöhenkurven zur Vereinfachung der Probeflächenaufnhame. IUDEO-Symposium 1974, 18–30. (In German) [Google Scholar]
- Sterba, H.; Marschall, J.; da Silva, A. Einheitshöhenkurven aus und für Stichprobeninventuren. Allg. Forstzeitg. 1976, 87, 349–350. (In German) [Google Scholar]
- Eckmüllner, O. Einheitshöhenkurven und Alters-Höhen-Durchmesser-Funktionen für Fichte und Buche im Lehrforst. Univ. Natl. Res. Appl. Life Sci. 1985, 66. (In German) [Google Scholar]
- Knieling, A. Methodische Beiträge zur Auswertung der Österreichischen Forstinventur nach 1980. Ph.D. Thesis, University of National Research and Life Sciences, Universität für Bodenkultur, Wien, Austria, 1994. (In German). [Google Scholar]
- Schodterer, H. Einrichtung eines Permanenten Stichprobennetzes im Lehrforst. Dipl.-Arb Thesis, University of für Bodenkultur, Wien, Austria, 1987. (In German). [Google Scholar]
- Bitterlich, W. Die Winkelzählprobe. Allg. forst- und Holzwirtschaftliche Zeitung 1948, 59, 4–5. (In German) [Google Scholar] [CrossRef]
- Bitterlich, W. Die Winkelzählprobe. Forstwissenschaftliches Cent. 1952, 71, 215–225. (In German) [Google Scholar] [CrossRef]
- Bitterlich, W. The Relascope Idea. Relative Measurements in Forestry; Commonwealth Agricultural Bureau: Wallingford, UK, 1984; ISBN 0851985394. [Google Scholar]
- Kramer, H. Leitfaden zur Waldmesslehre, 4th ed.; Sauerländer: Frankfurt am Main, Germany, 1995; (In German). ISBN 9783793908302. [Google Scholar]
- Näslund, M. Skogsförsöksanstaltens gallringsförsök i tallskog; Medd. Statens Skogsförsöksanstal: Stockholm, Sweden, 1936. [Google Scholar]
- Sharma, R.P.; Vacek, Z.; Vacek, S. Nonlinear mixed effect height-diameter model for mixed species forests in the central part of the Czech Republic. J. For. Sci. 2016, 62, 470–484. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.P.; Breidenbach, J. Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data. For. Sci. Technol. 2015, 11, 44–53. [Google Scholar] [CrossRef]
- Schmidt, M. Ein standortsensitives, longitudinales Höhen-Durchmesser-Modell als eine Lösung für das Standort-Leistungs-Problem in Deutschland. Tagungsband der DVFFA Sektion Ertragskunde Körbecke am Möhnesee 2010, 17, 131–152. (In German) [Google Scholar]
- Kangas, A.; Maltamo, M. Anticipating the variance of predicted stand volume and timber assortments with respect to stand characteristics and field measurements. Silva Fenn. 2002, 36. [Google Scholar] [CrossRef] [Green Version]
- Models, M. Mixed-Effects Models in S and S-PLUS:Mixed-Effects Models in S and S-PLUS; Springer: Berlin/Heidelberg, Germany, 2001; Volume 43, ISBN 0-387-98957-9. [Google Scholar]
- Pinhero, J.; Bates, D.; Debroy, S.; Sarkar, D. Linear and Nonlinear Mixed Effects. R Packag. version 3.1-122 2015. Available online: https://CRAN.R-project.org/package=nlme (accessed on 2 May 2018).
- Wald, A. Sequential Tests of Statistical Hypotheses. Ann. Math. Stat. 1945, 16, 117–186. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Reineke, L.H. Perfecting a stand-density index for evenage forests. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Pollanschütz, J. Auswertung von Waldinventuren. Forst- und Holzwirtschaft 1973, 355–367. [Google Scholar]
- Schmidt, M. Ein longitudinales Höhen-Durchmesser Modell für Fichte in Nordwestdeutschland. In Sektion Ertragskunde Jahrestagung 2008; Nagel, J., Ed.; Deutscher Verband Forstlicher Forschungsanstalten: Göttingen, Germany, 2008; pp. 22–31. [Google Scholar]
- Temesgen, H.; Hann, D.W.; Monleon, V.J. Regional height diameter equations for major tree species of southwest Oregon. West. J. Appl. For. 2007, 22, 213–219. [Google Scholar]
- Kramer, H.; Akça, A. Leitfaden zur Waldmesslehre, 3rd ed.; Sauerländer, J.D., Ed.; Bad Orb: Aarau, Switzerland, 1995; ISBN 9783793908807. [Google Scholar]
- Schmidt, A. Der rechnerische Ausgleich von Bestandeshöhenkurven. Forstwissenschaftliches Cent. 1967, 86, 370–382. [Google Scholar] [CrossRef]
- Calama, R.; Montero, G. Interregional nonlinear height–diameter model with random coefficients for stone pine in Spain. Can. J. For. Res. 2004, 34, 150–163. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Hann, D.W.; Kershaw, J.A.; Vanclay, J.K. Forest Growth and Yield Modeling; John Wiley & Sons, Ltd.: Chichester, UK, 2011; ISBN 9780470665008. [Google Scholar]
- Köhler, H. Untersuchungen über die Beziehungen zwischen Standortfaktoren, Ernährungszustand und Wachstum von Fichten der Herkunft Westerhof auf verschiedenen Standorten Niedersachsens. Ph.D. Thesis, Forstlichen Fakultät, Georg-August-Universität Göttingen, Goettingen, Germany, 1984. [Google Scholar]
- Forstliche Bundesversuchsanstalt (BFW). Waldbau in der Subalpinen Stufe; BFW: Vienna, Austria, 1997. [Google Scholar]
- Nachtmann, G. Height increment models for individual trees in Austria depending on site and competition. Austrian J. For. Sci. Cent. für das Gesamte Forstwes. 2006, 123, 199–222. [Google Scholar]
- Crecente-Campo, F.; Tomé, M.; Soares, P.; Diéguez-Aranda, U. A generalized nonlinear mixed-effects height–diameter model for Eucalyptus globulus L. in northwestern Spain. For. Ecol. Manag. 2010, 259, 943–952. [Google Scholar] [CrossRef]
- Röhle, H. Zum Wachstum der Fichte auf Hochleistungsstandorten in Südbayern; Mitteilungen aus der Staatsforstverwaltung Bayerns; Bayerisches Staatsministerium für Ernährung, Landwirtschaft und Forsten, Referat Forstliche Aus- und Fortbildung: Munich, Germany, 1995; Volume 48. [Google Scholar]
- Mäkinen, H.; Hynynen, J.; Isomäki, A. Intensive management of Scots pine stands in southern Finland: First empirical results and simulated further development. For. Ecol. Manag. 2005, 215, 37–50. [Google Scholar] [CrossRef]
Spatial and site variables | Growth district, sample plot coordinates, elevation, aspect, slope, soil type, hydrology |
Stand variables | Stand age, vegetation type, mixture type, presence and type of regeneration, type of removal |
Tree variables | Distance and angle from sample plot center, tree species, dbh, height, height to crown base, crown transparency, tree social class, stem quality, stem damage, broken top |
# of sample plots | 1491 | ||
# of height measurements | 12,149 | ||
# of height measurements/sample plot | 8.15 | ||
Mean | Min | Max | |
(cm) | 31.03 | 5.7 | 99.9 |
(m) | 24.24 | 4 | 45 |
(cm) | 31.95 | 5.7 | 79.1 |
(m) | 24.81 | 5 | 43 |
# of sample plots | 512 | ||
# of height measurements | 4364 | ||
# of height measurements/sample plot | 8.52 | ||
Mean | Min | Max | |
d (cm) | 32.41 | 5.5 | 99 |
(m) | 25.05 | 4 | 46 |
(cm) | 33.33 | 5.2 | 86.6 |
(m) | 25.78 | 4 | 46 |
Mean ± sd (Min–Max) | |||||
---|---|---|---|---|---|
Species Group | n | (cm) | (m) | (cm) | (m) |
Spruce/Fir | 5643 | 31.29 ± 12.84 (5.8–99.9) | 24.58 ± 8.23 (5.0–44.0) | 31.97 ± 11.46 (5.8–78.6) | 25.01 ± 7.91 (5.0–43.0) |
Larch/Scots pine | 1629 | 34.07 ± 11.35 (6.0–79.1) | 25.22 ± 6.82 (5.0–40.0) | 34.67 ± 10.46 (6.9–79.1) | 25.41 ± 6.75 (6.0–40.0) |
Douglas fir | 61 | 38.95 ± 19.44 (11.5–80.3) | 27.05 ± 10.29 (13.0–45.0) | 39.00 ± 19.06 (11.5–73.1) | 27.46 ± 9.36 (15.0–42.0) |
Beech/other broadleafs | 4434 | 29.86 ± 14.87 (5.7–77.8) | 23.68 ± 7.94 (4.0–42.0) | 31.22 ± 13.41 (5.7–72.0) | 24.58 ± 7.63 (5.0–42.0) |
Oak | 91 | 28.25 ± 10.80 (6.1–69.6) | 20.26 ± 4.44 (6.0–29.0) | 29.05 ± 10.75 (6.1–69.6) | 20.15 ± 4.33 (6.0–29.0) |
Hornbeam/Elm/Alder/Birch | 291 | 26.07 ± 12.90 (6.0–70.5) | 21.45 ± 6.67 (7.0–36.0) | 26.73 ± 12.34 (6.0–70.5) | 21.83 ± 6.51 (7.0–33.0) |
Mean ± sd (Min-Max) | |||||
---|---|---|---|---|---|
Species Group | n | (cm) | (m) | (cm) | (m) |
Spruce/Fir | 1742 | 33.86 ± 13.57 (5.3–99.0) | 25.99 ± 8.22 (4.0–45.0) | 34.37 ± 12.06 (6.5–80.1) | 26.62 ± 7.81 (4.0–43.0) |
Larch/Scots pine | 545 | 36.17 ± 11.81 (5.2–86.6) | 26.73 ± 6.80 (4.0–40.0) | 36.97 ± 11.05 (5.2–86.6) | 26.93 ± 6.72 (4.0–40.0) |
Douglas fir | 26 | 39.70 ± 22.06 (11.5–85.3) | 29.20 ± 10.06 (17.0–46.0) | 41.21 ± 22.33 (21.3–79.9) | 29.79 ± 9.40 (21.0–44.0) |
Beech/other broadleafs | 1921 | 30.22 ± 16.34 (5.3–86.2) | 23.77 ± 8.32 (5.0–46.0) | 31.55 ± 14.95 (5.3–86.2) | 24.77 ± 7.90 (5.0–46.0) |
Oak | 35 | 30.10 ± 12.05 (9.8–72.0) | 22.21 ± 5.28 (8.0–33.0) | 31.48 ± 12.47 (9.8–72.0) | 22.35 ± 5.10 (8.0–33.0) |
Hornbeam/Elm/Alder/Birch | 95 | 27.49 ± 12.90 (5.3–62.2) | 23.98 ± 6.75 (8.0–38.0) | 27.95 ± 11.77 (5.3–62.2) | 24.48 ± 6.71 (8.0–35.0) |
A1 | A2 | A3 | B1 | B2 | B3 | A4 | |
---|---|---|---|---|---|---|---|
1.629 | 1.578 | 1.506 | 1.881 | 1.866 | 1.111 | 0.989 | |
0.295 | 0.303 | 0.307 | 0.297 | 0.308 | 0.313 | 0.312 | |
−0.102 | −0.124 | −0.043 | |||||
0.773 | 0.824 | ||||||
−0.095 | −0.103 | ||||||
0.542 | 0.499 | ||||||
−0.313 | −0.299 | ||||||
0.262 | 0.268 | ||||||
−0.251 | −0.246 | ||||||
0.145 | 0.155 | ||||||
−0.020 | −0.019 | ||||||
0.015 | 0.014 | ||||||
−0.009 | −0.010 | ||||||
0.012 | 0.012 | ||||||
−0.006 | −0.006 | ||||||
0.618² | 0.598² | 0.606² | 0.640² | 0.537² | 0.439² | 0.533² | |
0.029² | 0.031² | 0.032² | 0.025² | 0.023² | |||
0.080² | 0.123² | 0.070² | |||||
−0.0101 | −0.0107 | −0.0038 | −0.0085 | −0.0111 | |||
−0.0095 | −0.0003 | 0.0087 | |||||
−0.0027 | −0.0010 | ||||||
0.221² | 0.108² | ||||||
0.005² | 0.002² | ||||||
−0.0007 | −0.0002 | ||||||
16,465.72 | 13,092.16 | 12,492.45 | 16,014.60 | 11,914.33 | 8419.16 | 8555.86 | |
LRT | A1 vs. A2 | A2 vs. A3 | B1 vs. B2 | ||||
3377.55 | 605.72 | 4106.27 | |||||
<0.0001 | <0.0001 | <0.0001 | |||||
0.969 | 0.967 | 0.966 | 0.969 | 0.965 | 0.986 | 0.987 | |
0.987 | 0.992 | 0.993 | 0.988 | 0.993 | 0.994 | 0.994 |
Predicted Random Effects Based on | ||||||
---|---|---|---|---|---|---|
Model | Calibration Strategy | Old Data | New Data | RMSE | Bias | |
B3 | 1 | 2.148 | 0.071 | |||
2 | 3.536 | 0.155 | ||||
3 | 12.384 | −4.675 | ||||
4 | 2.635 | −0.059 | ||||
5 | 5.032 | −1.974 | ||||
6 | 5.047 | 0.007 | ||||
7 | 8.988 | −3.743 | ||||
8 | 2.095 | −0.059 | ||||
A4 | 1 | 2.178 | 0.214 | |||
2 | 4.571 | 0.325 | ||||
3 | 10.714 | −3.932 | ||||
4 | 2.081 | 0.332 | ||||
uhc | 1 | 2.167 | −0.116 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gollob, C.; Ritter, T.; Vospernik, S.; Wassermann, C.; Nothdurft, A. A Flexible Height–Diameter Model for Tree Height Imputation on Forest Inventory Sample Plots Using Repeated Measures from the Past. Forests 2018, 9, 368. https://doi.org/10.3390/f9060368
Gollob C, Ritter T, Vospernik S, Wassermann C, Nothdurft A. A Flexible Height–Diameter Model for Tree Height Imputation on Forest Inventory Sample Plots Using Repeated Measures from the Past. Forests. 2018; 9(6):368. https://doi.org/10.3390/f9060368
Chicago/Turabian StyleGollob, Christoph, Tim Ritter, Sonja Vospernik, Clemens Wassermann, and Arne Nothdurft. 2018. "A Flexible Height–Diameter Model for Tree Height Imputation on Forest Inventory Sample Plots Using Repeated Measures from the Past" Forests 9, no. 6: 368. https://doi.org/10.3390/f9060368
APA StyleGollob, C., Ritter, T., Vospernik, S., Wassermann, C., & Nothdurft, A. (2018). A Flexible Height–Diameter Model for Tree Height Imputation on Forest Inventory Sample Plots Using Repeated Measures from the Past. Forests, 9(6), 368. https://doi.org/10.3390/f9060368