Effects of Biochar and Sludge on Carbon Storage of Urban Green Roofs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Materials
2.2. Experimental Design
2.3. Sampling and Analyzing
2.4. Data Analysis and Carbon Storage Calculations
3. Results
3.1. The Properties and Carbon Content of Green Roof Soils
3.2. Biomass and TOC Content of Green Roof Plants
3.3. Carbon Stock and Carbon Storage of Green Roofs
4. Discussion
4.1. Carbon Storage Ability of Roof Soil
4.2. Carbon Fixation Ability of Green Roof Plants
4.3. Carbon Storage Ability and Levels of Green Roofs
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- IPCC. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change stocker. In Climate Change 2013: The Physical Science Basis; Qin, T.F.D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Kamal-Chaoui, L.; Robert, A. Competitive Cities and Climate Change; OECD: Paris, France, 2009. [Google Scholar] [CrossRef]
- Jacobson, M.Z.; Ten Hoeve, J.E. Effects of urban surfaces and white roofs on global and regional climate. J. Clim. 2012, 25, 1028–1044. [Google Scholar] [CrossRef]
- Oberndorfer, E.; Lundholm, J.; Bass, B.; Coffman, R.R.; Doshi, H.; Dunnett, N.; Gaffin, S.; Kohler, M.; Liu, K.K.Y.; Rowe, B. Green roofs as urban ecosystems: Ecological structures, functions, and services. Bioscience 2007, 57, 823–833. [Google Scholar] [CrossRef]
- Wolf, D.; Lundholm, J.T. Water uptake in green roof microcosms: Effects of plant species and water availability. Ecol. Eng. 2008, 33, 179–186. [Google Scholar] [CrossRef]
- Cao, C.T.N.; Farrell, C.; Kristiansen, P.E.; Rayner, J.P. Biochar makes green roof substrates lighter and improves water supply to plants. Ecol. Eng. 2014, 71, 368–374. [Google Scholar] [CrossRef]
- Luo, H.; Liu, X.; Anderson, B.C.; Zhang, K.; Li, X.; Huang, B.; Li, M.; Mo, Y.; Fan, L.; Shen, Q.; et al. Carbon sequestration potential of green roofs using mixed-sewage-sludge substrate in Chengdu World Modern Garden City. Ecol. Indicators 2015, 49, 247–259. [Google Scholar] [CrossRef]
- Getter, K.L.; Rowe, D.B.; Robertson, G.P.; Cregg, B.M.; Andresen, J.A. Carbon sequestration potential of extensive green roofs. Environ. Sci. Technol. 2009, 43, 7564–7570. [Google Scholar] [CrossRef] [PubMed]
- Onmura, S.; Matsumoto, M.; Hokoi, S. Study on evaporative cooling effect of roof lawn gardens. Energ. Build. 2001, 33, 653–666. [Google Scholar] [CrossRef]
- Molineux, C.J.; Fentiman, C.H.; Gange, A.C. Characterising alternative recycled waste materials for use as green roof growing media in the U.K. Ecol. Eng. 2009, 35, 1507–1513. [Google Scholar] [CrossRef]
- Fytili, D.; Zabaniotou, A. Utilization of sewage sludge in EU application of old and new methodsâ—A review. Renew. Sust. Energ. Rev. 2008, 12, 116–140. [Google Scholar] [CrossRef]
- Kimetu, J.M.; Lehmann, J.; Krull, E.; Singh, B.; Joseph, S. Stability and stabilisation of biochar and green manure in soil with different organic carbon contents. Soil Res. 2010, 48, 577–585. [Google Scholar] [CrossRef]
- Macivor, J.S.; Lundholm, J. Performance evaluation of native plants suited to extensive green roof conditions in a maritime climate. Ecol. Eng. 2011, 37, 407–417. [Google Scholar] [CrossRef]
- Whittinghill, L.J.; Rowe, D.B.; Schutzki, R.; Cregg, B.M. Quantifying carbon sequestration of various green roof and ornamental landscape systems. Landsc. Urban Plan. 2014, 123, 41–48. [Google Scholar] [CrossRef]
- Zhang, D. Method and Device for Preparing Agricultural Carbon by Using an Organic Substance. Patent WO/2012/149897 A1, 8 November 2012. Available online: http://xueshu.baidu.com/s?wd=paperuri%3A%2828d65ce7d8d751e44840edd1ff99be73%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Fwww.freepatentsonline.com%2Fwo2012149897.html&ie=utf-8&sc_us=4232976608368829021 (accessed on 8 November 2012).
- Fioretti, R.; Palla, A.; Lanza, L.G.; Principi, P. Green roof energy and water related performance in the Mediterranean climate. Build. Environ. 2010, 45, 1890–1904. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E.; Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis; American Society of Agronomy, Soil Science Society of American: Madison, WI, USA, 1982; Volume 9, pp. 961–1010. [Google Scholar]
- Sparks, D.L.; Page, A.; Helmke, P.; Loeppert, R.; Soltanpour, P.; Tabatabai, M.; Johnston, C.; Sumner, M. Chemical methods. In Methods of Soil Analysis, Part 3; Soil Science Society of America: Madison, WI, USA, 1996. [Google Scholar]
- Watanabe, F.S.; Olsen, S.R. Test of an Ascorbic Acid Method for Determining Phosphorus in Water and NaHCO3 Extracts from Soil1. Soil Sci. Soc. Am. J. 1965, 29, 677–678. [Google Scholar] [CrossRef]
- Knudsen, D.; Peterson, G.; Pratt, P. Lithium, sodium, and potassium. In Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Kenney, D.R., Eds.; American Society of Agronomy, Soil Science Society of American: Madison, WI, USA, 1982; pp. 225–246. [Google Scholar]
- Liu, T.; Guo, R.; Ran, W.; Whalen, J.K.; Li, H. Body size is a sensitive trait-based indicator of soil nematode community response to fertilization in rice and wheat agroecosystems. Soil Biol. Biochem. 2015, 88, 275–281. [Google Scholar] [CrossRef]
- Grace, J.B. Structural Equation Modeling and Natural Systems; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 2012, 48, 1–36. [Google Scholar] [CrossRef]
- Chen, D.; Lan, Z.; Hu, S.; Bai, Y. Effects of nitrogen enrichment on belowground communities in grassland: Relative role of soil nitrogen availability vs. soil acidification. Soil Biol. Biochem. 2015, 89, 99–108. [Google Scholar] [CrossRef]
- He, N.; Qiang, Y.; Ling, W.; Wang, Y.; Han, X. Carbon and nitrogen store and storage potential as affected by land-use in a Leymus chinensis grassland of northern China. Soil Biol. Biochem. 2008, 40, 2952–2959. [Google Scholar] [CrossRef]
- Bouchard, N.R.; Osmond, D.L.; Winston, R.J.; Hunt, W.F. The capacity of roadside vegetated filter strips and swales to sequester carbon. Ecol. Eng. 2013, 54, 227–232. [Google Scholar] [CrossRef]
- Shinogi, Y.; Kanri, Y. Pyrolysis of plant, animal and human waste: Physical and chemical characterization of the pyrolytic products. Bioresource Technol. 2003, 90, 241–247. [Google Scholar] [CrossRef]
- Laird, D.; Fleming, P.; Wang, B.Q.; Horton, R.; Karlen, D. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 2010, 158, 436–442. [Google Scholar] [CrossRef] [Green Version]
- Cross, A.; Sohi, S.P. The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem. 2011, 43, 2127–2134. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Bogomolova, I.; Glaser, B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis. Soil Biol. Biochem. 2014, 70, 229–236. [Google Scholar] [CrossRef]
- Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 2007, 85, 91–118. [Google Scholar] [CrossRef] [Green Version]
- Meng, Q.; Hu, W. Roof cooling effect with humid porous medium. Energy Build. 2005, 37, 1–9. [Google Scholar] [CrossRef]
- Oguntunde, P.G.; Abiodun, B.J.; Ajayi, A.E.; van de Giesen, N. Effects of charcoal production on soil physical properties in Ghana. J. Plant Nutr. Soil Sci. 2008, 171, 591–596. [Google Scholar] [CrossRef]
- Ojeda, G.; Mattana, S.; Àvila, A.; Alcañiz, J.M.; Volkmann, M.; Bachmann, J. Are soil–water functions affected by biochar application? Geoderma 2015, 249–250, 1–11. [Google Scholar] [CrossRef]
- Ghani, A.; Dexter, M.; Perrott, K.W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilisation, grazing and cultivation. Soil Biol. Biochem. 2003, 35, 1231–1243. [Google Scholar] [CrossRef]
- Glaser, B.; Balashov, E.; Haumaier, L.; Guggenberger, G.; Zech, W.; Derenne, S.; Knicker, H. Black carbon in density fractions of anthropogenic soils of the Brazilian Amazon region. Org. Geochem. 2000, 31, 669–678. [Google Scholar] [CrossRef]
- Jeffery, S.; Verheijen, F.G.A.; Velde, M.V.D.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Beck, D.A.; Johnson, G.R.; Spolek, G.A. Amending greenroof soil with biochar to affect runoff water quantity and quality. Environ. Pollut. 2011, 159, 2111–2118. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J. Biochar for environmental management: An introduction. In Biochar for Environmental Management Science and Technology; Routledge: London, UK, 2009; Volume 25, pp. 15801–15811. [Google Scholar]
- Chen, H.; Ma, J.; Wei, J.; Gong, X.; Yu, X.; Guo, H.; Zhao, Y. Biochar increases plant growth and alters microbial communities via regulating the moisture and temperature of green roof substrates. Sci. Total Environ. 2018, 635, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Jindo, K.; SĂĄnchezmonedero, M.A.; HernĂĄndez, T.; García, C.; Furukawa, T.; Matsumoto, K.; Sonoki, T.; Bastida, F. Biochar influences the microbial community structure during manure composting with agricultural wastes. Sci. Total Environ. 2012, 416, 476–481. [Google Scholar] [CrossRef] [PubMed]
- Macivor, J.S.; Margolis, L.; Puncher, C.L.; Matthews, B.J.C. Decoupling factors affecting plant diversity and cover on extensive green roofs. J. Environ. Manag. 2013, 130, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Hamer, U.; Marschner, B.; Brodowski, S.; Amelung, W. Interactive priming of black carbon and glucose mineralisation. Org. Geochem. 2004, 35, 823–830. [Google Scholar] [CrossRef]
- Rehman, M.Z.; Rizwan, M.; Ali, S.; Fatima, N.; Yousaf, B.; Naeem, A.; Sabir, M.; Ahmad, H.R.; Ok, Y.S. Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotox. Environ. Safe. 2016, 133, 218–225. [Google Scholar] [CrossRef] [PubMed]
- Evans, A.G. Biochar: Carbon sequestration, land remediation, and impacts on soil microbiology. Crit. Rev. Environ. Sci. Technol. 2012, 42, 2311–2364. [Google Scholar] [CrossRef] [Green Version]
- Terry, R.E.; Nelson, D.W.; Sommers, L.E. Carbon cycling during sewage sludge decomposition in soils1. Soil Sci. Soc. Am. J. 1979, 43, 494–499. [Google Scholar] [CrossRef]
- Dong, W.; Shu, J.; He, P.; Ma, G.; Dong, M. Study on the Carbon Storage and Fixation of Phramites autralis in Baiyangdian Demonstration Area. Procedia Environ. Sci. 2012, 13, 324–330. [Google Scholar] [CrossRef]
- Woomer, P.L.; Tieszen, L.L.; Tappan, G.; Toure, A.; Sall, M. Land use change and terrestrial carbon stocks in Senegal. J. Arid. Environ. 2004, 59, 625–642. [Google Scholar] [CrossRef]
- Olson, K.R. Soil organic carbon sequestration, storage, retention and loss in U.S. croplands: Issues paper for protocol development. Geoderma 2013, 195, 201–206. [Google Scholar] [CrossRef]
- Neary, D.G.; Overby, S.T.; Hart, S.C. Soil carbon in arid and semiarid forest ecosystems. In The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect; Kimble, J.M., Heath, L.S., Birdsey, R., Lal, R., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 293–310. [Google Scholar]
- Yan, X.; Cai, Z.; Wang, S.; Smith, P. Direct measurement of soil organic carbon content change in the croplands of China. Glob. Chang. Biol. 2011, 17, 1487–1496. [Google Scholar] [CrossRef]
Treatment | Biomass g Plant−1 | Total Organic Carbon Content g kg−1 | Carbon Stocks kg C m−2 |
---|---|---|---|
CK | 9.09 ± 0.27 (g) | 351.06 ± 1.03 (i) | 1.15 ± 0.10 (h) |
5%SB | 13.68 ± 0.26 (e) | 433.17 ± 1.05 (f) | 2.12 ± 0.07 (f) |
10%SB | 17.61 ± 0.29 (c) | 477.38 ± 1.04 (c) | 3.01 ± 0.05 (c) |
15%SB | 19.87 ± 0.44 (a) | 497.48 ± 1.01 (a) | 3.57 ± 0.03 (a) |
20%SB | 18.55 ± 0.40 (b) | 483.17 ± 1.02 (b) | 3.25 ± 0.06 (b) |
5%SS | 12.20 ± 0.39 (f) | 375.56 ± 0.29 (h) | 1.65 ± 0.09 (g) |
10%SS | 15.49 ± 0.23 (d) | 402.42 ± 0.53 (g) | 2.26 ± 0.02 (e) |
15%SS | 16.38 ± 0.57 (d) | 437.98 ± 0.61 (e) | 2.57 ± 0.07 (d) |
20%SS | 17.31 ± 0.43 (c) | 457.78 ± 0.59 (d) | 2.86 ± 0.08 (c) |
Biochar | Sludge | ||
---|---|---|---|
pH | R (Pearson correlation) | −0.979 | −0.977 |
p-values | <0.000 | <0.000 | |
Soil air-filled porosity | R (Pearson correlation) | 0.920 | 0.597 |
p-values | <0.000 | 0.015 | |
Bulk density | R (Pearson correlation) | −0.715 | −0.614 |
p-values | 0.002 | 0.011 | |
Soil water | R (Pearson correlation) | 0.990 | 0.946 |
p-values | <0.000 | <0.000 | |
Soil temperature | R (Pearson correlation) | 0.953 | 0.954 |
p-values | <0.000 | <0.000 | |
Soil total N | R (Pearson correlation) | 0.911 | 0.990 |
p-values | <0.000 | <0.000 | |
Soil total P | R (Pearson correlation) | 0.839 | 0.967 |
p-values | <0.000 | <0.000 | |
Soil total K | R (Pearson correlation) | 0.687 | 0.881 |
p-values | 0.003 | <0.000 | |
Plant biomass | R (Pearson correlation) | 0.810 | 0.925 |
p-values | <0.000 | <0.000 | |
Carbon content of plant | R (Pearson correlation) | 0.787 | 0.995 |
p-values | <0.000 | <0.000 | |
Carbon content of substrate | R (Pearson correlation) | 0.941 | 0.993 |
p-values | <0.000 | <0.000 | |
Carbon content of green roof | R (Pearson correlation) | 0.898 | 0.989 |
p-values | <0.000 | <0.000 |
Ecosystem Type | Carbon Stocks (kg C m−2) | Reference |
---|---|---|
Extensive green roof (15% biochar substrate + Sedum lineare) | 11.93 | In this study, Nanjing, China |
Extensive green roof (20% sludge substrate + Sedum lineare) | 8.82 | |
Sedum on extensive green roof | 1.19 | [8] |
Soil or substrate of green roof (Herbaceous perennials and grasses) | 3.27 | [13] |
Extensive green roofs configuration (sludge+ Nephrolepis auriculata + Ligustrum vicaryi + Liriope spicata) | 18.28 | [7] |
Wetland ecosystems | 7.14–8.72 | [47] |
Grassland ecosystems | 1.73 | [48] |
Field ecosystems | 5.21 | [49] |
Forest and shrub ecosystems | 7.80 | [7,50] |
Tropical Grassland | 5.40 | |
Type | Carbon Storage (kg C m−2 year−1) | Reference |
Extensive green roof (10% biochar substrate + Sedum lineare) | 9.33 | In this study, Nanjing, China |
Extensive Green roof (10% sludge substrate + Sedum lineare) | 7.91 | |
Entire extensive green roofs configuration (sludge+ Nephrolepis auriculata + Ligustrum vicaryi + Liriope spicata) | 6.47 | [4] |
Cropland | 0.12 | [49] |
Cropland | 0.11–0.91 | [51] |
Wetland | 1.17–1.76 | [47] |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, H.; Ma, J.; Wang, X.; Xu, P.; Zheng, S.; Zhao, Y. Effects of Biochar and Sludge on Carbon Storage of Urban Green Roofs. Forests 2018, 9, 413. https://doi.org/10.3390/f9070413
Chen H, Ma J, Wang X, Xu P, Zheng S, Zhao Y. Effects of Biochar and Sludge on Carbon Storage of Urban Green Roofs. Forests. 2018; 9(7):413. https://doi.org/10.3390/f9070413
Chicago/Turabian StyleChen, Haoming, Jinyi Ma, Xinjun Wang, Pingping Xu, Shuo Zheng, and Yanwen Zhao. 2018. "Effects of Biochar and Sludge on Carbon Storage of Urban Green Roofs" Forests 9, no. 7: 413. https://doi.org/10.3390/f9070413
APA StyleChen, H., Ma, J., Wang, X., Xu, P., Zheng, S., & Zhao, Y. (2018). Effects of Biochar and Sludge on Carbon Storage of Urban Green Roofs. Forests, 9(7), 413. https://doi.org/10.3390/f9070413