Environmental, Structural, and Disturbance Influences over Forest Floor Components in Interior Douglas-Fir Forests of the Intermountain West, USA
Abstract
:1. Introduction
- (1)
- Compare the estimates of DWM (CWD, FWD), duff, and litter loading among stands with different disturbance histories;
- (2)
- Evaluate DWM (CWD, FWD), duff, and litter loading response for each disturbance type at different stand development stages (stand initiation, stem exclusion, and mature);
- (3)
- Identify factors including environmental and stand structural in nature that dictate DWM, duff, and litter loading in interior Douglas-fir forests of the Intermountain West, USA region.
2. Materials and Methods
2.1. Sampling Design
2.2. Data Collection
2.3. Dataset Assembly
2.4. Data Analyses
3. Results
3.1. Stand Characterization
3.2. DWM, Duff, and Litter Patterns
3.3. DWM Comparisons
3.3.1. CWD
3.3.2. FWD
3.4. Duff and Litter
3.5. Variables of Importance Influencing DWM, Litter, and Duff
4. Discussion
4.1. Stand Development
4.2. Stand Structure
4.3. Disturbance
4.4. Environmental Metrics
4.5. Future Research Needs
- Calculate carbon source and sinks in relation to DWM inputs and depletion in interior Douglas-fir stands;
- Utilize repeated data measurements from future inventory collections to see how individual stands are changing over time;
- Initiate long-term decay studies of CWD in cooler, drier interior Douglas-fir stands to see how they relate to coastal Douglas-fir decay dynamics.
5. Conclusions/Management Implications
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Graham, R.T.; Harvey, A.E.; Jurgensen, M.F.; Jain, T.B.; Tonn, J.R.; Page-Dumroese, D.S. Managing Coarse Woody Debris in Forests of the Rocky Mountains; Research Paper INT-RP-477; USDA Forest Service, Intermountain Research Station: Ogden, UT, USA, 1994; p. 12. [Google Scholar]
- Harmon, M.E.; Franklin, J.F. Ecology of coarse woody debris in temperate ecosystems. Adv. Ecol. Res. 1986, 34, 59–234. [Google Scholar] [CrossRef]
- Spies, T.A.; Franklin, J.F.; Thomas, T.B. Coarse woody debris in Douglas-fir forests of western Oregon and Washington. Ecology 1988, 69, 1689–1702. [Google Scholar] [CrossRef]
- Woodall, C.W.; Liknes, G.C. Climatic regions as an indicator of forest coarse woody and fine woody debris carbon stocks in the United States. Carbon Balance Manag. 2008, 3. [Google Scholar] [CrossRef] [PubMed]
- Norden, B.; Ryberg, M.; Gotmark, F.; Olausson, B. Relative importance of course and fine woody debris for diversity of wood-inhabiting fungi in temperate broadleaf forests. Biol. Conserv. 2004, 117, 1–10. [Google Scholar] [CrossRef]
- Stephens, S.L.; Moghadas, J.J. Fuel treatment effects on snags and coarse woody debris in a Sierra Nevada mixed conifer forest. For. Ecol. Manag. 2005, 214, 53–64. [Google Scholar] [CrossRef]
- Brown, J.K.; Reinhardt, E.D.; Kramer, K.A. Coarse Woody Debris: Managing Benefits and Fire Hazard in the Recovering Forest; General Technical Report RMRS-GTR-105; USDA Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2003; p. 16. [Google Scholar]
- Reynolds, R.T.; Graham, R.T.; Reiser, M.H. Management Recommendations for the Northern Goshawk in the Southwestern United States; General Technical Report RM-217; USDA Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1992; p. 90. [Google Scholar]
- Freedman, B.; Zelazny, V.; Beaudette, D.; Fleming, T.; Flemming, S.; Forbes, G.; Gerrow, J.S.; Johnson, G.; Woodley, S. Biodiversity implications of changes in the quantity of dead organic matter in managed forests. Environ. Rev. 1996, 4, 238–265. [Google Scholar] [CrossRef]
- Laiho, R.; Prescott, C.E. The contribution of coarse woody debris to carbon, nitrogen, and phosphorous cycles in three Rocky Mountain coniferous forests. Can. J. For. Res. 1999, 29, 1592–1603. [Google Scholar] [CrossRef]
- Grier, C.C.; Vogt, K.A.; Keyes, M.R.; Edmonds, R.L. Biomass distribution and above and below-ground production in young and mature Abies amabilis zone ecosystems of the Washington Cascades. Can. J. For. Res. 1981, 11, 155–167. [Google Scholar] [CrossRef]
- Jurgensen, M.F.; Harvey, A.E.; Graham, R.T.; Page-Dumroese, D.S.; Tonn, J.R.; Larsen, M.J.; Jain, T.B. Impacts of timber harvesting on soil organic matter, nitrogen, productivity, and health of inland northwest forests. For. Sci. 1997, 43, 234–251. [Google Scholar]
- Hagan, J.M.; Grove, S.L. Coarse woody debris: Humans and nature competing for trees. J. For. 1999, 97, 6–11. [Google Scholar]
- Sollins, P.; Cline, S.P.; Verhoeven, T.; Sachs, D.; Spycher, G. Patterns of log decay in old-growth Douglas-fir forests. Can. J. For. Res. 1987, 17, 1585–1595. [Google Scholar] [CrossRef]
- Harmon, M.E.; Hua, C. Coarse woody debris dynamics in two old-growth ecosystems. BioScience 1991, 41, 604–610. [Google Scholar] [CrossRef]
- Hermann, S.; Bauhus, J. Comparison of methods to quantify respirational carbon loss of coarse woody debris. Can. J. For. Res. 2008, 38, 2738–2745. [Google Scholar] [CrossRef]
- Smock, L.A.; Metzler, G.M.; Gladden, J.E. Role of debris dams in the structure and function of low-gradient headwater streams. Ecology 1989, 70, 764–775. [Google Scholar] [CrossRef]
- Andrews, P.L.; Bevins, C.D.; Seli, R.C. BehavePlus Fire Modeling System Version 4.0 Users Guide; General Technical Report RMRS-GTR-106; USDA Forest Service Rocky Mountain Research Station: Ogden, UT, USA, 2005; p. 132. [Google Scholar]
- Lutes, D.C.; Keane, R.E.; Caratti, J.F. A surface fuel classification for estimating fire effects. Int. J. Wildland Fire 2009, 18, 802–814. [Google Scholar] [CrossRef]
- Kruys, N.; Jonsson, B.G. Fine woody debris is important for species richness on logs in managed boreal spruce forests of northern Sweden. Can. J. For. Res. 1999, 29, 1295–1299. [Google Scholar] [CrossRef]
- Facelli, J.M.; Pickett, S.T.A. Plant litter: Its dynamics and effects on plant community structure. Bot. Rev. 1991, 57, 1–32. [Google Scholar] [CrossRef]
- Agee, J.K. Prescribed Fire Effects on Physical and Hydrologic Properties of Mixed-Conifer Forest Floor and Soil. Ph.D. Dissertation, University of California, Berkeley, CA, USA, 1973. [Google Scholar]
- Potts, D. Water potential of forest duff and its possible relationship to regeneration success in the northern Rocky Mountains. Can. J. For. Res. 1984, 15, 464–468. [Google Scholar] [CrossRef]
- Hille, M.G.; Stephens, S.L. Mixed conifer forest duff consumption during prescribed fires: Tree crown impacts. For. Sci. 2005, 51, 417–424. [Google Scholar]
- Keane, R.E.; Burgan, R.; van Wagtendonk, J. Mapping wildland fuels for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. Int. J. Wildland Fire. 2001, 10, 301–319. [Google Scholar] [CrossRef]
- Maser, C.; Trappe, J.M. The Seen and Unseen World of the Fallen Tree; General Technical Report RMRS-PNW-164; USDA Forest Service Pacific Northwest Research Station, USDA Forest Service: Washington, DC, USA, 1984; p. 56. [Google Scholar]
- Jonsson, B.G.; Kruys, N. Ecology of coarse woody debris in boreal forests: Future research directions. Ecol. Bull. 2001, 49, 279–281. Available online: http://www.jstor.org/stable/20113284 (accessed on 3 November 2017).
- Barker, J.S. Decomposition of Douglas-fir coarse woody debris in response to differing moisture content and initial heterotrophic colonization. For. Ecol. Manag. 2008, 255, 598–604. [Google Scholar] [CrossRef]
- Donato, D.C.; Harvey, B.J.; Romme, W.H.; Simard, M.; Turner, M.G. Bark beetle effects on fuel profiles across a range of stand structures in Douglas-fir forests of Greater Yellowstone. Ecol. Appl. 2013, 23, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Giunta, A.D.; Jenkins, M.J.; Hebertson, E.G.; Munson, A.S. Disturbance agents and their associated effects on the health of interior Douglas-fir forests in the central Rocky Mountains. Forests 2016, 7, 80. [Google Scholar] [CrossRef]
- McMillin, J.D.; Allen, K.K. Impacts of Douglas-Fir Beetles on Overstory and Understory Conditions of Douglas-fir Stands; General Technical Report R2-64; USDA Forest Service, Rocky Mountain Research Station: Golden, CO, USA, 2000; p. 17. [Google Scholar]
- Hummel, S.; Agee, J.K. Western spruce budworm defoliation effects on forest structure and potential fire behavior. Northwest Sci. 2003, 77, 159–169. Available online: http://hdl.handle.net/2376/807 (accessed on 7 February 2016).
- Garbarino, M.; Marzano, R.; Shaw, J.D.; Long, J.N. Environmental drivers of deadwood dynamics in woodlands and forests. Ecosphere 2015, 6, 1–24. [Google Scholar] [CrossRef]
- Montes, F.; Canellas, I. Modeling coarse woody debris dynamics in even-aged Scots pine forests. For. Ecol. Manag. 2006, 221, 220–232. [Google Scholar] [CrossRef]
- Bailey, R.G. Descriptions of the Ecoregions of the United States; Miscellaneous Publication Paper 1391; USDA Forest Service: Washington, DC, USA, 1980; p. 77. [Google Scholar]
- Simard, S.W. The foundational role of mycorrhizal networks in self-organization of interior Douglas-fir forests. For. Ecol. Manag. 2009, 258, 95–107. [Google Scholar] [CrossRef]
- Meidinger, D.; Pojar, J. Ecosystems of British Columbia; British Columbia Ministry of Forests: Victoria, BC, Canada, 1991; p. 330. Available online: http://www.for.gov.bc.ca/hfd/pubs/Docs/Srs/SRseries.htm (accessed on 3 February 2017).
- Bigler, C.; Kulakowski, D.; Veblen, T.T. Multiple disturbance interactions and drought influence fire severity in Rocky Mountain subalpine forests. Ecology 2005, 86, 3018–3029. [Google Scholar] [CrossRef]
- McCullough, D.G.; Werner, R.A.; Neumann, D. Fire and insects in northern and boreal forest ecosystems of North America. Annu. Rev. Entomol. 1998, 43, 107–127. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.D.; Steed, B.E.; DeBlander, L.T. Forest Inventory and Analysis (FIA) Annual Inventory Answers the Question: What Is Happening to Pinyon-Juniper Woodlands? J. For. 2005, 103, 280–285. [Google Scholar]
- Bechtold, W.A.; Patterson, P.L. Forest Inventory and Analysis National Sample Design and Estimation Procedures; USDA Forest Service General Technical Report, SRS-GTR-80; USDA Forest Service: Washington, DC, USA, 1991. [Google Scholar]
- Woodall, C.W.; Nagel, L.M. Downed woody fuel loading dynamics of a large-scale blowdown in northern Minnesota, U.S.A. For. Ecol. Manag. 2007, 15, 194–199. [Google Scholar] [CrossRef]
- O’Connell, B.M.; Conkling, B.L.; Wilson, A.M.; Burrill, E.A.; Turner, J.A.; Pugh, S.A.; Christensen, G.; Ridley, T.; Menlove, J. The Forest Inventory and Analysis Database: Database Description and User Guide for Phase 2 (Version 6.1.1); USDA Forest Service: Washington, DC, USA; p. 870. Available online: http://www.fia.fs.fed.us/library/database-documentation/ (accessed on 7 February 2017).
- Interior West, Forest Inventory and Analysis P2 Field Procedures Manual, v7.00; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA; p. 436. Available online: https://www.fs.fed.us/rm/ogden/data-collection/pdf/P2%20Manual_70_Feb2sm.pdf. (accessed on 11 August 2018).
- Waddell, K.L. Sampling coarse woody debris for multiple attributes in extensive resource inventories. Ecol. Indic. 2002, 1, 139–153. [Google Scholar] [CrossRef]
- Woodall, C.W.; Williams, M.S. Sampling Protocol, Estimation, and Analysis Procedures for Down Woody Materials Indicator of the FIA Program; Gen. Tech. Rep. NC-256; Department of Agriculture, Forest Service, North Central Research Station: St. Paul, MN, USA, 2005; p. 47. [Google Scholar]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.; Quayle, B.; Howard, S. A project for monitoring trends in burn severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Hood, S.; Bentz, B. Predicting postfire Douglas-fir beetle attacks and tree mortality in the northern Rocky Mountains. Can. J. For. Res. 2007, 37, 1058–1069. [Google Scholar] [CrossRef] [Green Version]
- Harvey, B.J.; Donato, D.C.; Romme, W.H.; Turner, M.G. Influence of recent bark beetle outbreak on fire severity and postfire tree regeneration in montane Douglas-fir forests. Ecology 2013, 94, 2475–2486. [Google Scholar] [CrossRef] [PubMed]
- Oliver, C.D. Forest development in North America following major disturbances. For. Ecol. Manag. 1981, 3, 153–168. [Google Scholar] [CrossRef]
- White, P.S.; Pickett, S.T.A. Natural disturbance and patch dynamics: An introduction. In The Ecology of Natural Disturbance and Patch Dynamics; Academic Press: Orlando, FL, USA, 1985; pp. 3–13. [Google Scholar]
- Oliver, C.D.; Larson, B.C. Overview of Stand Development Patterns. In Forest Stand Dynamics, Update ed.; John Wiley & Sons, Inc.: New York, NY, USA, 1996; pp. 145–167. [Google Scholar]
- Peterson, C.S.; Speth, L.E. A History of the Wasatch-Cache National Forest. Utah State University. 1980. Available online: http://www.fs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb5053310.pdf (accessed on 11 August 2018).
- Hermann, R.K.; Lavendar, D.P. Pseudotsuga menziesii (Mirb.) Franco Douglas-fir; Silvics of North American Conifers; Burns, R.M., Honkala, B.H., Eds.; USDA, Forest Service: Washington, DC, USA, 1990; Volume 1, pp. 527–540. [Google Scholar]
- Daly, C.; Halbleib, M.; Smith, J.I.; Gibson, W.P.; Doggett, M.K.; Taylor, G.H.; Curtis, J.; Pasteris, P.P. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climot. 2008, 28, 2031–2064. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, B.C.; Bailey, R.R. Distribution and abundance of coarse woody debris in a managed forest landscape of the central Appalachians. Can. J. For. Res. 1994, 24, 1317–1329. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef] [PubMed]
- Oliveiera, S.; Friderike, O.; San-Miguel-Ayanz, J.; Camia, A.; Pereria, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Freeman, E.A.; Frescino, T.S.; Moisen, G.G. ModelMap: An R Package for Model Creation and Map Production; United States Department of Agriculture, Forest Service, Rocky Mountain Research Station: Ogden, UT, USA, 2012; pp. 1–85. [Google Scholar]
- McCune, B.; Mefford, M.J. PC-ORD: Multivariate Analysis of Ecological Data. Version 6; Oksanen, J., Ed.; Multivariate Analysis of Ecological Communities in R: Vegan Tutorial; MjM Software: Lincoln County, OR, USA, 2015; Available online: http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf. (accessed on 11 August 2018).
- R Development Core Team. R: A Language and Environment for Statistical Computing, Version 3.3.3; R Foundation for Statistical Computing: Vienna, Austria, 2013; Available online: http:/www.R-project.org/ (accessed on 1 December 2017).
- Shaw, J.D. Reineke’s Stand Density Index: Where are we and where do we go from here? In Proceedings of the Society of American Foresters 2005 National Convention, Ft. Worth, TX, USA, 19–23 October 2005. [Google Scholar]
- Woodall, C.W.; Westfall, J.A. Relationships between the stocking levels of live trees and dead tree attributes in forests of the United States. For. Ecol. Manag. 2009, 258, 2602–2608. [Google Scholar] [CrossRef]
- Agee, J.K.; Huff, M.H. Fuel succession in western hemlock/Douglas-fir forest. Can. J. For. Res. 1987, 17, 697–704. [Google Scholar] [CrossRef]
- Sturtevant, B.R.; Bissonette, J.A.; Long, J.N.; Roberts, D.W. Coarse woody debris as a function of age, stand structure, and disturbance in Boreal Newfoundland. Ecol. Appl. 1997, 7, 702–712. [Google Scholar] [CrossRef]
- Powers, J.S.; Sollins, P.; Harmon, M.E.; Jones, J.A. Plant-pest interactions in time and space: A Douglas-fir bark beetle outbreak as a case study. Landsc. Ecol. 1999, 14, 105–120. [Google Scholar] [CrossRef]
- Laiho, R.; Prescott, C.E. Decay and nutrient dynamics of coarse woody debris in northern coniferous forests: A synthesis. Can. J. For. Res. 2004, 34, 763–777. [Google Scholar] [CrossRef]
- Fahey, T.J. Nutrient dynamics of aboveground detritus in lodgepole pine ecosystems, southeastern Wyoming. Ecol. Monogr. 1983, 53, 51–72. [Google Scholar] [CrossRef]
- Lang, G.E. Forest turnover and the dynamics of bole wood litter in subalpine balsam fir forest. Can. J. For. Res. 1985, 15, 262–268. [Google Scholar] [CrossRef]
- Spies, T.A.; Cline, S.P. Coarse Woody Debris in Forests and Plantations of Coastal Oregon. In From the Forest to the Sea: A Story of Fallen Trees; USDA For. Serv. Gen. Tech. Rep. PNW-229; Maser, C.M., Tarrant, R.F., Trappe, J.M., Franklin, J.F., Eds.; USDA: Washington, DC, USA, 1988; pp. 5–24. [Google Scholar]
- Burgan, R.E. Concepts and Interpreted Examples in Advancing Fuel Modeling; USDA For. Serv. Gen. Tech. Rep. INTGTR-238; USDA: Washington, DC, USA, 1987; 40p. [Google Scholar]
- Neary, D.G.; Klopatek, C.C.; DeBano, L.F.; Ffolliott, P.F. Fire effects on belowground sustainability: A review and synthesis. For. Ecol. Manag. 1999, 122, 51–71. [Google Scholar] [CrossRef]
- Arno, S.F.; Parson, D.J.; Keane, R.E. Mixed-Severity Fire Regimes in the Northern Rocky Mountains: Consequences of Fire Exclusion and Options for the Future; USDA For. Serv. RMRS-P-15-5; USDA: Washington, DC, USA, 2000; pp. 225–232. [Google Scholar]
- Brown, J.K. Introduction and fire regimes. In Wildland Fire in Ecosystems: Effects of Fire on Flora; USDA For. Serv. Gen. Tech. Rep. RMRS-42; Brown, J.K., Smith, J.K., Eds.; USDA: Washington, DC, USA, 2000; p. 257. [Google Scholar]
- Kaufmann, M.R.; Regan, C.M.; Brown, P.M. Heterogeneity in ponderosa pine/Douglas-fir forests: Age and size structure in unlogged and logged landscapes of central Colorado. Can. J. For. Res. 2000, 30, 698–711. [Google Scholar] [CrossRef]
- Odion, D.; Hanson, C.; Arsenault, C.T.; Baker, A.; DellaSala, W.L.; Hutto, D.A.; Klenner, W.; Moritz, M.A.; Sherriff, R.L.; Veblen, T.T.; et al. Examining historical and current mixed-severity fire regimes in ponderosa pine and mixed conifer forests of western North America. PLoS ONE. 2014, 9, e87852. [Google Scholar] [CrossRef] [PubMed]
- United States Forest Service Forest Health Technology Enterprise Team Mapping and Reporting. Available online: https://foresthealth.fs.usda.gov/portal/PestSummary/DamageSummary (accessed on 7 May 2018).
- McGregor, M.D.; Furniss, M.M.; Oaks, R.D.; Gibson, K.E.; Meyer, H.E. MCH pheromone for preventing Douglas-fir beetle infestation in windthrown trees. J. For. 1984, 82, 613–616. [Google Scholar]
- Negrón, J.F.; Anhold, J.A.; Munson, S.A. Within-stand spatial distribution of tree mortality caused by the Douglas-fir beetle (Coleoptera: Scolytidae). Environ. Entomol. 2001, 30, 215–224. [Google Scholar] [CrossRef]
- Furniss, M.M. The Douglas-fir beetle in western forests a historical perspective—Part 1. Am. Entomol. 2014, 60, 84–96. [Google Scholar] [CrossRef]
- Jenkins, M.J.; Hebertson, E.; Page, W.G.; Jorgensen, C.A. Bark beetles, fuels, fires and implications for forest management in the Intermountain West. For. Ecol. Manag. 2008, 254, 16–34. [Google Scholar] [CrossRef]
- Furniss, M.M. An Annotated Bibliography of the Douglas-Fir Beetle (Dendroctonus pseudotsugae Hopkins); USDA For. Serv. Gen. Tech. Rep. INT-48; USDA: Washington, DC, USA, 1979; 39p. [Google Scholar]
- Bosvenue, C.; Running, S.W. Impacts of climate change on natural forest productivity—Evidence since the middle of the 20th century. Glob. Chang. Biol. 2006, 12, 862–882. [Google Scholar] [CrossRef]
- Niering, W.A.; Lowe, C.H. Vegetation of the Santa Catalina Mountains, Arizona, USA: Community types and dynamics. Vegetatio 1984, 58, 3–28. [Google Scholar] [CrossRef]
- Russel, M.B.; Woodall, C.W. Development of downed woody debris forecasting tool using strategic-scale multi-resource forest inventories. J. For. 2016, 115, 276–282. [Google Scholar] [CrossRef]
- Herman, S.; Kahl, T.; Bauhus, J. Decomposition dynamics of coarse woody debris of three important central European tree species. For. Ecosyst. 2015, 2. [Google Scholar] [CrossRef]
Stand Type | Age Class | N | Elevation (m) | Relative * Elevation (m) | Slope (%) | Aspect (°) | PPT † (mm) | Tmax † (°C) | Tmin † (°C) |
---|---|---|---|---|---|---|---|---|---|
NMD | 0–30 | 219 | 1723 ± 36 | 71 ± 21 | 39.1 ± 1.5 | 177.6 ± 6.8 | 704 ± 16.6 | 11.6 ± 0.1 | −1.1 ± 0.1 |
31–120 | 801 | 1748 ± 19 | 87 ± 11 | 43.5 ± 0.7 | 181.6 ± 3.8 | 719.5 ± 8.9 | 11.5 ± 0.07 | −1.2 ± 0.1 | |
>120 | 400 | 2115 ± 26 | −120 ± 14 | 46.8 ± 1.0 | 195.2 ± 5.4 | 674.7 ± 10.5 | 10.8 ± 0.1 | −2.3 ± 0.1 | |
Fire | 0–30 | 207 | 1971 ± 28 | 31 ± 22 | 48.7 ± 1.4 | 184.4 ± 7.5 | 734.8 ± 14.6 | 11.4 ± 0.2 | −2.1 ± 0.1 |
31–120 | 62 | 1852 ± 57 | 93 ± 46 | 51.5 ± 2.8 | 179.1 ± 12.8 | 768.8 ± 26.8 | 11.8 ± 0.3 | −1.5 ± 0.3 | |
>120 | 64 | 1996 ± 55 | −26 ± 36 | 54.8 ± 2.1 | 211.7 ± 11.2 | 766.1 ± 25.9 | 11.1 ± 0.2 | −2.3 ± 0.2 | |
Insect | 0–30 | 11 | 2207 ± 117 | −162 ± 48 | 47.6 ± 4.6 | 163.8 ± 1.9 | 697.9 ± 76.7 | 10.4 ± 0.5 | −3.0 ± 0.3 |
31–120 | 108 | 2105 ± 41 | −154 ± 20 | 38.7 ± 1.6 | 159 ± 11.1 | 604.6 ± 17.3 | 10.8 ± 0.2 | −2.5 ± 0.1 | |
>120 | 122 | 2288 ± 38 | −232 ± 16 | 41.5 ± 1.6 | 183.7 ± 10.3 | 629.0 ± 13.1 | 10.2 ± 0.1 | −2.9 ± 0.1 |
Stand Characteristics | SAC | Disturbance Type | |||||
---|---|---|---|---|---|---|---|
NMD | Fire | Insect | |||||
N | Mean/SE | N | Mean/SE | N | Mean/SE | ||
Total Live BA (m2 ha−1) | 0–30 | 219 | 6.0 ± 0.4 | 207 | 1.5 ± 0.2 | 11 | 8.5 ± 1.8 |
31–120 | 801 | 23.8 ± 0.4 | 62 | 14.7 ± 1.0 | 108 | 23.7 ± 1.3 | |
>120 | 400 | 29.0 ± 0.7 | 64 | 19.2 ± 1.5 | 122 | 26.8 ± 1.2 | |
Total Dead BA (m2 ha−1) | 0–30 | 219 | 1.9 ± 0.3 | 207 | 14.5 ± 0.8 | 11 | 3.8 ± 1.2 |
31–120 | 801 | 3.0 ± 0.2 | 62 | 7.9 ± 0.9 | 108 | 4.9 ± 0.7 | |
>120 | 400 | 5.2 ± 0.3 | 64 | 10.4 ± 1.0 | 122 | 8.1 ± 0.9 | |
Total Live trees (ha−1) | 0–30 | 219 | 585.1 ± 55.5 | 207 | 82.1 ± 15.4 | 11 | 1332.4 ± 498.3 |
31–120 | 801 | 895.1 ± 31.4 | 62 | 268.8 ± 31.7 | 108 | 944.5 ± 108.3 | |
>120 | 400 | 834.4 ± 32.8 | 64 | 412.3 ± 60.6 | 122 | 731.3 ± 60.8 | |
Total Dead trees (ha−1) | 0–30 | 219 | 24.8 ± 3.3 | 207 | 195.5 ± 10.7 | 11 | 57.2 ± 18.8 |
31–120 | 801 | 46.4 ± 2.1 | 62 | 113.9 ± 16.7 | 108 | 94.9 ± 11.2 | |
>120 | 400 | 68.2 ± 3.6 | 64 | 126.9 ± 14.2 | 122 | 123.7 ± 12.4 | |
QMD (cm) | 0–30 | 219 | 17.3 ± 0.7 | 207 | 3.9 ± 0.4 | 11 | 6.7 ± 1.1 |
31–120 | 801 | 22.8 ± 0.3 | 62 | 12.0 ± 0.5 | 108 | 8.5 ± 0.3 | |
>120 | 400 | 24.7 ± 0.5 | 64 | 12.5 ± 0.6 | 122 | 10.2 ± 0.3 | |
SDI Live | 0–30 | 219 | 54.3 ± 3.6 | 207 | 11.1 ± 1.4 | 11 | 83.6 ± 19.7 |
31–120 | 801 | 182.3 ± 3.3 | 62 | 103.7 ± 6.9 | 108 | 184.7 ± 8.5 | |
>120 | 400 | 210.6 ± 4.6 | 64 | 130.7 ± 9.9 | 122 | 194.9 ± 8.3 | |
SDI Dead | 0–30 | 219 | 12.7 ± 1.6 | 207 | 99.1 ± 5.1 | 11 | 27.5 ± 8.7 |
31–120 | 801 | 21.0 ± 1.1 | 62 | 53.7 ± 5.6 | 108 | 35.9 ± 4.6 | |
>120 | 400 | 35.4 ± 1.9 | 64 | 69.9 ± 6.7 | 122 | 56.2 ± 5.9 |
Variable | RMSD | Pearson’s Correlation Coefficient | Model Regression Equation |
---|---|---|---|
CWD | 53.5 | 0.44 | Y = 1.02(x) + −3.86 |
FWDS | 0.46 | 0.45 | Y =1.12(x) + −0.06 |
FWDM | 2.72 | 0.29 | Y = 1.15(x) + −0.53 |
FWDL | 12.04 | 0.27 | Y = 1.22(x) + −1.99 |
Duff Depth | 1.43 | 0.43 | Y = 0.92(x) + 0.01 |
Litter Depth | 1.27 | 0.31 | Y = 0.85(x) + 0.23 |
Duff Loading | 5463 | 0.35 | Y = 0.88(x) + 308.8 |
Litter Loading | 2140.91 | 0.29 | Y = 0.81(x) + 465.6 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giunta, A.D.; Shaw, J.D. Environmental, Structural, and Disturbance Influences over Forest Floor Components in Interior Douglas-Fir Forests of the Intermountain West, USA. Forests 2018, 9, 503. https://doi.org/10.3390/f9080503
Giunta AD, Shaw JD. Environmental, Structural, and Disturbance Influences over Forest Floor Components in Interior Douglas-Fir Forests of the Intermountain West, USA. Forests. 2018; 9(8):503. https://doi.org/10.3390/f9080503
Chicago/Turabian StyleGiunta, Andrew D., and John D. Shaw. 2018. "Environmental, Structural, and Disturbance Influences over Forest Floor Components in Interior Douglas-Fir Forests of the Intermountain West, USA" Forests 9, no. 8: 503. https://doi.org/10.3390/f9080503
APA StyleGiunta, A. D., & Shaw, J. D. (2018). Environmental, Structural, and Disturbance Influences over Forest Floor Components in Interior Douglas-Fir Forests of the Intermountain West, USA. Forests, 9(8), 503. https://doi.org/10.3390/f9080503