Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes
Abstract
:1. Background
2. The Barriers
3. Absorption Enhancers Investigated for Nasal and Pulmonary Drug Administration
3.1. Surfactants
- (a)
- Phospholipids: Natural pulmonary surfactant is a complex mixture of phospholipids (90%) and proteins (10%). The main function of this surfactant is to reduce the surface tension at the alveolar air–liquid interface of the lungs to avoid alveolar collapse [35]. It has also been shown that phospholipids can enhance the absorption of active agents in the lung [36]. A review by Wauthoz extensively discussed their role in pulmonary drug administration [36]. For example, Dipalmitoylphosphatidylcholine (DPPC) is a main component of lung surfactant, representing 40% by weight [37]. DPPC has been used as a lung absorption enhancer in several studies [23,38,39]; for instance, it was used to optimize the absorption of parathyroid hormone 1-34 (PTH) from the lungs into the bloodstream [38]. Other lung surfactants, including phosphatidyl cholines (35%), phosphatidylglycerol (10%), phosphatidylinositol (2%), phosphatidylethanolamine (3%), sphingomyelin (2.5%), and neutral lipid (3%) have also been used as absorption enhancers. These natural pulmonary surfactants (PS) and their artificial substitute phospholipid hexadecanol tyloxapol (PHT) have been tested as absorption enhancers for promoting recombinant human insulin (Rh-ins) absorption in vivo from the lung in a diabetic rat model [40]. In another study, the same phospholipids were tested in vitro on Calu-3 ALI (air-liquid culture) model [41] to further investigate their absorption potential. This in vitro study demonstrated an enhanced permeation of Rh-ins and fluorescein isothiocyanate-labelled dextran (FD-4) (4000 Dalton molecular weight) through the cell layer. Hence, PS demonstrated a greater absorption enhancing effect than that of PHT. However, they could not identify the underlying mechanism of enhanced absorption. It was suggested that PS and PHT may interact directly with the tight junctions and increase the absorption via the paracellular pathway.
- (b)
- Bile salts; one of the primary roles of bile salts and their derivatives in drug delivery is their ability to enhance absorption [42]. For pulmonary drug delivery applications, salts of cholate, deoxycholate, glycocholate, glycodeoxycholate, taurocholate, and taurodeoxycholate [43] have been tested as absorption enhancers. Sodium taurocholate is one of the most-used bile salts to increase bioavailability of proteins, especially insulin [33] via the pulmonary route. The ranking of enhancement by bile salts for insulin has been reported to be sodium deoxycholate > sodium cholate > sodium glycocholate > sodium glycodeoxycholate (GDCA) > sodium taurodeoxycholate [33]. Even though bile salts and derivatives have shown potential as absorption enhancers, their toxicity on the epithelial surface is a main challenge in clinical applications. In a recent study the effect of inhaled bile salts on lung surfactant function as absorption enhancers was investigated in two in vitro models and then correlated to in vivo lung effects [44]. This study demonstrated that bile salts in vitro disrupted surfactant function and in vivo induced pulmonary irritation. Therefore, even though the bile salts did not affect the barrier integrity or viability of human airway epithelial cells at the tested doses, they have shown toxicity to some extent.
- (c)
- Fatty acids; Fatty acids, polyunsaturated fatty acids (PUFA), and their salts have also been investigated as absorption enhancers via the nasal and pulmonary route [21]. They have shown a tight junction modulatory effect to some extent, and enhanced permeation of drugs through the epithelial cell barrier. Although the exact mechanism is still unknown, previous studies have suggested that they may alter the membrane’s permeability, increasing fluidity of the membrane or through Ca2+ dependent tight junction mechanisms [45]. Their potential as an absorption enhancer has been demonstrated in both in vitro [20] and in vivo studies [16]. For example, the effects of arachidonic acid as an absorption enhancer combined with amino acid Taurine enhanced absorption of fluorescein isothiocyanate 4000 (FD-4) via the pulmonary route [46]. Among the fatty acids, medium chain fatty acids such as capric acid and lauric acid have been studied extensively as absorption enhancers due to their safety and effectiveness [45,47]. The suggested mechanism for capric acid (sodium caprate) is most likely by activation of phospholipase-C and increase of intracellular calcium levels, resulting in contraction of actin microfilaments and dilation of the tight junctions [45].
- (d)
- Non-ionic surfactants—Non-ionic surfactants, consisting of a hydrophilic head group and a hydrophobic tail, carry no charge and are relatively non-toxic [48]. Poloxamer 188, a non-ionic surfactant, has been widely studied as intranasal drug delivery system [49]. in vitro and in vivo studies demonstrated that poloxamer 188 played a key role in promoting intranasal absorption of both isosorbide dinitrate [49] and sumatriptan succinate [50] in rats. Incorporation of poloxamer 188 was reported to be able to influence the elasticity of nano-cubic vehicles for intranasal delivery [51]. Other non-ionic surfactants such as cremophor EL, laurate sucrose ester (SE), and sucrose cocoate have also shown absorption enhancement properties via nasal administration. SE has shown an efficient absorption-enhancing effect of poorly permeable drugs [31], furthermore, intranasal administration of an insulin formulation containing 0.5% sucrose cocoate showed a rapid and significant increase in plasma insulin level, with a concomitant decrease in blood glucose level [52]. Alkylglycosides (AGs) are a type of non-ionic surfactant class with groups such as maltose, sucrose or monosaccharides (e.g., glucose) attached to alkyl chains of variable length. Tetradecylmaltoside and N-lauryl-b-d-maltopyranoside are the most commonly used AGs. They have shown effective nasal absorption enhancement properties at extremely low concentrations. Pillion and his colleagues showed that AGs could be used effectively to enhance nasal absorption of insulin, calcitonin, and glucagon [53]. They synthesized a series of new glycosides with extended alkyl side-chains (C13–16) linked to maltose or sucrose and tested their efficacy as a penetration enhancer for delivery of nasal insulin in anesthetized rats [54]. Of the AGs tested, tetradecyl maltoside (TDM), a 14-carbon alkyl chain attached to a maltose ring, has been shown to be the most efficacious in enhancing nasal insulin absorption. The effects of TDM on the respiratory epithelium were shown to be reversible, with the epithelium reversing to its normal physiological barrier function 120 min after exposure to these agents. The molecular mechanism involved in these absorption-enhancing effects in vivo is unclear. It has been suggested that AGs have a direct effect on the epithelium layer, probably via the para cellular pathway [55]. Although AGs have shown absorption enhancing effect, they exhibit significant toxicity towards airway epithelial cells (Calu-3 cells), probably from a membrane-damaging effect [56].
- (e)
- Bio-surfactants—Biosurfactants are surface-active substances synthesised by living cells such as bacteria, fungi, and yeast. Bio-surfactants are generally non-toxic, environmentally benign, and biodegradable. Biosurfactants have been investigated as drug absorption enhancers previously [57]. One of the most well characterized classes of biosurfactants are rhamnolipids. The effect of rhamnolipids on the epithelial permeability of FD-4 and FD-10 across Caco-2 and Calu-3 monolayers has been reported [58]. It was shown that rhamnolipids increased permeation of FD-4 and FD-10 across both cell lines at a safe concentration with a dose-dependent effect.
- (f)
- Animal derived surfactants—The animal-derived surfactant poractant alfa (Curosurf®) was used to deliver polymyxin E and gentamicin to the lung in a neonatal rabbit model [59]. In this study, polymyxin E was mixed with poractant alfa and administered to a near-term rabbit. This mixture increased bactericidal effect of the antibiotics against Pseudomonas aeruginosa in vivo. This may be due to more efficient spreading mediated by interactions between drugs and surfactant.
3.2. Enzyme Inhibitors
3.3. Cationic Polymers as Absorption Enhancers
3.4. Tight Junction Modulators
4. Other Strategies to Enhance Absorption
4.1. Nanoparticles (NPs)
4.2. Liposomes
4.3. Dendrimers
4.4. Exosomes
4.5. Cell Penetrating Peptides (CPPs)
4.6. Surface Modification
4.7. Cyclodextrins (CDs)
5. Products in Development
6. Conclusions
Funding
Conflicts of Interest
References
- Helmstadter, A. Endermatic, epidermatic, enepidermatic-the early history of penetration enhancers. Int. J. Pharm. 2011, 416, 12–15. [Google Scholar] [CrossRef] [PubMed]
- Thwala, L.N.; Preat, V.; Csaba, N.S. Emerging delivery platforms for mucosal administration of biopharmaceuticals: A critical update on nasal, pulmonary and oral routes. Expert Opin. Drug Deliv. 2017, 14, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Turker, S.; Onur, E.; Ozer, Y. Nasal route and drug delivery systems. Pharm. World Sci. 2004, 26, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Agu, R.U.; Ugwoke, M.I.; Armand, M.; Kinget, R.; Verbeke, N. The lung as a route for systemic delivery of therapeutic proteins and peptides. Respir. Res. 2001, 2, 198–209. [Google Scholar] [PubMed]
- Fan, Y.; Chen, M.; Zhang, J.Q.; Maincent, P.; Xia, X.F.; Wu, W. Updated progress of nanocarrier-based intranasal drug delivery systems for treatment of brain diseases. Crit. Rev. Ther. Drug 2018, 35, 433–467. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.T.; Pan, J.H.; Wu, X.H.; Jiang, Z.T. [screen absorption enhancer for intranasal administration preparations of paeoniflorin based on nasal perfusion method in rats]. Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China J. Chin. Mater. Med. 2017, 42, 493–497. [Google Scholar]
- Sleigh, M.A.; Blake, J.R.; Liron, N. The propulsion of mucus by cilia. Am. Rev. Respir. Dis. 1988, 137, 726–741. [Google Scholar] [CrossRef] [PubMed]
- Clunes, M.T.; Boucher, R.C. Cystic fibrosis: The mechanisms of pathogenesis of an inherited lung disorder. Drug Discov. Today Dis. Mech. 2007, 4, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Verkman, A.S.; Song, Y.; Thiagarajah, J.R. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am. J. Physiol. Cell Physiol. 2003, 284, C2–C15. [Google Scholar] [CrossRef] [PubMed]
- Rosen, H.; Abribat, T. The rise and rise of drug delivery. Nat. Rev. Drug Discov. 2005, 4, 381–385. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.S.; Pearson, J.P. Upper airway mucin gene expression: A review. Laryngoscope 2007, 117, 932–938. [Google Scholar] [CrossRef] [PubMed]
- Mainardes, R.M.; Urban, M.C.; Cinto, P.O.; Chaud, M.V.; Evangelista, R.C.; Gremiao, M.P. Liposomes and micro/nanoparticles as colloidal carriers for nasal drug delivery. Curr. Drug Deliv. 2006, 3, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Inoue, D.; Tanaka, A.; Kimura, S.; Kiriyama, A.; Katsumi, H.; Yamamoto, A.; Ogawara, K.I.; Kimura, T.; Higaki, K.; Yutani, R.; et al. The relationship between in vivo nasal drug clearance and in vitro nasal mucociliary clearance: Application to the prediction of nasal drug absorption. Eur. J. Pharm. Sci. 2018, 117, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Karasulu, E.; Yavasoglu, A.; Evrensanal, Z.; Uvanikgil, Y.; Karasulu, H.Y. Permeation studies and histological examination of sheep nasal mucosa following administration of different nasal formulations with or without absorption enhancers. Drug Deliv. 2008, 15, 219–225. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Kondo, S.; Juni, K. Study on pulmonary delivery of salmon-calcitonin in rats—Effects of protease inhibitors and absorption enhancers. Pharm. Res.-Dordr. 1994, 11, 1239–1243. [Google Scholar] [CrossRef]
- Chavanpatil, M.D.; Vavia, P.R. The influence of absorption enhancers on nasal absorption of acyclovir. Eur. J. Pharm. Biopharm. 2004, 57, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Kim, I.W.; Yoo, H.; Song, I.S.; Chung, Y.B.; Moon, D.C.; Chung, S.J.; Shim, C.K. Effect of excipients on the stability and transport of recombinant human epidermal growth factor (rhegf) across caco-2 cell monolayers. Arch. Pharm. Res. 2003, 26, 330–337. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Murata, K.; Kobayashi, M.; Noda, K. Enhancement of bioavailability of dopamine via nasal route in beagle dogs. Chem. Pharm. Bull. 1992, 40, 2155–2158. [Google Scholar] [CrossRef] [PubMed]
- Amancha, K.P.; Hussain, A. Effect of protease inhibitors on pulmonary bioavailability of therapeutic proteins and peptides in the rat. Eur. J. Pharm. Sci. 2015, 68, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ghadiri, M.; Canney, F.; Pacciana, C.; Colombo, G.; Young, P.M.; Traini, D. The use of fatty acids as absorption enhancer for pulmonary drug delivery. Int. J. Pharm. 2018, 541, 93–100. [Google Scholar] [CrossRef]
- Ghadiri, M.; Mamlouk, M.; Spicer, P.; Jarolimek, W.; Grau, G.E.R.; Young, P.M.; Traini, D. Effect of polyunsaturated fatty acids (pufas) on airway epithelial cells’ tight junction. Pulm. Pharmacol. Ther. 2016, 40, 30–38. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yang, X.L.; Yang, Y.A.; Li, P.; Yang, Z.L.; Zhang, C.F. Phospholipid complex as an approach for bioavailability enhancement of echinacoside. Drug Dev. Ind. Pharm. 2015, 41, 1777–1784. [Google Scholar] [CrossRef] [PubMed]
- Chono, S.; Fukuchi, R.; Seki, T.; Morimoto, K. Aerosolized liposomes with dipalmitoyl phosphatidylcholine enhance pulmonary insulin delivery. J. Control. Release 2009, 137, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Benediktsdottir, B.E.; Gudjonsson, T.; Baldursson, O.; Masson, M. N-alkylation of highly quaternized chitosan derivatives affects the paracellular permeation enhancement in bronchial epithelia in vitro. Eur. J. Pharm. Biopharm. 2014, 86, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K.; Odomi, M.; Okada, N.; Fujita, T.; Yamamoto, A. Chitosan oligomers as potential and safe absorption enhancers for improving the pulmonary absorption of interferon-alpha in rats. J. Pharm. Sci.-US 2005, 94, 2432–2440. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Yamada, K.; Muramatsu, H.; Nishinaka, A.; Okumura, S.; Okada, N.; Fujita, T.; Muranishi, S. Control of pulmonary absorption of water-soluble compounds by various viscous vehicles. Int. J. Pharm. 2004, 282, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Shimpi, S.; Chauhan, B.; Shimpi, P. Cyclodextrins: Application in Different Routes of Drug Administration. Acta Pharm. 2005, 55, 139–156. [Google Scholar] [PubMed]
- Suzuki, H.; Kondoh, M.; Li, X.; Takahashi, A.; Matsuhisa, K.; Matsushita, K.; Kakamu, Y.; Yamane, S.; Kodaka, M.; Isoda, K.; et al. A toxicological evaluation of a claudin modulator, the c-terminal fragment of clostridium perfringens enterotoxin, in mice. Pharmazie 2011, 66, 543–546. [Google Scholar] [PubMed]
- Gopalakrishnan, S.; Pandey, N.; Tamiz, A.P.; Vere, J.; Carrasco, R.; Somerville, R.; Tripathi, A.; Ginski, M.; Paterson, B.M.; Alkan, S.S. Mechanism of action of zot-derived peptide at-1002, a tight junction regulator and absorption enhancer. Int. J. Pharm. 2009, 365, 121–130. [Google Scholar] [CrossRef] [PubMed]
- Shubber, S.; Vllasaliu, D.; Rauch, C.; Jordan, F.; Illum, L.; Stolnik, S. Mechanism of mucosal permeability enhancement of criticalsorb (r) (solutol (r) hs15) investigated in vitro in cell cultures. Pharm. Res.-Dordr 2015, 32, 516–527. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, J.; Zhang, X.; Ding, J.; Mao, S. Non-ionic surfactants as novel intranasal absorption enhancers: In vitro and in vivo characterization. Drug Deliv. 2016, 23, 2272–2279. [Google Scholar] [PubMed]
- Brockman, J.M.; Wang, Z.D.; Notter, R.H.; Dluhy, R.A. Effect of hydrophobic surfactant proteins sp-b and sp-c on binary phospholipid monolayers ii. Infrared external reflectance-absorption spectroscopy. Biophys. J. 2003, 84, 326–340. [Google Scholar] [CrossRef]
- Johansson, F.; Hjertberg, E.; Eirefelt, S.; Tronde, A.; Bengtsson, U.H. Mechanisms for absorption enhancement of inhaled insulin by sodium taurocholate. Eur. J. Pharm. Sci. 2002, 17, 63–71. [Google Scholar] [CrossRef]
- Chen-Quay, S.C.; Eiting, K.T.; Li, A.W.A.; Lamharzi, N.; Quay, S.C. Identification of tight junction modulating lipids. J. Pharm. Sci.-US 2009, 98, 606–619. [Google Scholar] [CrossRef] [PubMed]
- Griese, M. Pulmonary surfactant in health and human lung diseases: State of the art. Eur. Respir. J. 1999, 13, 1455–1476. [Google Scholar] [CrossRef] [PubMed]
- Wauthoz, N.; Amighi, K. Phospholipids in pulmonary drug delivery. Eur. J. Lipid Sci. Technol. 2014, 116, 1114–1128. [Google Scholar] [CrossRef]
- Veldhuizen, R.; Nag, K.; Orgeig, S.; Possmayer, F. The role of lipids in pulmonary surfactant. BBA-Mol. Basis Dis. 1998, 1408, 90–108. [Google Scholar] [CrossRef] [Green Version]
- Hoyer, H.; Perera, G.; Bernkop-Schnurch, A. Noninvasive delivery systems for peptides and proteins in osteoporosis therapy: A retroperspective. Drug Dev. Ind. Pharm. 2010, 36, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Ventura, C.A.; Fresta, M.; Paolino, D.; Pedotti, S.; Corsaro, A.; Puglisi, G. Biomembrane model interaction and percutaneous absorption of papaverine through rat skin: Effects of cyclodextrins as penetration enhancers. J. Drug Target 2001, 9, 379–393. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.H.; Zhang, G.; Lu, Y.; Fang, F.; He, J.K.; Li, N.; Talbi, A.; Zhang, Y.; Tang, Y.; Zhu, J.B.; et al. Effect of pulmonary surfactant and phospholipid hexadecanol tyloxapol on recombinant human-insulin absorption from intratracheally administered dry powders in diabetic rats. Chem. Pharm. Bull. 2010, 58, 1612–1616. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.H.; Zheng, Y.; Chen, J.Y.; Fang, F.; He, J.K.; Li, N.; Tang, Y.; Zhu, J.B.; Chen, X.J. Enhanced pulmonary absorption of recombinant human insulin by pulmonary surfactant and phospholipid hexadecanol tyloxapol through calu-3 monolayers. Pharmazie 2012, 67, 448–451. [Google Scholar] [PubMed]
- Stojancevic, M.; Pavlovic, N.; Golocorbin-Kon, S.; Mikov, M. Application of bile acids in drug formulation and delivery. Front. Life Sci. 2013, 7, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Moghimipour, E.; Ameri, A.; Handali, S. Absorption-enhancing effects of bile salts. Molecules 2015, 20, 14451–14473. [Google Scholar] [CrossRef] [PubMed]
- Sørli, J.B.; Balogh Sivars, K.; Da Silva, E.; Hougaard, K.S.; Koponen, I.K.; Zuo, Y.Y.; Weydahl, I.E.K.; Åberg, P.M.; Fransson, R. Bile salt enhancers for inhalation: Correlation between in vitro and in vivo lung effects. Int. J. Pharm. 2018, 550, 114–122. [Google Scholar] [CrossRef] [PubMed]
- Del Vecchio, G.; Tscheik, C.; Tenz, K.; Helms, H.C.; Winkler, L.; Blasig, R.; Blasig, I.E. Sodium caprate transiently opens claudin-5-containing barriers at tight junctions of epithelial and endothelial cells. Mol. Pharm. 2012, 9, 2523–2533. [Google Scholar] [CrossRef] [PubMed]
- Miyake, M.; Minami, T.; Yamazaki, H.; Emoto, C.; Mukai, T.; Toguchi, H. Arachidonic acid with taurine enhances pulmonary absorption of macromolecules without any serious histopathological damages. Eur. J. Pharm. Biopharm. 2017, 114, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Coyne, C.B.; Ribeiro, C.M.P.; Boucher, R.C.; Johnson, L.G. Acute mechanism of medium chain fatty acid-induced enhancement of airway epithelial permeability. J. Pharmacol. Exp. Ther. 2003, 305, 440–450. [Google Scholar] [CrossRef] [PubMed]
- Ujhelyi, Z.; Fenyvesi, F.; Varadi, J.; Feher, P.; Kiss, T.; Veszelka, S.; Deli, M.; Vecsernyes, M.; Bacskay, I. Evaluation of cytotoxicity of surfactants used in self-micro emulsifying drug delivery systems and their effects on paracellular transport in caco-2 cell monolayer. Eur. J. Pharm. Sci. 2012, 47, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Na, L.; Mao, S.; Wang, J.; Sun, W. Comparison of different absorption enhancers on the intranasal absorption of isosorbide dinitrate in rats. Int. J. Pharm. 2010, 397, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Kreuter, J. Mechanism of polymeric nanoparticle-based drug transport across the blood-brain barrier (bbb). J. Microencapsul. 2013, 30, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Salama, H.A.; Mahmoud, A.A.; Kamel, A.O.; Abdel Hady, M.; Awad, G.A.S. Phospholipid based colloidal poloxamer–nanocubic vesicles for brain targeting via the nasal route. Colloids Surf. B Biointerfaces 2012, 100, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, F.; Arnold, J.J.; Meezan, E.; Pillion, D.J. Sucrose cocoate, a component of cosmetic preparations, enhances nasal and ocular peptide absorption. Int. J. Pharm. 2003, 251, 195–203. [Google Scholar] [CrossRef]
- Maggio, E.T.; Pillion, D.J. High efficiency intranasal drug delivery using intravail (r) alkylsaccharide absorption enhancers. Drug Deliv. Transl. Res. 2013, 3, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Pillion, D.J.; Ahsan, F.; Arnold, J.J.; Balusubramanian, B.M.; Piraner, O.; Meezan, E. Synthetic long-chain alkyl maltosides and alkyl sucrose esters as enhancers of nasal insulin absorption. J. Pharm. Sci.-US 2002, 91, 1456–1462. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, F.; Arnold, J.; Meezan, E.; Pillion, D.J. Enhanced bioavailability of calcitonin formulated with alkylglycosides following nasal and ocular administration in rats. Pharm. Res.-Dordr. 2001, 18, 1742–1746. [Google Scholar] [CrossRef]
- Vllasaliu, D.; Shubber, S.; Fowler, R.; Garnett, M.; Alexander, C.; Stolnik, S. Epithelial toxicity of alkylglycoside surfactants. J. Pharm. Sci.-US 2013, 102, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Wallace, C.J.; Medina, S.H.; ElSayed, M.E.H. Effect of rhamnolipids on permeability across caco-2 cell monolayers. Pharm. Res.-Dordr. 2014, 31, 887–894. [Google Scholar] [CrossRef] [PubMed]
- Perinelli, D.R.; Vllasaliu, D.; Bonacucina, G.; Come, B.; Pucciarelli, S.; Ricciutelli, M.; Cespi, M.; Itri, R.; Spinozzi, F.; Palmieri, G.F.; et al. Rhamnolipids as epithelial permeability enhancers for macromolecular therapeutics. Eur. J. Pharm. Biopharm. 2017, 119, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Basabe-Burgos, O.; Zebialowicz, J.; Stichtenoth, G.; Curstedt, T.; Bergman, P.; Johansson, J.; Rising, A. Natural derived surfactant preparation as a carrier of polymyxin e for treatment of pseudomonas aeruginosa pneumonia in a near-term rabbit model. J. Aerosol. Med. Pulm. Drug Deliv. 2018. [Google Scholar] [CrossRef] [PubMed]
- Candiano, G.; Bruschi, M.; Pedemonte, N.; Musante, L.; Ravazzolo, R.; Liberatori, S.; Bini, L.; Galietta, L.J.; Zegarra-Moran, O. Proteomic analysis of the airway surface liquid: Modulation by proinflammatory cytokines. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007, 292, L185–L198. [Google Scholar] [CrossRef] [PubMed]
- Morita, T.; Yamamoto, A.; Takakura, Y.; Hashida, M.; Sezaki, H. Improvement of the pulmonary absorption of (asu(1,7))-eel calcitonin by various protease inhibitors in rats. Pharm. Res.-Dordr. 1994, 11, 909–913. [Google Scholar] [CrossRef]
- Yamamoto, A.; Umemori, S.; Muranishi, S. Absorption enhancement of intrapulmonary administered insulin by various absorption enhancers and protease inhibitors in rats. J. Pharm. Pharmacol. 1994, 46, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, A.; Fujita, T.; Muranishi, S. Pulmonary absorption enhancement of peptides by absorption enhancers and protease inhibitors. J. Control. Release 1996, 41, 57–67. [Google Scholar] [CrossRef]
- Yamahara, H.; Morimoto, K.; Lee, V.H.L.; Kim, K.J. Effects of protease inhibitors on vasopressin transport across rat alveolar epithelial-cell monolayers. Pharm. Res.-Dordr. 1994, 11, 1617–1622. [Google Scholar] [CrossRef]
- Machida, M.; Hayashi, M.; Awazu, S. The effects of absorption enhancers on the pulmonary absorption of recombinant human granulocyte colony-stimulating factor (rhg-csf) in rats. Biol. Pharm. Bull. 2000, 23, 84–86. [Google Scholar] [CrossRef] [PubMed]
- Okumura, K.; Iwakawa, S.; Yoshida, T.; Seki, T.; Komada, F. Intratracheal delivery of insulin absorption from solution and aerosol by rat lung. Int. J. Pharm. 1992, 88, 63–73. [Google Scholar] [CrossRef]
- Hirche, T.O.; Benabid, R.; Deslee, G.; Gangloff, S.; Achilefu, S.; Guenounou, M.; Lebargy, F.; Hancock, R.E.; Belaaouaj, A. Neutrophil elastase mediates innate host protection against pseudomonas aeruginosa. J. Immunol. 2008, 181, 4945–4954. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, A.; McElvaney, N.G.; Cryan, S.A. A dry powder formulation of liposome-encapsulated recombinant secretory leukocyte protease inhibitor (rslpi) for inhalation: Preparation and characterisation. AAPS PharmSciTech 2010, 11, 1411–1421. [Google Scholar] [CrossRef] [PubMed]
- Delacourt, C.; Herigault, S.; Delclaux, C.; Poncin, A.; Levame, M.; Harf, A.; Saudubray, F.; Lafuma, C. Protection against acute lung injury by intravenous or intratracheal pretreatment with epi-hne-4, a new potent neutrophil elastase inhibitor. Am. J. Respir Cell Mol. Biol. 2002, 26, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Grimbert, D.; Vecellio, L.; Delepine, P.; Attucci, S.; Boissinot, E.; Poncin, A.; Gauthier, F.; Valat, C.; Saudubray, F.; Antonioz, P.; et al. Characteristics of epi-hne4 aerosol: A new elastase inhibitor for treatment of cystic fibrosis. J. Aerosol. Med. 2003, 16, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Schulz, J.D.; Gauthier, M.A.; Leroux, J.C. Improving oral drug bioavailability with polycations? Eur. J. Pharm. Biopharm. 2015, 97, 427–437. [Google Scholar] [CrossRef] [PubMed]
- Seki, T. Enhancement of insulin absorption through mucosal membranes using cationic polymers. Yakugaku Zasshi 2010, 130, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Huang, X.; Sun, Y.; Lu, G.; Wang, K.; Wang, Z.; Xing, J.; Gao, Y. Improvement of pulmonary absorption of poorly absorbable macromolecules by hydroxypropyl-β-cyclodextrin grafted polyethylenimine (hp-β-cd-pei) in rats. Int. J. Pharm. 2015, 489, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Fukushi, N.; Chono, S.; Seki, T.; Tabata, Y. Spermined dextran, a cationized polymer, as absorption enhancer for pulmonary application of peptide drugs. Pharmazie 2008, 63, 180–184. [Google Scholar] [PubMed]
- Zhang, J.; Zhu, X.; Jin, Y.; Shan, W.; Huang, Y. Mechanism study of cellular uptake and tight junction opening mediated by goblet cell-specific trimethyl chitosan nanoparticles. Mol. Pharm. 2014, 11, 1520–1532. [Google Scholar] [CrossRef] [PubMed]
- Yamada, K. Control of pulmonary absorption of drugs by various pharmaceutical excipients. Yakugaku Zasshi 2007, 127, 631–641. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Pal, K.; Anis, A.; Pramanik, K.; Prabhakar, B. Polymers in mucoadhesive drug-delivery systems: A brief note. Des. Monomers Polym. 2009, 12, 483–495. [Google Scholar] [CrossRef]
- Botelho da Silva, S.; Krolicka, M.; van den Broek, L.A.M.; Frissen, A.E.; Boeriu, C.G. Water-soluble chitosan derivatives and ph-responsive hydrogels by selective c-6 oxidation mediated by tempo-laccase redox system. Carbohydr. Polym. 2018, 186, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.J.; Shahidi, F.; Kim, S.K. Preparation of chitin and chitosan oligomers amd their applications in physiological functional foods. Food Rev. Int. 2000, 16, 159–176. [Google Scholar] [CrossRef]
- Zariwala, M.G.; Bendre, H.; Markiv, A.; Farnaud, S.; Renshaw, D.; Taylor, K.M.; Somavarapu, S. Hydrophobically modified chitosan nanoliposomes for intestinal drug delivery. Int. J. Nanomed. 2018, 13, 5837–5848. [Google Scholar] [CrossRef] [PubMed]
- Sonia, T.A.; Rekha, M.R.; Sharma, C.P. Bioadhesive hydrophobic chitosan microparticles for oral delivery of insulin: In vitro characterization and in vivo uptake studies. J. Appl. Polym. Sci. 2011, 119, 2902–2910. [Google Scholar] [CrossRef]
- Seki, T.; Fukushi, N.; Maru, H.; Kimura, S.; Chono, S.; Egawa, Y.; Morimoto, K.; Ueda, H.; Morimoto, Y. Effects of sperminated pullulans on the pulmonary absorption of insulin. Yakugaku Zasshi 2011, 131, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Katsumata, H.; Yabuta, T.; Iwanaga, K.; Kakemi, M.; Tabata, Y.; Ikada, Y. Gelatin microspheres as a pulmonary delivery system: Evaluation of salmon calcitonin absorption. J. Pharm. Pharmacol. 2000, 52, 611–617. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Gao, Y.; Lin, Y.; Katsumi, H. Improvement of pulmonary absorption of insulin and other water-soluble compounds by polyamines in rats. J. Control. Release 2007, 122, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Pauletti, G.M.; Okumu, F.W.; Borchardt, R.T. Effect of size and charge on the passive diffusion of peptides across caco-2 cell monolayers via the paracellular pathway. Pharm. Res.-Dordr. 1997, 14, 164–168. [Google Scholar] [CrossRef]
- Smedley, J.G.; Saputo, J.; Parker, J.C.; Fernandez-Miyakawa, M.E.; Robertson, S.L.; McClane, B.A.; Uzal, F.A. Noncytotoxic clostridium perfringens enterotoxin (cpe) variants localize cpe intestinal binding and demonstrate a relationship between cpe-induced cytotoxicity and enterotoxicity. Infect. Immun. 2008, 76, 3793–3800. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, M.; Nagase, S.; Iida, M.; Takeda, S.; Yamashita, M.; Watari, A.; Shirasago, Y.; Fukasawa, M.; Takeda, H.; Sawasaki, T.; et al. Claudin-1 binder enhances epidermal permeability in a human keratinocyte model. J. Pharmacol. Exp. Ther. 2015, 354, 440–447. [Google Scholar] [CrossRef] [PubMed]
- Saaber, D.; Wollenhaupt, S.; Baumann, K.; Reichl, S. Recent progress in tight junction modulation for improving bioavailability. Expert Opin. Drug Dis. 2014, 9, 367–381. [Google Scholar] [CrossRef] [PubMed]
- Uchida, H.; Kondoh, M.; Hanada, T.; Takahashi, A.; Hamakubo, T.; Yagi, K. A claudin-4 modulator enhances the mucosal absorption of a biologically active peptide. Biochem. Pharmacol. 2010, 79, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Helms, H.C.; Waagepetersen, H.S.; Nielsen, C.U.; Brodin, B. Paracellular tightness and claudin-5 expression is increased in the bcec/astrocyte blood-brain barrier model by increasing media buffer capacity during growth. AAPS J. 2010, 12, 759–770. [Google Scholar] [CrossRef] [PubMed]
- Deli, M.A. Potential use of tight junction modulators to reversibly open membranous barriers and improve drug delivery. BBA-Biomembranes 2009, 1788, 892–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasano, A.; Not, T.; Wang, W.L.; Uzzau, S.; Berti, I.; Tommasini, A.; Goldblum, S.E. Zonulin, a newly discovered modulator of intestinal permeability, and its expression in coeliac disease. Lancet 2000, 355, 1518–1519. [Google Scholar] [CrossRef]
- Li, M.; Oliver, E.; Kitchens, K.M.; Vere, J.; Alkan, S.S.; Tamiz, A.P. Structure-activity relationship studies of permeability modulating peptide at-1002. Bioorg. Med. Chem. Lett. 2008, 18, 4584–4586. [Google Scholar] [CrossRef] [PubMed]
- Porter, A.E.; Muller, K.; Skepper, J.; Midgley, P.; Welland, M. Uptake of c60 by human monocyte macrophages, its localization and implications for toxicity: Studied by high resolution electron microscopy and electron tomography. Acta Biomater. 2006, 2, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Kreyling, W.G.; Semmler-Behnke, M.; Moller, W. Ultrafine particle-lung interactions: Does size matter? J. Aerosol. Med. 2006, 19, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.S.; Xu, Q.; Boylan, N.J.; Chisholm, J.; Tang, B.C.; Schuster, B.S.; Henning, A.; Ensign, L.M.; Lee, E.; Adstamongkonkul, P.; et al. Nanoparticles that do not adhere to mucus provide uniform and long-lasting drug delivery to airways following inhalation. Sci. Adv. 2017, 3, e1601556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mistry, A.; Stolnik, S.; Illum, L. Nanoparticles for direct nose-to-brain delivery of drugs. Int. J. Pharm. 2009, 379, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Kulkarni, A.D.; Vanjari, Y.H.; Sancheti, K.H.; Belgamwar, V.S.; Surana, S.J.; Pardeshi, C.V. Nanotechnology-mediated nose to brain drug delivery for parkinson’s disease: A mini review. J. Drug Target 2015, 23, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Arnold, J.J.; Khan, M.A.; Ahsan, F. Absorption enhancers in pulmonary protein delivery. J. Control. Release 2004, 94, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Cupri, S.; Graziano, A.C.E.; Cardile, V.; Skwarczynski, M.; Toth, I.; Pignatello, R. A study on the encapsulation of an occludin lipophilic derivative in liposomal carriers. J. Liposome Res. 2015, 25, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Manca, M.L.; Peris, J.E.; Melis, V.; Valenti, D.; Cardia, M.C.; Lattuada, D.; Escribano-Ferrer, E.; Fadda, A.M.; Manconi, M. Nanoincorporation of curcumin in polymer-glycerosomes and evaluation of their in vitro–in vivo suitability as pulmonary delivery systems. Rsc. Adv. 2015, 5, 105149–105159. [Google Scholar] [CrossRef]
- Melis, V.; Manca, M.L.; Bullita, E.; Tamburini, E.; Castangia, I.; Cardia, M.C.; Valenti, D.; Fadda, A.M.; Peris, J.E.; Manconi, M. Inhalable polymer-glycerosomes as safe and effective carriers for rifampicin delivery to the lungs. Colloid Surf. B 2016, 143, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Bai, S.; Thomas, C.; Ahsan, F. Dendrimers as a carrier for pulmonary delivery of enoxaparin, a low-molecular weight heparin. J. Pharm. Sci.-US 2007, 96, 2090–2106. [Google Scholar] [CrossRef] [PubMed]
- Inapagolla, R.; Guru, B.R.; Kurtoglu, Y.E.; Gao, X.; Lieh-Lai, M.; Bassett, D.J.P.; Kannan, R.M. In vivo efficacy of dendrimer–methylprednisolone conjugate formulation for the treatment of lung inflammation. Int. J. Pharm. 2010, 399, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Li, N.; Gao, Y.; Guo, Y.; Liu, H.; Chen, X.; Zhu, C.; Dong, Z.; Yamamoto, A. The Effect of Absorption-Enhancement and the Mechanism of the PAMAM Dendrimer on Poorly Absorbable Drugs. Molecules 2018, 23, 2001. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.; Sansanaphongpricha, K.; Myers, I.; Chen, H.; Yuan, H.; Sun, D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 2017, 38, 754. [Google Scholar] [CrossRef] [PubMed]
- Vader, P.; Mol, E.A.; Pasterkamp, G.; Schiffelers, R.M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016, 106, 148–156. [Google Scholar] [CrossRef] [PubMed]
- Hood, J.L. Post isolation modification of exosomes for nanomedicine applications. Nanomedicine (London, England) 2016, 11, 1745–1756. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batrakova, E.V.; Kim, M.S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release 2015, 219, 396–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harding, C.V.; Heuser, J.E.; Stahl, P.D. Exosomes: Looking back three decades and into the future. J. Cell Biol. 2013, 200, 367–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabbri, M.; Paone, A.; Calore, F.; Galli, R.; Gaudio, E.; Santhanam, R.; Lovat, F.; Fadda, P.; Mao, C.; Nuovo, G.J.; et al. Micrornas bind to toll-like receptors to induce prometastatic inflammatory response. Proc. Natl. Acad. Sci. USA 2012, 109, E2110–E2116. [Google Scholar] [CrossRef] [PubMed]
- Kalani, A.; Kamat, P.K.; Chaturvedi, P.; Tyagi, S.C.; Tyagi, N. Curcumin-primed exosomes mitigate endothelial cell dysfunction during hyperhomocysteinemia. Life Sci. 2014, 107, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Batrakova, E.V.; Kim, M.S.; Haney, M.J.; Zhao, Y.; Deygen, I.; Klyachko, N.L.; Kabanov, A.V. Development of exosome-encapsulated paclitaxel to treat cancer metastases. In Vitro Cell Dev. 2017, 53, S9. [Google Scholar]
- Haney, M.J.; Klyachko, N.L.; Zhao, Y.; Gupta, R.; Plotnikova, E.G.; He, Z.; Patel, T.; Piroyan, A.; Sokolsky, M.; Kabanov, A.V.; et al. Exosomes as drug delivery vehicles for parkinson’s disease therapy. J. Control. Release 2015, 207, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, X.; Xiang, X.; Grizzle, W.; Sun, D.; Zhang, S.; Axtell, R.C.; Ju, S.; Mu, J.; Zhang, L.; Steinman, L.; et al. Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 2011, 19, 1769–1779. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Li, S.; Song, J.; Ji, T.; Zhu, M.; Anderson, G.J.; Wei, J.; Nie, G. A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials 2014, 35, 2383–2390. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Martin, P.; Fogarty, B.; Brown, A.; Schurman, K.; Phipps, R.; Yin, V.P.; Lockman, P.; Bai, S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in danio rerio. Pharm. Res. 2015, 32, 2003–2014. [Google Scholar] [CrossRef] [PubMed]
- Foged, C.; Nielsen, H.M. Cell-penetrating peptides for drug delivery across membrane barriers. Expert Opin. Drug Deliv. 2008, 5, 105–117. [Google Scholar] [CrossRef] [PubMed]
- McClorey, G.; Banerjee, S. Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines 2018, 6, 51. [Google Scholar] [CrossRef] [PubMed]
- Derossi, D.; Calvet, S.; Trembleau, A.; Brunissen, A.; Chassaing, G.; Prochiantz, A. Cell internalization of the third helix of the antennapedia homeodomain is receptor-independent. J. Biol. Chem. 1996, 271, 18188–18193. [Google Scholar] [CrossRef] [PubMed]
- Thorén, P.E.G.; Persson, D.; Esbjörner, E.K.; Goksör, M.; Lincoln, P.; Nordén, B. Membrane binding and translocation of cell-penetrating peptides. Biochemistry-US 2004, 43, 3471–3489. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Cheong, H.; Park, Y.S.; Kim, H.; Zhang, M.; Moon, C.; Huang, Y.Z. Cell-penetrating peptide-mediated topical delivery of biomacromolecular drugs. Curr. Pharm. Biotechnol. 2014, 15, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Kato, T.; Yamashita, H.; Misawa, T.; Nishida, K.; Kurihara, M.; Tanaka, M.; Demizu, Y.; Oba, M. Plasmid DNA delivery by arginine-rich cell-penetrating peptides containing unnatural amino acids. Bioorg. Med. Chem. 2016, 24, 2681–2687. [Google Scholar] [CrossRef] [PubMed]
- Eudes, F.; Shim, Y.S. Cell-penetrating peptides trojan horse for DNA and protein delivery in plant. In Vitro Cell Dev. 2010, 46, S112–S113. [Google Scholar]
- Dos Reis, L.G.; Svolos, M.; Hartwig, B.; Windhab, N.; Young, P.M.; Traini, D. Inhaled gene delivery: A formulation and delivery approach. Expert Opin. Drug Deliv. 2017, 14, 319–330. [Google Scholar] [CrossRef] [PubMed]
- Kamei, N. Nose-to-brain delivery of peptide drugs enhanced by coadministration of cell-penetrating peptides: Therapeutic potential for dementia. Yakugaku Zasshi 2017, 137, 1247–1253. [Google Scholar] [CrossRef] [PubMed]
- Kamei, N.; Tanaka, M.; Choi, H.; Okada, N.; Ikeda, T.; Itokazu, R.; Takeda-Morishita, M. Effect of an enhanced nose-to-brain delivery of insulin on mild and progressive memory loss in the senescence-accelerated mouse. Mol. Pharm. 2017, 14, 916–927. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Lin, C.; Lu, A.; Lin, G.; Chen, H.; Liu, Q.; Yang, Z.; Zhang, H. Liposomes equipped with cell penetrating peptide br2 enhances chemotherapeutic effects of cantharidin against hepatocellular carcinoma. Drug Deliv. 2017, 24, 986–998. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Li, S.; Luo, Z.; Ren, H.; Zhang, X.; Huang, F.; Zuo, Y.Y.; Yue, T. Role of lipid coating in the transport of nanodroplets across the pulmonary surfactant layer revealed by molecular dynamics simulations. Langmuir 2018, 34, 9054–9063. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.H.; Di Sabatino, M.; Albertini, B.; Passerini, N.; Kett, V.L. The effect of polymer coatings on physicochemical properties of spray-dried liposomes for nasal delivery of bsa. Eur. J. Pharm. Sci. 2013, 50, 312–322. [Google Scholar] [CrossRef] [PubMed]
- Murata, M.; Nakano, K.; Tahara, K.; Tozuka, Y.; Takeuchi, H. Pulmonary delivery of elcatonin using surface-modified liposomes to improve systemic absorption: Polyvinyl alcohol with a hydrophobic anchor and chitosan oligosaccharide as effective surface modifiers. Eur. J. Pharm. Biopharm. 2012, 80, 340–346. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.Y.; Jiang, M.Y.; Kang, T.; Miao, D.Y.; Gu, G.Z.; Song, Q.X.; Yao, L.; Hu, Q.Y.; Tu, Y.F.; Pang, Z.Q.; et al. Lactoferrin-modified peg-co-pcl nanoparticles for enhanced brain delivery of nap peptide following intranasal administration. Biomaterials 2013, 34, 3870–3881. [Google Scholar] [CrossRef] [PubMed]
- Marttin, E.; Verhoef, J.C.; Merkus, F.W.H.M. Efficacy, safety and mechanism of cyclodextrins as absorption enhancers in nasal delivery of peptide and protein drugs. J. Drug Target 1998, 6, 17–36. [Google Scholar] [CrossRef] [PubMed]
- Schipper, N.G.M.; Verhoef, J.; Romeijn, S.G.; Merkus, F.W.H.M. Absorption enhancers in nasal insulin delivery and their influence on nasal ciliary functioning. J. Control. Release 1992, 21, 173–185. [Google Scholar] [CrossRef]
- Salem, L.B.; Bosquillon, C.; Dailey, L.A.; Delattre, L.; Martin, G.P.; Evrard, B.; Forbes, B. Sparing methylation of beta-cyclodextrin mitigates cytotoxicity and permeability induction in respiratory epithelial cell layers in vitro. J. Control. Release 2009, 136, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Kiss, T.; Fenyvesi, F.; Bacskay, I.; Varadi, J.; Fenyvesi, E.; Ivanyi, R.; Szente, L.; Tosaki, A.; Vecsernyes, M. Evaluation of the cytotoxicity of beta-cyclodextrin derivatives: Evidence for the role of cholesterol extraction. Eur. J. Pharm. Sci. 2010, 40, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Roka, E.; Ujhelyi, Z.; Deli, M.; Bocsik, A.; Fenyvesi, E.; Szente, L.; Fenyvesi, F.; Vecsernyes, M.; Varadi, J.; Feher, P.; et al. Evaluation of the cytotoxicity of alpha-cyclodextrin derivatives on the caco-2 cell line and human erythrocytes. Molecules 2015, 20, 20269–20285. [Google Scholar] [CrossRef] [PubMed]
- Matilainen, L.; Toropainen, T.; Vihola, H.; Hirvonen, J.; Jarvinen, T.; Jarho, P.; Jarvinen, K. In vitro toxicity and permeation of cyclodextrins in calu-3 cells. J. Control. Release 2008, 126, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Hussain, A.; Yang, T.; Zaghloul, A.-A.; Ahsan, F. Pulmonary absorption of insulin mediated by tetradecyl-β-maltoside and dimethyl-β-cyclodextrin. Pharm. Res. 2003, 20, 1551–1557. [Google Scholar] [CrossRef] [PubMed]
Class | Enhancers | Examples | References |
---|---|---|---|
Surfactants | Bile salts | Sodium taurocholate | [14,15] |
Sodium deoxycholate sodium | [16] | ||
Glycodeoxycholat | [17,18] | ||
Surfactants | Fatty acids and derivatives | Palmitic acid | [19] |
Palmitoleic acid | |||
Stearic acid | |||
Oleyl alcohol | |||
Oleic acid | |||
Capric acid | [20,21] | ||
DHA, EPA | [20] | ||
Surfactants | Phospholipids | Dipalmitoyl phophatidyl choline, soybean lecithin, phosphatidylcholine | [22,23] |
Cationic polymers | Polymers | Chitosan and their derivatives | [24,25,26] |
Enzyme inhibitors | Human neutrophil elastase inhibitor (ER143) | ||
Cyclodextrins | Beta-Cyclodextrin | [27] | |
Tight junction modulators | Claudine modulator | Clostridium perfringens enterotoxin | [28] |
ZO modulator | Zonula occludens toxin (ZOT) | [29] |
Technology | Development Stage | Biological Products | Company | Absorption Enhancer Used in the Technology |
---|---|---|---|---|
Cyclopenta Decalactone | Marketed Phase 2 | Testosterone (Testim) Nocturia | CPEX Pharmaceuticals Serenity | Surfactant |
ChiSysTM PecSysTM | Phase 2 Phase 2 Phase 3 | Intranasal Apomorphine Intranasal Diazepam Intranasal fentanyl citrate (NasalFent) | Archimedes Pharma Ltd. | Chitosan based delivery |
IntravailTM | Phase 1 Phase 2 Phase 1 | Proteins (IFN-β, EPO) and peptides (PTH, GLP-1), Sumatriptan Naltrexone, Nalmefene | Neurelis, Inc. (Aegis Therapeutics Inc.) Opiant Pharmaceuticals | Cationic polymers-Alkyl saccharide |
GelSite® GelVac™ nasal dry powder | Phase 1 | Vaccines | Carrington Labs (Delsite Biotech) | Cationic polymers-Poly saccharide |
µco™ | Phase II Phase 1 | Granisetron-zolmitriptan Peptides: (insulin, PTH, FSH, GHRP) Nasal epinephrine formulation | SNBL, Ltd. G2B Pharma Inc. | Polymer-Micro crystalline cellulose (Powder) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghadiri, M.; Young, P.M.; Traini, D. Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics 2019, 11, 113. https://doi.org/10.3390/pharmaceutics11030113
Ghadiri M, Young PM, Traini D. Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics. 2019; 11(3):113. https://doi.org/10.3390/pharmaceutics11030113
Chicago/Turabian StyleGhadiri, Maliheh, Paul M. Young, and Daniela Traini. 2019. "Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes" Pharmaceutics 11, no. 3: 113. https://doi.org/10.3390/pharmaceutics11030113
APA StyleGhadiri, M., Young, P. M., & Traini, D. (2019). Strategies to Enhance Drug Absorption via Nasal and Pulmonary Routes. Pharmaceutics, 11(3), 113. https://doi.org/10.3390/pharmaceutics11030113