Development and Characterization of Liposomal Formulations Containing Phytosterols Extracted from Canola Oil Deodorizer Distillate along with Tocopherols as Food Additives
Abstract
:1. Introduction
2. Materials
Chemicals and Reagents
3. Methods
3.1. Formulation of Liposomes
3.1.1. Method I. Thin Film Hydration–Homogenization
3.1.2. Method II: Thin Film Hydration Ultrasonication
3.1.3. Method III: Mozafari Method
3.2. Characterization of Particle Size, Size Distribution and Zeta Potential
3.3. Transmission Electron Microscopy (TEM) Analysis
3.4. LC-MS/MS Method Development and Validation
3.5. Entrapment Efficiency (EE)
3.6. Development of Functional Juice Using Model Orange Juice
3.7. Pasteurization
3.8. Chemical Stability Studies
3.9. Physical Stability Studies
4. Statistical Analysis
5. Results and Discussions
5.1. Physicochemical Characterization
5.2. Entrapment Efficiency (%EE)
5.3. Effect of Lyophilization on the Physicochemical Properties
5.4. Chemical Stability Studies
5.5. Physical Stability Studies
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
LDL | Low-density lipoprotein |
CODD | Canola oil deodorizer distillate |
POPs | Phytosterol oxidation products |
LC-MS/MS | Liquid Chromatography Tandem Mass Spectrometry |
PC | Phosphatidylcholine |
TEM | Transmission electron Microscopy |
HTST | High temperature short time |
B/L | Bioactive/lipid |
RPM | Revolution per minute |
%EE | percentage entrapment efficiency |
DLS | Dynamic light scattering |
PDI | Polydispersibility Index |
References
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional food. Product development, marketing and consumer acceptance—A review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef]
- Demonty, I.; Ras, R.; van Der Knaap, H.; Duchateau, G.; Meijer, L.; Zock, P.; Geleijnse, J.; Trautwein, E. Continuous Dose-Response Relationship of the LDL-Cholesterol-Lowering Effect of Phytosterol Intake1,2. J. Nutr. 2009, 139, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Engin, K.N.; Engin, G.; Kucuksahin, H.; Oncu, M.; Guvener, B. Clinical evaluation of the neuroprotective effect of alpha- tocopherol against glaucomatous damage. Eur. J. Ophthalmol. 2007, 17, 528–533. [Google Scholar] [CrossRef] [PubMed]
- Abumweis, S.; Barake, R.; Jones, P. Plant sterols/stanols as cholesterol-lowering agents: A meta-analysis of randomized controlled trials. Food Nutr. Res. 2008, 52. [Google Scholar] [CrossRef]
- Katan, M.B.; Grundy, S.M.; Jones, P.; Law, M.; Miettinen, T.; Paoletti, R. Efficacy and Safety of Plant Stanols and Sterols in the Management of Blood Cholesterol Levels. Mayo Clin. Proc. 2003, 78, 965–978. [Google Scholar] [CrossRef]
- NIH Publication No. 01-3305. ATP III Guidelines at-a-Glance Quick Desk Reference; NIH: Bethesda, MD, USA, 2001.
- Ikeda, I.; Sugano, M. Some aspects of mechanism of inhibition of cholesterol absorption by β-sitosterol. BBA Biomembr. 1983, 732, 651–658. [Google Scholar] [CrossRef]
- Plat, J.; Mensink, R.P. Plant Stanol and Sterol Esters in the Control of Blood Cholesterol Levels: Mechanism and Safety Aspects. Am. J. Cardiol. 2005, 96, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Frei, B. Reactive oxygen species and antioxidant vitamins: Mechanisms of action. Am. J. Med. 1994, 97, S5–S13. [Google Scholar] [CrossRef]
- Niki, E.; Noguchi, N. Dynamics of antioxidant action of vitamin E. Acc. Chem. Res. 2004, 37, 45–51. [Google Scholar] [CrossRef] [PubMed]
- Taylor, H.R.; Tikellis, G.; Robman, L.D.; McCarty, C.A.; McNeil, J.J. Vitamin E supplementation and macular degeneration: randomised controlled trial. (Papers). Br. Med. J. 2002, 325, 11. [Google Scholar] [CrossRef]
- Frank, B.; Gupta, S. A review of antioxidants and Alzheimer’s disease. Ann. Clin. Psychiatry Off. J. Am. Acad. Clin. Psychiatr. 2005, 17, 269–286. [Google Scholar] [CrossRef]
- Vivekananthan, D.P.; Penn, M.S.; Sapp, S.K.; Hsu, A.; Topol, E.J. Use of antioxidant vitamins for the prevention of cardiovascular disease: Meta- analysis of randomised trials. Lancet 2003, 361, 2017–2023. [Google Scholar] [CrossRef]
- Ryan, E.; Galvin, K.; O’Connor, T.; Maguire, A.; O’Brien, N. Phytosterol, Squalene, Tocopherol Content and Fatty Acid Profile of Selected Seeds, Grains, and Legumes. Plant Foods Hum. Nutr. 2007, 62, 85–91. [Google Scholar] [CrossRef]
- Maguire, L.S.; O’Sullivan, S.M.; Galvin, K.; O’Connor, T.P.; O’Brien, N.M. Fatty acid profile, tocopherol, squalene and phytosterol content of walnuts, almonds, peanuts, hazelnuts and the macadamia nut. Int. J. Food Sci. Nutr. 2004, 55, 171–178. [Google Scholar] [CrossRef]
- Verleyen, T.; Verhe, R.; Garcia, L.; Dewettinck, K.; Huyghebaert, A.; De Greyt, W. Gas chromatographic characterization of vegetable oil deodorization distillate. J. Chromatogr. A 2001, 921, 277–285. [Google Scholar] [CrossRef]
- Heale, J.B.; Karapapa, V.K. The verticillium threat to canada’s major oilseed crop: canola. Can. J. Plant Pathol. 1999, 21, 1–7. [Google Scholar] [CrossRef]
- Schwartz, H.; Ollilainen, V.; Piironen, V.; Lampi, A.-M. Tocopherol, tocotrienol and plant sterol contents of vegetable oils and industrial fats. J. Food Compos. Anal. 2008, 21, 152–161. [Google Scholar] [CrossRef]
- McClements, D.J.; Decker, E.A.; Park, Y.; Weiss, J. Structural Design Principles for Delivery of Bioactive Components in Nutraceuticals and Functional Foods. Crit. Rev. Food Sci. Nutr. 2009, 49, 577–606. [Google Scholar] [CrossRef]
- Alemany, L.; Barbera, R.; Alegría, A.; Laparra, J.M. Plant sterols from foods in inflammation and risk of cardiovascular disease: A real threat? Food Chem. Toxicol. 2014, 69, 140–149. [Google Scholar] [CrossRef]
- Liang, Y.T.; Wong, W.T.; Guan, L.; Tian, X.Y.; Ma, K.Y.; Huang, Y.; Chen, Z.-Y. Effect of phytosterols and their oxidation products on lipoprotein profiles and vascular function in hamster fed a high cholesterol diet. Atherosclerosis 2011, 219, 124–133. [Google Scholar] [CrossRef]
- Nedovic, V.; Kalusevic, A.; Manojlovic, V.; Levic, S.; Bugarski, B. An overview of encapsulation technologies for food applications. Procedia Food Sci. 2011, 1, 1806–1815. [Google Scholar] [CrossRef] [Green Version]
- Desai, K.G.; Jin Park, H. Recent Developments in Microencapsulation of Food Ingredients. Dry. Technol. 2005, 23, 1361–1394. [Google Scholar] [CrossRef]
- Ray, S.; Raychaudhuri, U.; Chakraborty, R. An overview of encapsulation of active compounds used in food products by drying technology. Food Biosci. 2016, 13, 76–83. [Google Scholar] [CrossRef]
- Anandharamakrishnan, C. Spray Drying Technique for Food Ingredient Encapsulation; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Gibbs, B.F.; Kermasha, S.; Alli, I.; Mulligan, C.N. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 1999, 50, 213–224. [Google Scholar]
- Sagalowicz, L.; Leser, M.E. Delivery systems for liquid food products. Curr. Opin. Colloid Interface Sci. 2010, 15, 61–72. [Google Scholar] [CrossRef]
- Mozafari, M.R. Nanoliposomes: Preparation and analysis. Methods Mol. Biol. (Clifton, N.J.) 2010, 605, 29–50. [Google Scholar] [CrossRef]
- Noakes, M.; Clifton, P.; Ntanios, F.; Shrapnel, W. An increase in dietary carotenoids when consuming plant sterols or stanols is effective in maintaining plasma carotenoid concentrations. Am. J. Clin. Nutr. 2002, 75, 79–86. [Google Scholar] [CrossRef]
- Cleghorn, C.L.; Skeaff, C.M.; Mann, J.; Chisholm, A. Plant sterol-enriched spread enhances the cholesterol-lowering potential of a fat-reduced diet. Eur. J. Clin. Nutr. 2003, 57, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Davidson, M.H.; Maki, K.C.; Umporowicz, D.M.; Ingram, K.A.; Dicklin, M.R.; Schaefer, E.; Lane, R.W.; McNamara, J.R.; Ribaya-Mercado, J.D.; Perrone, G.; et al. Safety and Tolerability of Esterified Phytosterols Administered in Reduced-Fat Spread and Salad Dressing to Healthy Adult Men and Women. J. Am. Coll. Nutr. 2001, 20, 307–319. [Google Scholar] [CrossRef]
- Hyun, Y.J.; Kim, O.Y.; Kang, J.B.; Lee, J.H.; Jang, Y.; Liponkoski, L.; Salo, P. Plant stanol esters in low-fat yogurt reduces total and low-density lipoprotein cholesterol and low-density lipoprotein oxidation in normocholesterolemic and mildly hypercholesterolemic subjects. Nutr. Res. 2005, 25, 743–753. [Google Scholar] [CrossRef]
- Miettinen, T.A.; Puska, P.; Gylling, H.; Vanhanen, H.; Vartiainen, E. Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population. N. Engl. J. Med. 1995, 333, 1308–1312. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, A.B.; Hansen, H.B.; Christiansen, C.; Green, H.; Berger, A. Effect of free plant sterols in low-fat milk on serum lipid profile in hypercholesterolemic subjects. Eur. J. Clin. Nutr. 2004, 58, 860–870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noakes, M.; Clifton, P.; Doornbos, A.; Trautwein, E. Plant sterol ester–enriched milk and yoghurt effectively reduce serum cholesterol in modestly hypercholesterolemic subjects. Zeitschrift für Ernährungswissenschaft 2005, 44, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, M.; Vanstone, C.A.; Parsons, W.D.; Zawistowski, J.; Jones, P.J.H. Effect of plant sterols and glucomannan on lipids in individuals with and without type II diabetes. Eur. J. Clin. Nutr. 2006, 60, 529–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaraj, S.; Jialal, I.; Vega-Lopez, S. Plant sterol-fortified orange juice effectively lowers cholesterol levels in mildly hypercholesterolemic healthy individuals. Arteriosc. Thromb. Vasc. Biol. 2004, 24, e25–e28. [Google Scholar] [CrossRef] [PubMed]
- Shin, M.-J.; Lee, J.H.; Jang, Y.; Lee-Kim, Y.C.; Park, E.; Kim, K.M.; Chung, B.C.; Chung, N. Micellar Phytosterols Effectively Reduce Cholesterol Absorption at Low Doses. Ann. Nutr. Metab. 2005, 49, 346–351. [Google Scholar] [CrossRef]
- Spilburg, C.A.; Goldberg, A.C.; McGill, J.B.; Stenson, W.F.; Racette, S.B.; Bateman, J.; McPherson, T.B.; Ostlund, R.E. Fat-free foods supplemented with soy stanol-lecithin powder reduce cholesterolabsorption and LDL cholesterol. J. Am. Diet. Assoc. 2003, 103, 577–581. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.J.H.; Vanstone, C.A.; Raeini-Sarjaz, M.; St-Onge, M.-P. Phytosterols in low- and nonfat beverages as part of a controlled diet fail to lower plasma lipid levels. J. Lipid Res. 2003, 44, 1713–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Gershkovich, P.; Wasan, K.M. Evaluation of the effect of plant sterols on the intestinal processing of cholesterol using an in vitro lipolysis model. Int. J. Pharm. 2012, 436, 707–710. [Google Scholar] [CrossRef] [PubMed]
- Ostlund, R.E.; Spilburg, C.A.; Stenson, W.F. Sitostanol administered in lecithin micelles potently reduces cholesterol absorption in humans. Am. J. Clin. Nutr. 1999, 70, 826–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miettinen, T.A.; Vanhanen, H. Dietary sitostanol related to absorption, synthesis and serum level of cholesterol in different apolipoprotein E phenotypes. Atherosclerosis 1994, 105, 217–226. [Google Scholar] [CrossRef]
- Clifton, P.M.; Noakes, M.; Sullivan, D.; Erichsen, N.; Ross, D.; Annison, G.; Fassoulakis, A.; Cehun, M.; Nestel, P. Cholesterol-lowering effects of plant sterol esters differ in milk, yoghurt, bread and cereal. Eur. J. Clin. Nutr. 2004, 58, 503–509. [Google Scholar] [CrossRef] [Green Version]
- Amir Shaghaghi, M.; Harding, S.V.; Jones, P.J.H. Water dispersible plant sterol formulation shows improved effect on lipid profile compared to plant sterol esters. J. Funct. Foods 2014, 6, 280–289. [Google Scholar] [CrossRef]
- Judd, J.T.; Baer, D.J.; Chen, S.C.; Clevidence, B.A.; Muesing, R.A.; Kramer, M.; Meijer, G.W. Plant sterol esters lower plasma lipids and most carotenoids in mildly hypercholesterolemic adults. Lipids 2002, 37, 33–42. [Google Scholar] [CrossRef]
- Ottestad, I.; Ose, L.; Wennersberg, M.H.; Granlund, L.; Kirkhus, B.; Retterstøl, K. Phytosterol capsules and serum cholesterol in hypercholesterolemia: A randomized controlled trial. Atherosclerosis 2013, 228, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Denke, M.A. Lack of efficacy of low-dose sitostanol therapy as an adjunct to a cholesterol-lowering diet in men with moderate hypercholesterolemia. Am. J. Clin. Nutr. 1995, 61, 392–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, T.M. Liposomal drug formulations. Rationale for development and what we can expect for the future. Drugs 1998, 56, 747–756. [Google Scholar] [CrossRef]
- Kaikkonen, J.; Porkkala-Sarataho, E.; Morrow, J.D.; Roberts, L.J.; Nyyssönen, K.; Salonen, R.; Tuomainen, T.-P.; Ristonmaa, U.; Poulsen, H.E.; Salonen, J.T. Supplementation with vitamin E but not with vitamin C lowers lipid peroxidation in vivo in mildly hypercholesterolemic men. Free Radic. Res. 2001, 35, 967–978. [Google Scholar] [CrossRef]
- Chung, S.K.; Shin, G.H.; Jung, M.K.; Hwang, I.C.; Park, H.J. Factors influencing the physicochemical characteristics of cationic polymer-coated liposomes prepared by high-pressure homogenization. Colloid. Surf. A Physicochem. Eng. Asp. 2014, 454, 8–15. [Google Scholar] [CrossRef]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: classification, preparation, and applications. Nanoscale Res. Lett. 2013, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Colas, J.-C.; Shi, W.; Rao, V.S.N.M.; Omri, A.; Mozafari, M.R.; Singh, H. Microscopical investigations of nisin- loaded nanoliposomes prepared by Mozafari method and their bacterial targeting. Micron 2007, 38, 841–847. [Google Scholar] [CrossRef] [PubMed]
- Guideline, I.H.T. Validation of analytical procedures: text and methodology Q2 (R1). In Proceedings of the International Conference on Harmonization, Geneva, Switzerland, 10 November 2005; pp. 11–12. [Google Scholar]
- Poudel, A.; Gachumi, G.; Bashi, Z.D.; Badea, I.; El-Aneed, A. Lipid based liposomal formulation of phytosterols and tocopherols into functional food. In Proceedings of the Canadian Society for Pharmaceutical Sciences Annual Conference, Toronto, ON, Canada, 22–25 May 2018. [Google Scholar]
- Shaikh, J.; Ankola, D.D.; Beniwal, V.; Singh, D.; Kumar, M.N.V.R. Nanoparticle encapsulation improves oral bioavailability of curcumin by at least 9-fold when compared to curcumin administered with piperine as absorption enhancer. Eur. J. Pharm. Sci. 2009, 37, 223–230. [Google Scholar] [CrossRef]
- Marsanasco, M.; Marquez, A.L.; Wagner, J.R.; Alonso, S.D.V.; Chiaramoni, N.S. Liposomes as vehicles for vitamins E and C: An alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res. Int. 2011, 44, 3039–3046. [Google Scholar] [CrossRef]
- Nelson, P.E.; Tressler, D.K. Fruit and Vegetable Juice Processing Technology; AVI Pub. Co.: Westport, CT, USA, 1980. [Google Scholar]
- Charles-Rodríguez, A.V.; Nevárez-Moorillón, G.V.; Zhang, Q.H.; Ortega-Rivas, E. Comparison of Thermal Processing and Pulsed Electric Fields Treatment in Pasteurization of Apple Juice. Food Bioprod. Process. 2007, 85, 93–97. [Google Scholar] [CrossRef]
- Zhao, L.; Temelli, F.; Chen, L. Encapsulation of anthocyanin in liposomes using supercritical carbon dioxide: Effects of anthocyanin and sterol concentrations. J. Funct. Foods 2017, 34, 159–167. [Google Scholar] [CrossRef]
- Reza Mozafari, M.; Johnson, C.; Hatziantoniou, S.; Demetzos, C. Nanoliposomes and Their Applications in Food Nanotechnology. J. Liposome Res. 2008, 18, 309–327. [Google Scholar] [CrossRef]
- López-Pinto, J.M.; González-Rodríguez, M.L.; Rabasco, A.M. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int. J. Pharm. 2005, 298, 1–12. [Google Scholar] [CrossRef]
- Padamwar, M.N.; Pokharkar, V.B. Development of vitamin loaded topical liposomal formulation using factorial design approach: Drug deposition and stability. Int. J. Pharm. 2006, 320, 37–44. [Google Scholar] [CrossRef]
- Marsanasco, M.; Piotrkowski, B.; Calabró, V.; Alonso, S.; Chiaramoni, N. Bioactive constituents in liposomes incorporated in orange juice as new functional food: thermal stability, rheological and organoleptic properties. J. Food Sci. Technol. 2015, 52, 7828–7838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isailović, B.D.; Kostić, I.T.; Zvonar, A.; Đorđević, V.B.; Gašperlin, M.; Nedović, V.A.; Bugarski, B.M. Resveratrol loaded liposomes produced by different techniques. Innov. Food Sci. Emerg. Technol. 2013, 19, 181–189. [Google Scholar] [CrossRef]
- Cui, H.; Zhao, C.; Lin, L. The specific antibacterial activity of liposome- encapsulated Clove oil and its application in tofu. Food Control 2015, 56, 128–134. [Google Scholar] [CrossRef]
- Chountoulesi, M.; Naziris, N.; Pippa, N.; Demetzos, C. The Significance of Drug-to-Lipid Ratio to the Development of Optimized Liposomal Formulation; Taylor & Francis: Abingdon, UK, 2018; Volume 28, pp. 249–258. [Google Scholar]
- Taylor, T.; Davidson, P.; Bruce, B.; Weiss, J. Liposomal Nanocapsules in Food Science and Agriculture. Crit. Rev. Food Sci. Nutr. 2005, 45, 587–605. [Google Scholar] [CrossRef] [PubMed]
- Mozafari, M.R. Liposomes: An overview of manufacturing techniques. Cell. Mol. Biol. Lett. 2005, 10, 711–719. [Google Scholar]
- Heurtault, B.; Saulnier, P.; Pech, B.; Proust, J.-E.; Benoit, J.-P. Physico-chemical stability of colloidal lipid particles. Biomaterials 2003, 24, 4283–4300. [Google Scholar] [CrossRef]
- Patel, V.; Agrawal, Y. Nanosuspension: An approach to enhance solubility of drugs. J. Adv. Pharm. Technol. Res. 2011, 2, 81–87. [Google Scholar] [CrossRef] [Green Version]
- Peer, D.; Florentin, A.; Margalit, R. Hyaluronan is a key component in cryoprotection and formulation of targeted unilamellar liposomes. BBA Biomembr. 2003, 1612, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Jung, H.; Coldren, B.; Zasadzinski, J.; Iampietro, D.; Kaler, E. The origins of stability of spontaneous vesicles. Proc. Natl. Acad. Sci. USA 2001, 98, 1353–1357. [Google Scholar] [CrossRef] [Green Version]
- Xuan, T.; Zhang, J.A.; Ahmad, I. HPLC method for determination of SN-38 content and SN-38 entrapment efficiency in a novel liposome-based formulation, LE-SN38. J. Pharm. Biomed. Anal. 2006, 41, 582–588. [Google Scholar] [CrossRef]
- Ugwu, S.; Zhang, A.; Parmar, M.; Miller, B.; Sardone, T.; Peikov, V.; Ahmad, I. Preparation, Characterization, and Stability of Liposome-Based Formulations of Mitoxantrone. Drug Dev. Ind. Pharm. 2005, 31, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-C.; Lee, K.-E.; Kim, J.-J.; Lim, S.-H. The Effect of Cholesterol in the Liposome Bilayer on the Stabilization of Incorporated Retinol. J. Liposome Res. 2005, 15, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, Y.; Gu, Y.; Liu, Y.; Zhao, J.; Yan, B.; Wang, Y. Cryoprotectant choice and analyses of freeze-drying drug suspension of nanoparticles with functional stabilisers. J. Microencapsul. 2018, 35, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Han, D.; Cai, C.; Tang, X. An overview of liposome lyophilization and its future potential. J. Control. Release 2010, 142, 299–311. [Google Scholar] [CrossRef]
Formulation Techniques | Average Particle Size (nm) | Polydispersibility Index (PDI) | Zeta Potential (mV) |
---|---|---|---|
Thin film hydration Homogenization | 186.3 ± 4.4 | 0.370 ± 0.001 | −13.0 ± 5.0 |
Thin film hydration ultra-sonication | 196.2 ± 16.1 | 0.294 ± 0.084 | −14.0 ± 3.4 |
Mozafari method | 260.0 ± 23.0* | 0.348 ± 0.087 | −9.8 ± 0.3 |
Methods | Entrapment Efficiency (EE %) | |||||
---|---|---|---|---|---|---|
Brassicasterol | Campesterol | β-Sitosterol | Alpha Tocopherol | Gamma Tocopherol | Delta Tocopherol | |
Thin film hydration-Homogenization | 95.9 ± 1.7 | 94.0 ± 2.2 | 94.8 ± 3.0 | 91.6 ± 2.4 | 90.5 ± 2.9 | 91.6 ± 3.6 |
Thin film hydration-Ultrasonication | 91.5 ± 2.4 | 92.3 ± 3.4 | 90.1 ± 1.9 | 91.2 ± 2.1 | 89.8 ± 3.1 | 90.1 ± 2.3 |
Mozafari method | 89.4 ± 2.8 | 93.7 ± 6.0 | 93.1 ± 6.0 | 92.3 ± 7.5 | 97.4 ± 1.9 | 95.3 ± 1.4 |
Bioactives | AUC of Non-Pasteurized Bioactives | AUC of Pasteurized Bioactives | Percentage Relative Change in AUC (%) of Pasteurized and Non-Pasteurized |
---|---|---|---|
Brassicasterol | 5.63 × 106 | 5.60 × 106 | 0.53 |
Campesterol | 2.32 × 107 | 2.26 × 107 | 2.59 |
β-sitosterol | 3.40 × 106 | 3.37 × 106 | 0.88 |
α-tocopherol | 2.76 × 107 | 2.72 × 107 | 1.45 |
γ-tocopherol | 4.94 × 106 | 4.89 × 106 | 1.01 |
δ-tocopherol | 4.84 × 106 | 4.73 × 106 | 2.27 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poudel, A.; Gachumi, G.; Wasan, K.M.; Dallal Bashi, Z.; El-Aneed, A.; Badea, I. Development and Characterization of Liposomal Formulations Containing Phytosterols Extracted from Canola Oil Deodorizer Distillate along with Tocopherols as Food Additives. Pharmaceutics 2019, 11, 185. https://doi.org/10.3390/pharmaceutics11040185
Poudel A, Gachumi G, Wasan KM, Dallal Bashi Z, El-Aneed A, Badea I. Development and Characterization of Liposomal Formulations Containing Phytosterols Extracted from Canola Oil Deodorizer Distillate along with Tocopherols as Food Additives. Pharmaceutics. 2019; 11(4):185. https://doi.org/10.3390/pharmaceutics11040185
Chicago/Turabian StylePoudel, Asmita, George Gachumi, Kishor M. Wasan, Zafer Dallal Bashi, Anas El-Aneed, and Ildiko Badea. 2019. "Development and Characterization of Liposomal Formulations Containing Phytosterols Extracted from Canola Oil Deodorizer Distillate along with Tocopherols as Food Additives" Pharmaceutics 11, no. 4: 185. https://doi.org/10.3390/pharmaceutics11040185
APA StylePoudel, A., Gachumi, G., Wasan, K. M., Dallal Bashi, Z., El-Aneed, A., & Badea, I. (2019). Development and Characterization of Liposomal Formulations Containing Phytosterols Extracted from Canola Oil Deodorizer Distillate along with Tocopherols as Food Additives. Pharmaceutics, 11(4), 185. https://doi.org/10.3390/pharmaceutics11040185