Ocular Biodistribution Studies Using Molecular Imaging
Abstract
:1. Introduction
2. Molecular Imaging Modalities in Ophthalmic Drug Delivery Studies
3. Positron Emission Tomography
4. SPECT
5. Fluorescence
6. Magnetic Resonance Imaging
7. Other Imaging Techniques
7.1. Ultrasonography
7.2. Optical Coherence Tomography and Computed Tomography
8. Conclusions
Funding
Conflicts of Interest
References
- Ghate, D.; Edelhauser, H.F. Ocular drug delivery. Expert Opin. Drug Deliv. 2006, 3, 275–287. [Google Scholar] [CrossRef]
- Carvalho, I.M.; Marques, C.S.; Oliveira, R.S.; Coelho, P.B.; Costa, P.C.; Ferreira, D.C. Sustained drug release by contact lenses for glaucoma treatment-a review. J. Control. Release 2015, 202, 76–82. [Google Scholar] [CrossRef]
- Patel, A.; Cholkar, K.; Agrahari, V.; Mitra, A.K. Ocular drug delivery systems: An overview. World J. Pharmacol. 2013, 2, 47–64. [Google Scholar] [CrossRef]
- Davies, N.M. Biopharmaceutical considerations in topical ocular drug delivery. Clin. Exp. Pharmacol. Physiol. 2000, 27, 558–562. [Google Scholar] [CrossRef] [PubMed]
- Mainardes, R.M.; Urban, M.C.; Cinto, P.O.; Khalil, N.M.; Chaud, M.V.; Evangelista, R.C.; Daflon Gremiao, M.P. Colloidal carriers for ophthalmic drug delivery. Curr. Drug Targets 2005, 6, 363–371. [Google Scholar] [CrossRef]
- Mietz, H.; Diestelhorst, M.; Rump, A.F.E.; Theisohn, M.; Klaus, W.; Krieglstein, G.K. Ocular concentrations of mitomycin C using different delivery devices. Ophthalmologica 1998, 212, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Taravella, M.J.; Balentine, J.; Young, D.A.; Stepp, P. Collagen shield delivery of ofloxacinto the human eye. J. Cataract Refract. Surg. 1999, 25, 562–565. [Google Scholar] [CrossRef]
- Le Bourlais, C.; Acar, L.; Zia, H.; Sado, P.A.; Needham, T.; Leverge, R. Ophthalmic drug delivery systems—Recent advances. Prog. Retinal Eye Res. 1998, 17, 33–58. [Google Scholar] [CrossRef]
- Yavuz, B.; Kompella, U.B. Ocular drug delivery. In Pharmacologic Therapy of Ocular Disease; Springer: Cham, Switzerland, 2016; pp. 57–93. [Google Scholar]
- Del Amo, E.M.; Rimpelä, A.-K.; Heikkinen, E.; Kari, O.K.; Ramsay, E.; Lajunen, T.; Schmitt, M.; Pelkonen, L.; Bhattacharya, M.; Richardson, D. Pharmacokinetic aspects of retinal drug delivery. Prog. Retinal Eye Res. 2017, 57, 134–185. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Kevin, J.; Lizak, M.; Jeong, E.-K. MRI in ocular drug delivery. NMR Biomed. 2008, 21, 941–956. [Google Scholar] [CrossRef]
- Zimmerman, T.J. Textbook of Ocular Pharmacology; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 1997. [Google Scholar]
- Worakul, N.; Robinson, J.R. Ocular pharmacokinetics/pharmacodynamics. Eur. J. Pharm. Biopharm. 1997, 44, 71–83. [Google Scholar] [CrossRef]
- Willmann, J.K.; Van Bruggen, N.; Dinkelborg, L.M.; Gambhir, S.S. Molecular imaging in drug development. Nat. Rev. Drug Discovery 2008, 7, 591. [Google Scholar] [CrossRef] [PubMed]
- Rudin, M.; Weissleder, R. Molecular imaging in drug discovery and development. Nat. Rev. Drug Discovery 2003, 2, 123. [Google Scholar] [CrossRef]
- Cunha, L.; Szigeti, K.; Mathé, D.; Metello, L.F. The role of molecular imaging in modern drug development. Drug Discovery Today 2014, 19, 936–948. [Google Scholar] [CrossRef] [PubMed]
- Capozzi, M.E.; Gordon, A.Y.; Penn, J.S.; Jayagopal, A. Molecular imaging of retinal disease. J. Ocul. Pharmacol. Ther. 2013, 29, 275–286. [Google Scholar] [CrossRef]
- Russell, W.M.S.; Burch, R.L.; Hume, C.W. The Principles of Humane Experimental Technique; Methuen: London, UK, 1959; Volume 238. [Google Scholar]
- James, M.L.; Gambhir, S.S. A molecular imaging primer: modalities, imaging agents, and applications. Physiol. Rev. 2012, 92, 897–965. [Google Scholar] [CrossRef]
- Kagadis, G.C.; Loudos, G.; Katsanos, K.; Langer, S.G.; Nikiforidis, G.C. In vivo small animal imaging: current status and future prospects. Med. Phys. 2010, 37, 6421–6442. [Google Scholar] [CrossRef] [PubMed]
- Bengel, F.M.; Higuchi, T.; Javadi, M.S.; Lautamäki, R. Cardiac positron emission tomography. J. Am. Coll. Cardiol. 2009, 54, 1–15. [Google Scholar] [CrossRef]
- Lameka, K.; Farwell, M.D.; Ichise, M. Positron emission tomography. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2016; Volume 135, pp. 209–227. [Google Scholar]
- Chen, Z.-Y.; Wang, Y.-X.; Lin, Y.; Zhang, J.-S.; Yang, F.; Zhou, Q.-L.; Liao, Y.-Y. Advance of Molecular Imaging Technology and Targeted Imaging Agent in Imaging and Therapy. BioMed Res. Int. 2014, 2014, 819324. [Google Scholar] [CrossRef]
- Okamura, N.; Harada, R.; Furukawa, K.; Furumoto, S.; Tago, T.; Yanai, K.; Arai, H.; Kudo, Y. Advances in the development of tau PET radiotracers and their clinical applications. Ageing Res. Rev. 2016, 30, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Pulagam, K.R.; Gómez-Vallejo, V.; Llop, J.; Rejc, L. Radiochemistry; a useful tool in the ophthalmic drug discovery. Curr. Med. Chem. 2019. [Google Scholar]
- Sek, K.; Wilson, D.; Paton, K.; Benard, F. The role of 18F-FDG PET/CT in assessment of uveal melanoma and likelihood of primary tumour visualisation based on AJCC tumour size. J. Nucl. Med. 2016, 57, 409. [Google Scholar]
- García-Rojas, L.; Adame-Ocampo, G.; Alexánderson, E.; Tovilla-Canales, J.L. 18-fluorodeoxyglucose uptake by positron emission tomography in extraocular muscles of patients with and without Graves’ ophthalmology. J. Ophthalmol. 2013, 2013, 529187. [Google Scholar] [CrossRef] [PubMed]
- García-Rojas, L.; Adame-Ocampo, G.; Mendoza-Vázquez, G.; Alexánderson, E.; Tovilla-Canales, J.L. Orbital positron emission tomography/computed tomography (PET/CT) imaging findings in graves ophthalmopathy. BMC Res. Notes 2013, 6, 353. [Google Scholar] [CrossRef]
- Christoforidis, J.B.; Carlton, M.M.; Knopp, M.V.; Hinkle, G.H. PET/CT imaging of I-124–radiolabeled bevacizumab and ranibizumab after intravitreal injection in a rabbit model. Investigat. Ophthalmol. Visual Sci. 2011, 52, 5899–5903. [Google Scholar] [CrossRef]
- Wang, W.-F.; Ishiwata, K.; Kiyosawa, M.; Kawamura, K.; Oda, K.; Matsuno, K.; Kobayashi, T.; Mochizuki, M. Investigation of the use of positron emission tomography for neuroreceptor imaging in rabbit eyes. Ophthalmic Res. 2004, 36, 255–263. [Google Scholar] [CrossRef]
- Yellepeddi, V.K.; Palakurthi, S. Recent advances in topical ocular drug delivery. J. Ocul. Pharmacol. Ther. 2016, 32, 67–82. [Google Scholar] [CrossRef]
- Luaces-Rodríguez, A.; Touriño-Peralba, R.; Alonso-Rodríguez, I.; García-Otero, X.; González-Barcia, M.; Rodríguez-Ares, M.T.; Martínez-Pérez, L.; Aguiar, P.; Gómez-Lado, N.; Silva-Rodríguez, J. Preclinical characterization and clinical evaluation of tacrolimus eye drops. Eur. J. Pharm. Sci. 2018, 120, 152–161. [Google Scholar] [CrossRef]
- Fernández-Ferreiro, A.; Silva-Rodríguez, J.; Otero-Espinar, F.J.; González-Barcia, M.; Lamas, M.J.; Ruibal, A.; Luaces-Rodriguez, A.; Vieites-Prado, A.; Sobrino, T.; Herranz, M.; et al. Positron Emission Tomography for the Development and Characterization of Corneal Permanence of Ophthalmic Pharmaceutical Formulations. Invest. Ophthalmol. Visual Sci. 2017, 58, 772–780. [Google Scholar]
- Dangl, D.; Hornof, M.; Hoffer, M.; Kuntner, C.; Wanek, T.; Kvaternik, H. In vivo Evaluation of Ocular Residence Time of 124I-labelled Thiolated Chitosan in Rabbits Using MicroPET Technology. Invest. Ophthalmol. Visual Sci. 2009, 50, 3689. [Google Scholar]
- Kuntner, C.; Wanek, T.; Hoffer, M.; Dangl, D.; Hornof, M.; Kvaternik, H.; Langer, O. Radiosynthesis and Assessment of Ocular Pharmacokinetics of 124 I-Labeled Chitosan in Rabbits Using Small-Animal PET. Mol. Imaging Biol. 2011, 13, 222–226. [Google Scholar] [CrossRef]
- Schmetterer, L.; Höller, S.; Hornof, M. Chitosan in the treatment of dry eye. Acta Ophthalmol. 2010, 88. [Google Scholar] [CrossRef]
- Díaz-Tomé, V.; Luaces-Rodríguez, A.; Silva-Rodríguez, J.; Blanco-Dorado, S.; García-Quintanilla, L.; Llovo-Taboada, J.; Blanco-Méndez, J.; García-Otero, X.; Varela-Fernández, R.; Herranz, M.; et al. Ophthalmic Econazole Hydrogels for the Treatment of Fungal Keratitis. J. Pharm. Sci. 2018, 107, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Luaces-Rodríguez, A.; Díaz-Tomé, V.; González-Barcia, M.; Silva-Rodríguez, J.; Herranz, M.; Gil-Martínez, M.; Rodríguez-Ares, M.T.; García-Mazás, C.; Blanco-Mendez, J.; Lamas, M.J. Cysteamine polysaccharide hydrogels: study of extended ocular delivery and biopermanence time by PET imaging. Int. J. Pharm. 2017, 528, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ferreiro, A.; Luaces-Rodríguez, A.; Aguiar, P.; Pardo-Montero, J.; González-Barcia, M.; García-Varela, L.; Herranz, M.; Silva-Rodríguez, J.; Gil-Martínez, M.; Bermúdez, M.A.; et al. Preclinical PET Study of Intravitreal Injections. Invest. Ophthalmol. Visual Sci. 2017, 58, 2843–2851. [Google Scholar]
- Radhika, M.; Mithal, K.; Bawdekar, A.; Dave, V.; Jindal, A.; Relhan, N.; Albini, T.; Pathengay, A.; Flynn, H.W. Pharmacokinetics of intravitreal antibiotics in endophthalmitis. J. Ophthalmic Inflamm. Infect. 2014, 4, 22. [Google Scholar] [CrossRef]
- Xu, J.; Heys, J.J.; Barocas, V.H.; Randolph, T.W. Permeability and diffusion in vitreous humor: implications for drug delivery. Pharm. Res. 2000, 17, 664–669. [Google Scholar] [CrossRef] [PubMed]
- Gisladottir, S.; Loftsson, T.; Stefansson, E. Diffusion characteristics of vitreous humour and saline solution follow the Stokes Einstein equation. Graefe’s Arch. Clin. Exp. Ophthalmol. 2009, 247, 1677–1684. [Google Scholar] [CrossRef]
- Ohtori, A.; TOJo, K. In vivo/in vitro correlation of intravitreal delivery of drugs with the help of computer simulation. Biol. Pharm. Bull. 1994, 17, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Tojo, K.; Nakagawa, K.; Morita, Y.; Ohtori, A. A pharmacokinetic model of intravitreal delivery of ganciclovir. Eur. J. Pharm. Biopharm. 1999, 47, 99–104. [Google Scholar] [CrossRef]
- Park, J.; Bungay, P.M.; Lutz, R.J.; Augsburger, J.J.; Millard, R.W.; Roy, A.S.; Banerjee, R.K. Evaluation of coupled convective–diffusive transport of drugs administered by intravitreal injection and controlled release implant. J. Control. Release 2005, 105, 279–295. [Google Scholar] [CrossRef] [PubMed]
- Avery, R.L.; Castellarin, A.A.; Steinle, N.C.; Dhoot, D.S.; Pieramici, D.J.; See, R.; Couvillion, S.; Ma’an, A.N.; Rabena, M.D.; Le, K. Systemic pharmacokinetics following intravitreal injections of ranibizumab, bevacizumab or aflibercept in patients with neovascular AMD. Br. J. Ophthalmol. 2014, 98, 1636–1641. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, R.; Zhang, J.; Farooq, S.; Li, X.-Y. Comparison of the release profile and pharmacokinetics of intact and fragmented dexamethasone intravitreal implants in rabbit eyes. J. Ocul. Pharmacol. Ther. 2014, 30, 854–858. [Google Scholar] [CrossRef]
- Balachandran, R.K.; Barocas, V.H. Computer modeling of drug delivery to the posterior eye: effect of active transport and loss to choroidal blood flow. Pharm. Res. 2008, 25, 2685–2696. [Google Scholar] [CrossRef]
- Awwad, S.; Lockwood, A.; Brocchini, S.; Khaw, P.T. The PK-Eye: a novel in vitro ocular flow model for use in preclinical drug development. J. Pharm. Sci. 2015, 104, 3330–3342. [Google Scholar] [CrossRef]
- Krishnamoorthy, M.K.; Park, J.; Augsburger, J.J.; Banerjee, R.K. Effect of retinal permeability, diffusivity, and aqueous humor hydrodynamics on pharmacokinetics of drugs in the eye. J. Ocul. Pharmacol. Ther. 2008, 24, 255–267. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ferreiro, A.; Silva-Rodríguez, J.; Otero-Espinar, F.J.; González-Barcia, M.; Lamas, M.J.; Ruibal, A.; Luaces-Rodríguez, A.; Vieites-Prado, A.; Lema, I.; Herranz, M.; et al. In vivo eye surface residence determination by high-resolution scintigraphy of a novel ion-sensitive hydrogel based on gellan gum and kappa-carrageenan. Eur. J. Pharm. Biopharm. 2017, 114, 317–323. [Google Scholar] [CrossRef]
- Madsen, M.T. Recent advances in SPECT imaging. J. Nucl. Med. 2007, 48, 661. [Google Scholar] [CrossRef]
- Wernick, M.N.; Aarsvold, J.N. Emission Tomography: The Fundamentals of PET and SPECT; Elsevier: Amsterdam, The Netherlands, 2004. [Google Scholar]
- O’Connor, M.K.; Kemp, B.J. Single-Photon Emission Computed Tomography/Computed Tomography: Basic Instrumentation and Innovations. Semin. Nucl. Med. 2006, 36, 258–266. [Google Scholar] [CrossRef]
- Gomes, C.M.; Abrunhosa, A.J.; Ramos, P.; Pauwels, E.K.J. Molecular imaging with SPECT as a tool for drug development. Adv. Drug Deliv. Rev. 2011, 63, 547–554. [Google Scholar] [CrossRef]
- Rossomondo, R.M.; Carlton, W.H.; Trueblood, J.H.; Thomas, R.P. A new method of evaluating lacrimal drainage. Arch. Ophthalmol. 1972, 88, 523–525. [Google Scholar] [CrossRef] [PubMed]
- Chrai, S.S.; Patton, T.F.; Mehta, A.; Robinson, J.R. Lacrimal and instilled fluid dynamics in rabbit eyes. J. Pharm. Sci. 1973, 62, 1112–1121. [Google Scholar] [CrossRef] [PubMed]
- Wearne, M.J.; Pitts, J.; Frank, J.; Rose, G.E. Comparison of dacryocystography and lacrimal scintigraphy in the diagnosis of functional nasolacrimal duct obstruction. Br. J. Ophthalmol. 1999, 83, 1032–1035. [Google Scholar] [CrossRef] [PubMed]
- Gencoglu, E.A.; Dursun, D.; Akova, Y.A.; Cengiz, F.; Yalcin, H.; Koyuncu, A. Tear clearance measurement in patients with dry eye syndrome using quantitative lacrimal scintigraphy. Ann. Nucl. Med. 2005, 19, 581. [Google Scholar] [CrossRef]
- Detorakis, E.T.; Zissimopoulos, A.; Ioannakis, K.; Kozobolis, V.P. Lacrimal Outflow Mechanisms and the Role of Scintigraphy: Current Trends. World J. Nucl. Med. 2014, 13, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Kotina, E.D.; Tomashevskiĭ, I.O.; Luchshev, A.I.; At’kova, E.L.; Iartsev, V.D. Use of a new Indis computer program to analyze the results of lacrimal scintigraphy. Vestn. Rentgenol. Radiol. 2015, 23–27. [Google Scholar]
- Kim, D.J.; Baek, S.; Chang, M. Usefulness of the dacryoscintigraphy in patients with nasolacrimal duct obstruction prior to endoscopic dacryocystorhinostomy. Graefe’s Arch. Clin. Exp. Ophthalmol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Li, X.; Zhao, M.; Dend, H.; Huang, J.; Liu, D.; Xu, X. Efficacy of 99mTc-DTPA orbital SPECT/CT on the evaluation of lacrimal gland inflammation in patients with thyroid associated ophthalmopathy. J. Cent. South Univ. Med. Sci. 2019, 44, 322–328. [Google Scholar]
- Greaves, J.L.; Wilson, C.G.; Birmingham, A.T.; Richardson, M.C.; Bentley, P.H. Scintigraphic studies on the corneal residence of a New Ophthalmic Delivery System (NODS): rate of clearance of a soluble marker in relation to duration of pharmacological action of pilocarpine. Br. J. Clin. Pharmacol. 1992, 33, 603–609. [Google Scholar] [CrossRef]
- Meseguer, G.; Buri, P.; Plazonnet, B.; Rozier, A.; Gurny, R. Gamma scintigraphic comparison of eyedrops containing pilocarpine in healthy volunteers. J. Ocul. Pharmacol. Ther. 1996, 12, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Trueblood, J.H.; Rossomondo, R.M.; Carlton, W.H.; Wilson, L.A. Corneal contact times of ophthalmic vehicles. Arch. Ophthalmol. 1975, 93, 127. [Google Scholar] [CrossRef]
- Zaki, I.; Fitzgerald, P.; Hardy, J.G.; Wilson, C.G. A comparison of the effect of viscosity on the precorneal residence of solutions in rabbit and man. J. Pharm. Pharmacol. 1986, 38, 463–466. [Google Scholar] [CrossRef] [PubMed]
- Hardberger, R.; Hanna, C.; Boyd, C.M. Effects of drug vehicles on ocular contact time. Arch. Ophthalmol. 1975, 93, 42–45. [Google Scholar] [CrossRef]
- Snibson, G.R.; Greaves, J.L.; Soper, N.D.; Tiffany, J.M.; Wilson, C.G.; Bron, A.J. Ocular surface residence times of artificial tear solutions. Cornea 1992, 11, 288–293. [Google Scholar] [CrossRef]
- Greaves, J.L.; Wilson, C.G.; Birmingham, A.T. Assessment of the precorneal residence of an ophthalmic ointment in healthy subjects. Br. J. Clin. Pharmacol. 1993, 35, 188. [Google Scholar] [PubMed]
- Nagarsenker, M.S.; Londhe, V.Y.; Nadkarni, G.D. Preparation and evaluation of liposomal formulations of tropicamide for ocular delivery. Int. J. Pharm. 1999, 190, 63–71. [Google Scholar] [CrossRef]
- Fitzgerald, P.; Hadgraft, J.; Kreuter, J.; Wilson, C.G. A γ-scintigraphic evaluation of microparticulate ophthalmic delivery systems: liposomes and nanoparticles. Int. J. Pharm. 1987, 40, 81–84. [Google Scholar] [CrossRef]
- Alany, R.G.; Rades, T.; Nicoll, J.; Tucker, I.G.; Davies, N.M. W/O microemulsions for ocular delivery: Evaluation of ocular irritation and precorneal retention. J. Control. Release 2006, 111, 145–152. [Google Scholar] [CrossRef]
- Wilson, C.G.; Zhu, Y.P.; Frier, M.; Rao, L.S.; Gilchrist, P.; Perkins, A.C. Ocular contact time of a carbomer gel (GelTears) in humans. Br. J. Ophthalmol. 1998, 82, 1131–1134. [Google Scholar] [CrossRef] [PubMed]
- Gupta, H.; Aqil, M.; Khar, R.K.; Ali, A.; Bhatnagar, A.; Mittal, G.; Jain, S. Development and characterization of 99mTc-timolol maleate for evaluating efficacy of in situ ocular drug delivery system. AAPS PharmSciTech 2009, 10, 540–546. [Google Scholar] [CrossRef]
- Felt, O.; Furrer, P.; Mayer, J.M.; Plazonnet, B.; Buri, P.; Gurny, R. Topical use of chitosan in ophthalmology: tolerance assessment and evaluation of precorneal retention. Int. J. Pharm. 1999, 180, 185–193. [Google Scholar] [CrossRef]
- Wei, G.; Xu, H.; Ding, P.T.; Li, S.M.; Zheng, J.M. Thermosetting gels with modulated gelation temperature for ophthalmic use: the rheological and gamma scintigraphic studies. J. Control. Release 2002, 83, 65–74. [Google Scholar] [CrossRef]
- Kashikar, V.S.; Gonjari, I.D. In situ gelling systems of ofloxacin: Comparative performance of in vivo precorneal drainage and pharmacokinetic study. Asian J. Pharm. 2014, 7. [Google Scholar] [CrossRef]
- Liu, Z.; Li, J.; Nie, S.; Liu, H.; Ding, P.; Pan, W. Study of an alginate/HPMC-based in situ gelling ophthalmic delivery system for gatifloxacin. Int. J. Pharm. 2006, 315, 12–17. [Google Scholar] [CrossRef]
- Gupta, H.; Velpandian, T.; Jain, S. Ion- and pH-activated novel in situ gel system for sustained ocular drug delivery. J. Drug Target. 2010, 18, 499–505. [Google Scholar] [CrossRef]
- Greaves, J.L.; Wilson, C.G.; Rozier, A.; Grove, J.; Plazonnet, B. Scintigraphic assessment of an ophthalmic gelling vehicle in man and rabbit. Cur. Eye Res. 1990, 9, 415–420. [Google Scholar] [CrossRef]
- Rimpelä, A.-K.; Schmitt, M.; Latonen, S.; Hagström, M.; Antopolsky, M.; Manzanares, J.A.; Kidron, H.; Urtti, A. Drug distribution to retinal pigment epithelium: studies on melanin binding, cellular kinetics, and single photon emission computed tomography/computed tomography imaging. Mol. Pharm. 2016, 13, 2977–2986. [Google Scholar] [CrossRef]
- Subrizi, A.; Toropainen, E.; Ramsay, E.; Airaksinen, A.J.; Kaarniranta, K.; Urtti, A. Oxidative stress protection by exogenous delivery of rhHsp70 chaperone to the retinal pigment epithelium (RPE), a possible therapeutic strategy against RPE degeneration. Pharm. Res. 2015, 32, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Liu, S. Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv. Drug Deliv. Rev. 2008, 60, 1347–1370. [Google Scholar] [CrossRef]
- Lehtinen, J.; Raki, M.; Bergström, K.A.; Uutela, P.; Lehtinen, K.; Hiltunen, A.; Pikkarainen, J.; Liang, H.; Pitkänen, S.; Määttä, A.-M. Pre-targeting and direct immunotargeting of liposomal drug carriers to ovarian carcinoma. PloS ONE 2012, 7, e41410. [Google Scholar] [CrossRef]
- Psimadas, D.; Georgoulias, P.; Valotassiou, V.; Loudos, G. Molecular nanomedicine towards cancer: 111In-labeled nanoparticles. J. Pharm. Sci. 2012, 101, 2271–2280. [Google Scholar] [CrossRef]
- Meikle, S.R.; Kench, P.; Kassiou, M.; Banati, R.B. Small animal SPECT and its place in the matrix of molecular imaging technologies. Phys. Med. Biol. 2005, 50, R45. [Google Scholar] [CrossRef]
- Fass, L. Imaging and cancer: A review. Mol. Oncol. 2008, 2, 115–152. [Google Scholar] [CrossRef]
- Ramos de Carvalho, J.E.; Verbraak, F.D.; Aalders, M.C.; van Noorden, C.J.; Schlingemann, R.O. Recent advances in ophthalmic molecular imaging. Sur. Ophthalmol. 2014, 59, 393–413. [Google Scholar] [CrossRef]
- Ainsbury, E.A.; Bouffler, S.D.; Dörr, W.; Graw, J.; Muirhead, C.R.; Edwards, A.A.; Cooper, J. Radiation cataractogenesis: a review of recent studies. Radiat. Res. 2009, 172, 1–9. [Google Scholar] [CrossRef]
- Knudsen, L.L. Ocular fluorophotometry in human subjects and in swine–with particular reference to long-term pharmacokinetics. Acta Ophthalmol. 2002, 80, 1–24. [Google Scholar] [CrossRef]
- Wysocki, L.M.; Lavis, L.D. Advances in the chemistry of small molecule fluorescent probes. Curr. Opin. Chem. Biol. 2011, 15, 752–759. [Google Scholar] [CrossRef]
- Dickmann, L.J.; Yip, V.; Li, C.; Abundes, J.J.; Maia, M.; Young, C.; Stainton, S.; Hass, P.E.; Joseph, S.B.; Prabhu, S.; et al. Evaluation of Fluorophotometry to Assess the Vitreal Pharmacokinetics of Protein Therapeutics. Invest. Ophthalmol. Visual Sci. 2015, 56, 6991–6999. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhang, X.; Zhang, R.; Huang, Y.; Wu, C. In Situ Gelling Gelrite/Alginate Formulations as Vehicles for Ophthalmic Drug Delivery. AAPS PharmSciTech 2010, 11, 610–620. [Google Scholar] [CrossRef]
- Edsman, K.; Carlfors, J.; Petersson, R. Rheological evaluation of poloxamer as an in situ gel for ophthalmic use. Eur. J. Pharm. Sci. 1998, 6, 105–112. [Google Scholar] [CrossRef]
- Carlfors, J.; Edsman, K.; Petersson, R.; Jörnving, K. Rheological evaluation of Gelrite® in situ gels for ophthalmic use. Eur. J. Pharm. Sci. 1998, 6, 113–119. [Google Scholar] [CrossRef]
- Edsman, K.; Carlfors, J.; Harju, K. Rheological evaluation and ocular contact time of some carbomer gels for ophthalmic use. Int. J. Pharm. 1996, 137, 233–241. [Google Scholar] [CrossRef]
- Berezovsky, D.E.; Patel, S.R.; McCarey, B.E.; Edelhauser, H.F. In Vivo Ocular Fluorophotometry: Delivery of Fluoresceinated Dextrans via Transscleral Diffusion in Rabbits. Invest. Ophthalmol. Visual Sci. 2011, 52, 7038–7045. [Google Scholar] [CrossRef]
- Ghate, D.; Brooks, W.; McCarey, B.E.; Edelhauser, H.F. Pharmacokinetics of Intraocular Drug Delivery by Periocular Injections Using Ocular Fluorophotometry. Invest. Ophthalmol. Visual Sci. 2007, 48, 2230–2237. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.J.; Kim, E.S.; Geroski, D.H.; McCarey, B.E.; Edelhauser, H.F. Pharmacokinetics of Intraocular Drug Delivery of Oregon Green 488–Labeled Triamcinolone by Subtenon Injection Using Ocular Fluorophotometry in Rabbit Eyes. Invest. Ophthalmol. Visual Sci. 2008, 49, 4506–4514. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Hennink, E.J.; Young, I.T.; Tanke, H.J. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 1995, 68, 2588. [Google Scholar] [CrossRef]
- Fanea, L.; Fagan, A.J. Magnetic resonance imaging techniques in ophthalmology. Mol. Vision 2012, 18, 2538. [Google Scholar]
- Gomori, J.M.; Grossman, R.I.; Shields, J.A.; Augsburger, J.J.; Joseph, P.M.; DeSimeone, D. Ocular MR imaging and spectroscopy: an ex vivo study. Radiology 1986, 160, 201–205. [Google Scholar] [CrossRef]
- Berkowitz, B.A.; Sato, Y.; Wilson, C.A.; De Juan, E. Blood-retinal barrier breakdown investigated by real-time magnetic resonance imaging after gadolinium-diethylenetriaminepentaacetic acid injection. Invest. Ophthalmol. Visual Sci. 1991, 32, 2854–2860. [Google Scholar]
- Kolodny, N.H.; Goode, S.T.; Ryan, W.; Freddo, T.F. Evaluation of therapeutic effectiveness using MR imaging in a rabbit model of anterior uveitis. Exp. Eye Res. 2002, 74, 483–491. [Google Scholar] [CrossRef]
- Li, S.K.; Jeong, E.-K.; Hastings, M.S. Magnetic resonance imaging study of current and ion delivery into the eye during transscleral and transcorneal iontophoresis. Invest. Ophthalmol. Visual Sci. 2004, 45, 1224–1231. [Google Scholar] [CrossRef]
- Richardson, J.C.; Bowtell, R.W.; Mäder, K.; Melia, C.D. Pharmaceutical applications of magnetic resonance imaging (MRI). Adv. Drug Deliv. Rev. 2005, 57, 1191–1209. [Google Scholar] [CrossRef]
- Shah, N.J.; Oros-Peusquens, A.-M.; Arrubla, J.; Zhang, K.; Warbrick, T.; Mauler, J.; Vahedipour, K.; Romanzetti, S.; Felder, J.; Celik, A. Advances in multimodal neuroimaging: hybrid MR–PET and MR–PET–EEG at 3 T and 9.4 T. J. Mag. Reson. 2013, 229, 101–115. [Google Scholar] [CrossRef]
- Koba, W.; Kim, K.; Lipton, M.L.; Jelicks, L.; Das, B.; Herbst, L.; Fine, E. Imaging Devices for Use in Small Animals. Semin. Nucl. Med. 2011, 41, 151–165. [Google Scholar] [CrossRef]
- Fernández-Ferreiro, A.; González Barcia, M.; Gil-Martínez, M.; Vieites-Prado, A.; Lema, I.; Argibay, B.; Blanco Méndez, J.; Lamas, M.J.; Otero-Espinar, F.J. In vitro and in vivo ocular safety and eye surface permanence determination by direct and Magnetic Resonance Imaging of ion-sensitive hydrogels based on gellan gum and kappa-carrageenan. Eur. J. Pharm. Biopharm. 2015, 94, 342–351. [Google Scholar] [CrossRef] [PubMed]
- Bert, R.J.; Caruthers, S.D.; Jara, H.; Krejza, J.; Melhem, E.R.; Kolodny, N.H.; Patz, S.; Freddo, T.F. Demonstration of an anterior diffusional pathway for solutes in the normal human eye with high spatial resolution contrast-enhanced dynamic MR imaging. Invest. Ophthalmol. Visual Sci. 2006, 47, 5153–5162. [Google Scholar] [CrossRef]
- Freddo, T.F.; Patz, S.; Arshanskiy, Y. Pilocarpine’s effects on the blood-aqueous barrier of the human eye as assessed by high-resolution, contrast magnetic resonance imaging. Exp. Eye Res. 2006, 82, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.-M.; Kwong, K.K.; Xiong, J.; Chang, C. GdDTPA-enhanced magnetic resonance imaging of the aqueous flow in the rabbit eye. Mag. Reson. Med. 1991, 17, 237–243. [Google Scholar] [CrossRef]
- Cheng, H.-M.; Kwong, K.K.; Xiong, J.; Woods, B.T. Visualization of water movement in the living rabbit eye. Graefe’s Arch. Clin. Exp. Ophthalmol. 1992, 230, 62–65. [Google Scholar] [CrossRef]
- Kim, H.; Robinson, M.R.; Lizak, M.J.; Tansey, G.; Lutz, R.J.; Yuan, P.; Wang, N.S.; Csaky, K.G. Controlled drug release from an ocular implant: an evaluation using dynamic three-dimensional magnetic resonance imaging. Invest. Ophthalmol. Visual Sci. 2004, 45, 2722–2731. [Google Scholar] [CrossRef]
- Kim, S.H.; Csaky, K.G.; Wang, N.S.; Lutz, R.J. Drug elimination kinetics following subconjunctival injection using dynamic contrast-enhanced magnetic resonance imaging. Pharm. Res. 2008, 25, 512–520. [Google Scholar] [CrossRef]
- Li, S.K.; Molokhia, S.A.; Jeong, E.-K. Assessment of subconjunctival delivery with model ionic permeants and magnetic resonance imaging. Pharm. Res. 2004, 21, 2175–2184. [Google Scholar] [CrossRef]
- Molokhia, S.A.; Jeong, E.-K.; Higuchi, W.I.; Li, S.K. Examination of penetration routes and distribution of ionic permeants during and after transscleral iontophoresis with magnetic resonance imaging. Int. J. Pharm. 2007, 335, 46–53. [Google Scholar] [CrossRef]
- Molokhia, S.A.; Jeong, E.-K.; Higuchi, W.I.; Li, S.K. Examination of barriers and barrier alteration in transscleral iontophoresis. J. Pharm Sci. 2008, 97, 831–844. [Google Scholar] [CrossRef]
- Molokhia, S.A.; Jeong, E.-K.; Higuchi, W.I.; Li, S.K. Transscleral iontophoretic and intravitreal delivery of a macromolecule: study of ocular distribution in vivo and postmortem with MRI. Exp. Eye Res. 2009, 88, 418–425. [Google Scholar] [CrossRef]
- Shi, X.; Liu, X.; Wu, X.; Lu, Z.-R.; Li, S.K.; Jeong, E.-K. Ocular pharmacokinetic study using T 1 mapping and Gd-chelate-labeled polymers. Pharm. Res. 2011, 28, 3180–3188. [Google Scholar] [CrossRef]
- Jockovich, M.-E.; Murray, T.G.; Clifford, P.D.; Moshfeghi, A.A. Posterior juxtascleral injection of anecortave acetate: magnetic resonance and echographic imaging and localization in rabbit eyes. RETINA 2007, 27, 247–252. [Google Scholar] [CrossRef]
- Kim, H.; Lizak, M.J.; Tansey, G.; Csaky, K.G.; Robinson, M.R.; Yuan, P.; Wang, N.S.; Lutz, R.J. Study of ocular transport of drugs released from an intravitreal implant using magnetic resonance imaging. Ann. Biomed. Eng. 2005, 33, 150–164. [Google Scholar] [CrossRef]
- Kolodny, N.H.; Freddo, T.F.; Lawrence, B.A.; Suarez, C.; Bartels, S.P. Contrast-enhanced magnetic resonance imaging confirmation of an anterior protein pathway in normal rabbit eyes. Invest. Ophthalmol. Visual Sci. 1996, 37, 1602–1607. [Google Scholar]
- Li, S.K.; Hao, J.; Liu, H.; Lee, J. MRI Study of Subconjunctival and Intravitreal Injections. J. Pharm. Sci. 2012, 101, 2353–2363. [Google Scholar] [CrossRef]
- Berkowitz, B.A.; Wilson, C.A.; Tofts, P.S.; Peshock, R.M. Effect of vitreous fluidity on the measurement of blood-retinal barrier permeability using contrast-enhanced MRI. Mag. Reson. Med. 1994, 31, 61–66. [Google Scholar] [CrossRef]
- Plehwe, W.E.; McRobbie, D.W.; Lerski, R.A.; Kohner, E.M. Quantitative magnetic resonance imaging in assessment of the blood-retinal barrier. Invest. Ophthalmol. Visual Sci. 1988, 29, 663–670. [Google Scholar]
- Berkowitz, B.A.; Tofts, P.S.; Sen, H.A.; Ando, N.; De Juan, E. Accurate and precise measurement of blood-retinal barrier breakdown using dynamic Gd-DTPA MRI. Invest. Ophthalmol. Visual Sci. 1992, 33, 3500–3506. [Google Scholar]
- Sen, H.A.; Berkowitz, B.A.; Ando, N.; de Juan, E. In vivo imaging of breakdown of the inner and outer blood-retinal barriers. Invest. Ophthalmol. Visual Sci. 1992, 33, 3507–3512. [Google Scholar]
- Sato, Y.; Berkowitz, B.A.; Wilson, C.A.; de Juan, E. Blood-retinal barrier breakdown caused by diode vs argon laser endophotocoagulation. Arch. Ophthalmol. 1992, 110, 277–281. [Google Scholar] [CrossRef] [PubMed]
- Metrikin, D.C.; Wilson, C.A.; Berkowitz, B.A.; Lam, M.K.; Wood, G.K.; Peshock, R.M. Measurement of blood-retinal barrier breakdown in endotoxin-induced endophthalmitis. Invest. Ophthalmol. Visual Sci. 1995, 36, 1361–1370. [Google Scholar]
- Berkowitz, B.A.; Roberts, R.; Luan, H.; Peysakhov, J.; Mao, X.; Thomas, K.A. Dynamic contrast-enhanced MRI measurements of passive permeability through blood retinal barrier in diabetic rats. Invest. Ophthalmol. Visual Sci. 2004, 45, 2391–2398. [Google Scholar] [CrossRef]
- Wilson, C.A.; Berkowitz, B.A.; Funatsu, H.; Metrikin, D.C.; Harrison, D.W.; Lam, M.K.; Sonkin, P.L. Blood-retinal barrier breakdown following experimental retinal ischemia and reperfusion. Exp. Eye Res. 1995, 61, 547–557. [Google Scholar] [CrossRef]
- Alikacem, N.; Yoshizawa, T.; Nelson, K.D.; Wilson, C.A. Quantitative MR Imaging Study of Intravitreal Sustained Release of VEGF in Rabbits. Invest. Ophthalmol. Visual Sci. 2000, 41, 1561–1569. [Google Scholar]
- Raju, H.B.; Hu, Y.; Padgett, K.R.; Rodriguez, J.E.; Goldberg, J.L. Investigation of nanoparticles using magnetic resonance imaging after intravitreal injection. Clin. Exp. Ophthalmol. 2012, 40, 100–107. [Google Scholar] [CrossRef]
- O’Connor, J.P.; Jackson, A.; Parker, G.J.; Jayson, G.C. DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents. Br. J. Cancer 2007, 96, 189. [Google Scholar] [CrossRef] [PubMed]
- Waerzeggers, Y.; Monfared, P.; Ullrich, R.; Viel, T.; Jacobs, A.H. Multimodality imaging: overview of imaging techniques (CT, MRI, PET, optical imaging) and impact of multimodality imaging on drug development. In Trends on the Role of PET in Drug Development; World Scientific: Singapore, 2012; pp. 319–382. [Google Scholar]
- Fernández-Ferreiro, A. Manejo, seguridad y optimización de las formulaciones tópicas oftálmicas en Servicios de Farmacia Hospitalaria. PhD Thesis, Universidade de Santiago de Compostela, Santiago de Compostela, Spain, 2015. [Google Scholar]
- Destruel, P.-L.; Zeng, N.; Maury, M.; Mignet, N.; Boudy, V. In vitro and in vivo evaluation of in situ gelling systems for sustained topical ophthalmic delivery: state of the art and beyond. Drug Discovery Today 2017, 22, 638–651. [Google Scholar] [CrossRef]
- Eter, N. Molecular imaging in the eye. Br. J. Ophthalmol. 2010, 94, 1420–1426. [Google Scholar] [CrossRef]
- Cai, W.; Chen, X. Nanoplatforms for targeted molecular imaging in living subjects. Small 2007, 3, 1840–1854. [Google Scholar] [CrossRef]
- López-Barneo, J.; Pardal, R.; Ortega-Sáenz, P. Cellular mechanism of oxygen sensing. Ann. Rev. Physiol. 2001, 63, 259–287. [Google Scholar] [CrossRef] [PubMed]
- Mankoff, D.A. Molecular imaging as a tool for translating breast cancer science. Breast Cancer Res. 2008, 10, S3. [Google Scholar] [CrossRef]
- Kendall, C.J.; Prager, T.C.; Cheng, H.; Gombos, D.; Tang, R.A.; Schiffman, J.S. Diagnostic Ophthalmic Ultrasound for Radiologists. Neuroimaging Clin. N. Am. 2015, 25, 327–365. [Google Scholar] [CrossRef]
- Nabili, M.; Patel, H.; Mahesh, S.P.; Liu, J.; Geist, C.; Zderic, V. Ultrasound-Enhanced Delivery of Antibiotics and Anti-Inflammatory Drugs into the Eye. Ultrasound Med. Biol. 2013, 39, 638–646. [Google Scholar] [CrossRef]
- Nabili, M.; Mahesh, S.; Geist, C.; Zderic, V. 2088977 Ultrasound-Enhanced Delivery of Anti-Inflammatory Ophthalmic Drugs. Ultrasound Med. Biol. 2015, 41, S63. [Google Scholar] [CrossRef]
- Huang, D.; Wang, L.; Dong, Y.; Pan, X.; Li, G.; Wu, C. A novel technology using transscleral ultrasound to deliver protein loaded nanoparticles. Eur. J. Pharm. Biopharm. 2014, 88, 104–115. [Google Scholar] [CrossRef]
- Huang, D.; Chen, Y.-S.; Thakur, S.S.; Rupenthal, I.D. Ultrasound-mediated nanoparticle delivery across ex vivo bovine retina after intravitreal injection. Eur. J. Pharm. Biopharm. 2017, 119, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Virgili, G.; Menchini, F.; Casazza, G.; Hogg, R.; Das, R.R.; Wang, X.; Michelessi, M. Optical coherence tomography (OCT) for detection of macular oedema in patients with diabetic retinopathy. Cochrane Database Syst. Rev. 2015, 1, CD008081. [Google Scholar] [CrossRef] [PubMed]
- Veverka, K.K.; Abouchehade, J.E.; Iezzi Jr, R.; Pulido, J.S. Noninvasive grading of radiation retinopathy: the use of optical coherence tomography angiography. RETINA 2015, 35, 2400–2410. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical coherence tomography angiography. Prog. Retinal Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Aquavella, J.; Palakuru, J.; Chung, S. Repeated measurements of dynamic tear distribution on the ocular surface after instillation of artificial tears. Invest. Ophthalmol. Visual Sci. 2006, 47, 3325–3329. [Google Scholar] [CrossRef]
- Kaya, S.; Schmidl, D.; Schmetterer, L.; Witkowska, K.J.; Unterhuber, A.; Aranha dos Santos, V.; Baar, C.; Garhöfer, G.; Werkmeister, R.M. Effect of hyaluronic acid on tear film thickness as assessed with ultra-high resolution optical coherence tomography. Acta Ophthalmol. 2015, 93, 439–443. [Google Scholar] [CrossRef]
- Brenner, D.J.; Hall, E.J. Computed Tomography — An Increasing Source of Radiation Exposure. N. Engl. J. Med. 2007, 357, 2277–2284. [Google Scholar] [CrossRef]
- At’kova, E.L.; Tomashevskiĭ, I.O.; Luchshev, A.I.; Iartsev, V.D. Single-photon emission computed tomography in combination with X-ray computed tomography in the study of lacrimal passages. First results. Vest. Rentgenol. Radiol. 2014, 26–30. [Google Scholar]
Technique | Administration | Imaging Agents | Spatial Resolution | Reference |
---|---|---|---|---|
PET | topical | 18F, 124I | 1–2mm | [31,32,33,34,35,36,37,38] |
intraocular | 18F, 124I | [29,39] | ||
SPECT | topical | 99mTc,131I, 123I, 111In, 67Ga | 0.5–2mm | [61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80] |
intraocular | 123I | [82] | ||
Fluorescence | topical | Fluorescein, AlexaFluor 488 | 1–10mm | [94,95,96,97] |
intraocular | Fluorescein, AlexaFluor 488 | [98,99,100] | ||
Magnetic resonance imaging | topical | Gadolinium | 25–100um | [109,110] |
intraocular | Gadolinium | [114,122,134] | ||
Ultrasonography | topical | Microbubbles | 30–100um | [144,145,146,147] |
Optical coherence tomography | topical | None | 10–20um | [151,152] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castro-Balado, A.; Mondelo-García, C.; González-Barcia, M.; Zarra-Ferro, I.; Otero-Espinar, F.J.; Ruibal-Morell, Á.; Aguiar, P.; Fernández-Ferreiro, A. Ocular Biodistribution Studies Using Molecular Imaging. Pharmaceutics 2019, 11, 237. https://doi.org/10.3390/pharmaceutics11050237
Castro-Balado A, Mondelo-García C, González-Barcia M, Zarra-Ferro I, Otero-Espinar FJ, Ruibal-Morell Á, Aguiar P, Fernández-Ferreiro A. Ocular Biodistribution Studies Using Molecular Imaging. Pharmaceutics. 2019; 11(5):237. https://doi.org/10.3390/pharmaceutics11050237
Chicago/Turabian StyleCastro-Balado, Ana, Cristina Mondelo-García, Miguel González-Barcia, Irene Zarra-Ferro, Francisco J Otero-Espinar, Álvaro Ruibal-Morell, Pablo Aguiar, and Anxo Fernández-Ferreiro. 2019. "Ocular Biodistribution Studies Using Molecular Imaging" Pharmaceutics 11, no. 5: 237. https://doi.org/10.3390/pharmaceutics11050237
APA StyleCastro-Balado, A., Mondelo-García, C., González-Barcia, M., Zarra-Ferro, I., Otero-Espinar, F. J., Ruibal-Morell, Á., Aguiar, P., & Fernández-Ferreiro, A. (2019). Ocular Biodistribution Studies Using Molecular Imaging. Pharmaceutics, 11(5), 237. https://doi.org/10.3390/pharmaceutics11050237