Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels
Abstract
:1. Introduction
2. Materials and Methods
2.1. Nanogel Preparation and Characterization
2.2. Skin Samples
2.3. Preparation of Skin Extracts
2.4. Determination of Tacrolimus in Skin Extracts by Isotope-Dilution Liquid Chromatography Tandem-Mass Spectrometry (LC-MS/MS)
2.5. Enzyme-linked Immunosorbent Assay (ELISA)
2.6. Preparation of Cryosections and Fluorescence Microscopy
2.7. Isolation of Cells, Flow Cytometry, and Confocal Fluorescence Microscopy
2.8. Isolation and Culture of T cells
2.9. Co-culture of Full-Thickness Human Skin and Jurkat Cells
3. Results and Discussion
3.1. Tacrolimus Penetration and Inflammatory Reaction in Ex Vivo Human Skin with Intact or Disrupted Barrier
3.2. Nanogel Skin Penetration and Cellular Uptake after Different Degrees of Barrier Disruption by TS
3.3. Effects of Tacrolimus Nanogels and Ointment on T Cells and Skin/Jurkat Cell Co-Cultures.
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
References
- Liu, J.; Farmer, J.D., Jr.; Lane, W.S.; Friedman, J.; Weissman, I.; Schreiber, S.L. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes. Cell 1991, 66, 807–815. [Google Scholar] [CrossRef]
- McCaffrey, P.G.; Perrino, B.A.; Soderling, T.R.; Rao, A. NF-ATp, a T lymphocyte DNA-binding protein that is a target for calcineurin and immunosuppressive drugs. J. Biol. Chem. 1993, 26, 3747–3752. [Google Scholar]
- Brazelton, T.R. Molecular mechanisms of action of new xenobiotic immunosuppressive drugs: Tacrolimus (FK506), sirolimus (rapamycin), mycophenolate mofetil and leflunomide. Curr. Opin. Immunol. 1996, 8, 710–720. [Google Scholar] [CrossRef]
- De Paulis, A.; Stellato, C.; Cirillo, R.; Ciccarelli, A.; Oriente, A.; Marone, G. Anti-inflammatory effect of FK-506 on human skin mast cells. J. Investig. Dermatol. 1992, 99, 723–728. [Google Scholar] [CrossRef]
- Panhans-Groß, A.; Novak, N.; Kraft, S.; Bieber, T. Human epidermal Langerhans’ cells are targets for the immunosuppressive macrolide tacrolimus (FK506). J. Aller. Clin. Immunol. 2001, 107, 345–352. [Google Scholar]
- Wollenberg, A.; Sharma, S.; von Bubnoff, D.; Geiger, E.; Haberstok, J.; Bieber, T. Topical tacrolimus (FK506) leads to profound phenotypic and functional alterations of epidermal antigen-presenting dendritic cells in atopic dermatitis. J. Aller. Clin. Immunol. 2001, 107, 519–525. [Google Scholar] [CrossRef]
- Hashimoto, Y.; Matsuoka, N.; Kawakami, A.; Tsuboi, M.; Nakashima, T.; Eguchi, K.; Tomioka, T.; Kanematsu, T. Novel immunosuppressive effect of FK506 by augmentation of T cell apoptosis. Clin. Exper. Immunol. 2001, 125, 19–24. [Google Scholar] [CrossRef]
- Chung, Y.; Chung, M.; Choi, S.; Choi, S.; Choi, S.; Chung, S. Tacrolimus-Induced Apoptosis is Mediated by Endoplasmic Reticulum–derived Calcium-dependent Caspases-3,-12 in Jurkat Cells. Transplant. Proc. 2018, 50, 1172–1177. [Google Scholar] [CrossRef]
- Matsuda, S.; Shibasaki, F.; Takehana, K.; Mori, H.; Nishida, E.; Koyasu, S. Two distinct action mechanisms of immunophilin–ligand complexes for the blockade of T-cell activation. EMBO Rep. 2000, 1, 428–434. [Google Scholar] [CrossRef]
- Soter, N.A.; Fleischer, A.B., Jr.; Webster, G.F.; Monroe, E.; Lawrence, I.; Group, T.O.S. Tacrolimus ointment for the treatment of atopic dermatitis in adult patients: Part II, safety. J. Am. Acad. Dermatol. 2001, 44, S39–S46. [Google Scholar] [CrossRef]
- Lan, C.-C.E.; Yu, H.-S.; Huang, S.-M.; Wu, C.-S.; Chen, G.-S. FK506 induces interleukin-6 secretion from UVB irradiated cultured human keratinocytes via p38 mitogen-activated protein kinase pathway: Implication on mechanisms of tacrolimus-induced skin irritation. J. Dermatol. Sci. 2007, 48, 225–228. [Google Scholar] [CrossRef]
- Muraoka, K.; Fujimoto, K.; Sun, X.; Yoshioka, K.; Shimizu, K.; Yagi, M.; Bose, H.; Miyazaki, I.; Yamamoto, K. Immunosuppressant FK506 induces interleukin-6 production through the activation of transcription factor nuclear factor (NF)-kappa (B). Implications for FK506 nephropathy. J. Clin. Investig. 1996, 97, 2433–2439. [Google Scholar] [CrossRef]
- Shokrollahi, K. Paraffin-Based Ointments and Fire Hazard: Understanding the Problem, Navigating the Media and Currently Available Downloadable Patient Information; SAGE Publications Sage UK: London, UK, 2017. [Google Scholar]
- Pople, P.V.; Singh, K.K. Development and evaluation of colloidal modified nanolipid carrier: Application to topical delivery of tacrolimus, Part II–In vivo assessment, drug targeting, efficacy, and safety in treatment for atopic dermatitis. Eur. J. Pharm. Biopharm. 2013, 84, 72–83. [Google Scholar] [CrossRef]
- Erdogan, M.; Wright, J.; McAlister, V. Liposomal tacrolimus lotion as a novel topical agent for treatment of immune-mediated skin disorders: Experimental studies in a murine model. Br. J. Dermatol. 2002, 146, 964–967. [Google Scholar] [CrossRef]
- Lapteva, M.; Mondon, K.; Möller, M.; Gurny, R.; Kalia, Y.N. Polymeric micelle nanocarriers for the cutaneous delivery of tacrolimus: A targeted approach for the treatment of psoriasis. Mol. Pharm. 2014, 11, 2989–3001. [Google Scholar] [CrossRef]
- Li, G.; Fan, Y.; Fan, C.; Li, X.; Wang, X.; Li, M.; Liu, Y. Tacrolimus-loaded ethosomes: Physicochemical characterization and in vivo evaluation. Eur. J. Pharm. Biopharm. 2012, 82, 49–57. [Google Scholar] [CrossRef]
- Yamamoto, K.; Klossek, A.; Fuchs, K.; Watts, B.; Raabe, J.; Flesch, R.; Rancan, F.; Pischon, H.; Radbruch, M.; Gruber, A. Soft X-ray microscopy for probing of topical tacrolimus delivery via micelles. Eur. J. Pharm. Biopharm. 2019, 139, 68–75. [Google Scholar] [CrossRef]
- Lei, W.; Yu, C.; Lin, H.; Zhou, X. Development of tacrolimus-loaded transfersomes for deeper skin penetration enhancement and therapeutic effect improvement in vivo. Asian J. Pharm. Sci. 2013, 8, 336–345. [Google Scholar] [CrossRef] [Green Version]
- Cuggino, J.C.; Blanco, E.R.O.; Gugliotta, L.M.; Igarzabal, C.I.A.; Calderón, M. Crossing biological barriers with nanogels to improve drug delivery performance. J. Control. Release 2019, 307, 221–246. [Google Scholar] [CrossRef]
- Rancan, F.; Asadian-Birjand, M.; Dogan, S.; Graf, C.; Cuellar, L.; Lommatzsch, S.; Blume-Peytavi, U.; Calderón, M.; Vogt, A. Effects of thermoresponsivity and softness on skin penetration and cellular uptake of polyglycerol-based nanogels. J. Control. Release 2016, 228, 159–169. [Google Scholar] [CrossRef]
- Giulbudagian, M.; Rancan, F.; Klossek, A.; Yamamoto, K.; Jurisch, J.; Neto, V.C.; Schrade, P.; Bachmann, S.; Rühl, E.; Blume-Peytavi, U. Correlation between the chemical composition of thermoresponsive nanogels and their interaction with the skin barrier. J. Control. Release 2016, 243, 323–332. [Google Scholar] [CrossRef]
- Rancan, F.; Giulbudagian, M.; Jurisch, J.; Blume-Peytavi, U.; Calderon, M.; Vogt, A. Drug delivery across intact and disrupted skin barrier: Identification of cell populations interacting with penetrated thermoresponsive nanogels. Eur. J. Pharm. Biopharm. 2017, 116, 4–11. [Google Scholar] [CrossRef]
- Giulbudagian, M.; Yealland, G.; Hönzke, S.; Edlich, A.; Geisendörfer, B.; Kleuser, B.; Hedtrich, S.; Calderón, M. Breaking the Barrier-Potent Anti-Inflammatory Activity following Efficient Topical Delivery of Etanercept using Thermoresponsive Nanogels. Theranostics 2018, 8, 450. [Google Scholar] [CrossRef]
- Edlich, A.; Gerecke, C.; Giulbudagian, M.; Neumann, F.; Hedtrich, S.; Schäfer-Korting, M.; Ma, N.; Calderon, M.; Kleuser, B. Specific uptake mechanisms of well-tolerated thermoresponsive polyglycerol-based nanogels in antigen-presenting cells of the skin. Eur. J. Pharm. Biopharm. 2017, 116, 155–163. [Google Scholar] [CrossRef]
- Gerecke, C.; Edlich, A.; Giulbudagian, M.; Schumacher, F.; Zhang, N.; Said, A.; Yealland, G.; Lohan, S.B.; Neumann, F.; Meinke, M.C. Biocompatibility and characterization of polyglycerol-based thermoresponsive nanogels designed as novel drug-delivery systems and their intracellular localization in keratinocytes. Nanotoxicology 2017, 11, 267–277. [Google Scholar] [CrossRef]
- Dzhonova, D.; Olariu, R.; Leckenby, J.; Dhayani, A.; Vemula, P.K.; Prost, J.-C.; Banz, Y.; Taddeo, A.; Rieben, R. Local release of tacrolimus from hydrogel-based drug delivery system is controlled by inflammatory enzymes in vivo and can be monitored non-invasively using in vivo imaging. PLoS ONE 2018, 13, e0203409. [Google Scholar] [CrossRef]
- Giulbudagian, M.; Asadian-Birjand, M.; Steinhilber, D.; Achazi, K.; Molina, M.; Calderón, M. Fabrication of thermoresponsive nanogels by thermo-nanoprecipitation and in situ encapsulation of bioactives. Polym. Chem. 2014, 5, 6909–6913. [Google Scholar] [CrossRef]
- Koster, R.A.; Alffenaar, J.-W.C.; Greijdanus, B.; Uges, D.R. Fast LC-MS/MS analysis of tacrolimus, sirolimus, everolimus and cyclosporin A in dried blood spots and the influence of the hematocrit and immunosuppressant concentration on recovery. Talanta 2013, 115, 47–54. [Google Scholar] [CrossRef]
- Döge, N.; Avetisyan, A.; Hadam, S.; Pfannes, E.K.B.; Rancan, F.; Blume-Peytavi, U.; Vogt, A. Assessment of skin barrier function and biochemical changes of ex vivo human skin in response to physical and chemical barrier disruption. Eur. J. Pharm. Biopharm. 2017, 116, 138–148. [Google Scholar] [CrossRef]
- Bachhav, Y.; Summer, S.; Heinrich, A.; Bragagna, T.; Böhler, C.; Kalia, Y. Effect of controlled laser microporation on drug transport kinetics into and across the skin. J. Control. Release 2010, 146, 31–36. [Google Scholar] [CrossRef]
- Yanase, K.; Hatta, I. Disruption of human stratum corneum lipid structure by sodium dodecyl sulphate. Inter. J. Cosmet. Sci. 2018, 40, 44–49. [Google Scholar] [CrossRef]
- Otberg, N.; Patzelt, A.; Rasulev, U.; Hagemeister, T.; Linscheid, M.; Sinkgraven, R.; Sterry, W.; Lademann, J. The role of hair follicles in the percutaneous absorption of caffeine. Br. J. Clin. Pharm. 2008, 65, 488–492. [Google Scholar] [CrossRef]
- Mohd, F.; Todo, H.; Yoshimoto, M.; Yusuf, E.; Sugibayashi, K. Contribution of the hair follicular pathway to Total skin permeation of topically applied and exposed chemicals. Pharmaceutics 2016, 8, 32. [Google Scholar] [CrossRef]
- Tampucci, S.; Burgalassi, S.; Chetoni, P.; Lenzi, C.; Pirone, A.; Mailland, F.; Caserini, M.; Monti, D. Topical formulations containing finasteride. Part II: Determination of finasteride penetration into hair follicles using the differential stripping technique. J. Pharm. Sci. 2014, 103, 2323–2329. [Google Scholar] [CrossRef]
- Rancan, F.; Amselgruber, S.; Hadam, S.; Munier, S.; Pavot, V.; Verrier, B.; Hackbarth, S.; Combadiere, B.; Blume-Peytavi, U.; Vogt, A. Particle-based transcutaneous administration of HIV-1 p24 protein to human skin explants and targeting of epidermal antigen presenting cells. J. Control. Release 2014, 176, 115–122. [Google Scholar] [CrossRef]
- De Benedetto, A.; Kubo, A.; Beck, L.A. Skin barrier disruption: A requirement for allergen sensitization? J. Investig. Dermatol. 2012, 132, 949–963. [Google Scholar] [CrossRef]
Nanogel | Size (PDI) a | Cloud Point Temperature b | Tacrolimus Loading c | ζ Potential [mV] d |
---|---|---|---|---|
NG-pNIPAM | 110.5 nm (0.194) | 34.6 °C | 0.9 wt.% | −1.07 |
NG-tPG | 132.9 nm (0.073) | 28.9 °C | 2.5 wt.% | 0.332 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rancan, F.; Volkmann, H.; Giulbudagian, M.; Schumacher, F.; Stanko, J.I.; Kleuser, B.; Blume-Peytavi, U.; Calderón, M.; Vogt, A. Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels. Pharmaceutics 2019, 11, 394. https://doi.org/10.3390/pharmaceutics11080394
Rancan F, Volkmann H, Giulbudagian M, Schumacher F, Stanko JI, Kleuser B, Blume-Peytavi U, Calderón M, Vogt A. Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels. Pharmaceutics. 2019; 11(8):394. https://doi.org/10.3390/pharmaceutics11080394
Chicago/Turabian StyleRancan, Fiorenza, Hildburg Volkmann, Michael Giulbudagian, Fabian Schumacher, Jessica Isolde Stanko, Burkhard Kleuser, Ulrike Blume-Peytavi, Marcelo Calderón, and Annika Vogt. 2019. "Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels" Pharmaceutics 11, no. 8: 394. https://doi.org/10.3390/pharmaceutics11080394
APA StyleRancan, F., Volkmann, H., Giulbudagian, M., Schumacher, F., Stanko, J. I., Kleuser, B., Blume-Peytavi, U., Calderón, M., & Vogt, A. (2019). Dermal Delivery of the High-Molecular-Weight Drug Tacrolimus by Means of Polyglycerol-Based Nanogels. Pharmaceutics, 11(8), 394. https://doi.org/10.3390/pharmaceutics11080394