Monocarboxylate Transporter 6-Mediated Interactions with Prostaglandin F2α: In Vitro and In Vivo Evidence Utilizing a Knockout Mouse Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Animals
2.3. Generation of the pGH19-mMct6/hMCT6 Vectors
2.4. Transfection of MCT6 in X. laevis Oocytes
2.5. Uptake Studies
2.6. Plasma and Urinary PGF2α and PGFM ELISAs in Mct6+/+ and Mc6−/− Mice
2.7. Mct6 Gene Expression in Different Dieting States
2.8. Data Analysis
2.8.1. Uptake Studies
2.8.2. mRNA Expression
2.8.3. Statistical Analysis
3. Results
3.1. Mct6 Protein Expression Is Stably Expressed in Transfected X. laevis Oocytes
3.2. Mct6 Transports PGF2α at Micromolar Affinity
3.3. Mouse and Human MCT6-Mediated PGF2α Transport Are Inhibited by Other Eicosanoids and MCT6 Substrates
3.4. Plasma and Urinary PGF2α and PGFM Concentrations in Mct6+/+ and Mc6−/− Mice Are Significantly Altered, and Mct6 Exhibits a Diet-dependent Gene Expression Profile
4. Discussion
4.1. In Vitro Kinetics of MCT6-Mediated PGF2α Transport
4.2. Diet-Dependent Evaluation of PGF2α and PGFM Concentrations in Mct6+/+ and Mct6−/− Mice
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Halestrap, A.P. The SLC16 gene family—Structure, role and regulation in health and disease. Mol. Asp. Med. 2013, 34, 337–349. [Google Scholar] [CrossRef] [PubMed]
- Perez-Escuredo, J.; Van Hee, V.F.; Sboarina, M.; Falces, J.; Payen, V.L.; Pellerin, L.; Sonveaux, P. Monocarboxylate transporters in the brain and in cancer. Biochimica et Biophysica Acta 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.S.; Morris, M.E. Monocarboxylate Transporters: Therapeutic targets and prognostic factors in disease. Clin. Pharmacol. Ther. 2016. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, C.; Longatto-Filho, A.; Azevedo-Silva, J.; Casal, M.; Schmitt, F.C.; Baltazar, F. Role of monocarboxylate transporters in human cancers: State of the art. J. Bioenerg. Biomembr. 2012, 44, 127–139. [Google Scholar] [CrossRef]
- Murakami, Y.; Kohyama, N.; Kobayashi, Y.; Ohbayashi, M.; Ohtani, H.; Sawada, Y.; Yamamoto, T. Functional characterization of human monocarboxylate transporter 6 (SLC16A5). Drug Metab. Dispos. 2005, 33, 1845–1851. [Google Scholar] [CrossRef]
- Kohyama, N.; Shiokawa, H.; Ohbayashi, M.; Kobayashi, Y.; Yamamoto, T. Characterization of Monocarboxylate Transporter 6: Expression in Human Intestine and Transport of the Antidiabetic Drug Nateglinide. Drug Metab. Dispos. 2013, 41, 1883–1887. [Google Scholar] [CrossRef]
- Jones, R.S.; Parker, M.D.; Morris, M.E. Quercetin, Morin, Luteolin, and Phloretin Are Dietary Flavonoid Inhibitors of Monocarboxylate Transporter 6. Mol. Pharm. 2017. [Google Scholar] [CrossRef]
- Gill, R.K.; Saksena, S.; Alrefai, W.A.; Sarwar, Z.; Goldstein, J.L.; Carroll, R.E.; Ramaswamy, K.; Dudeja, P.K. Expression and membrane localization of MCT isoforms along the length of the human intestine. Am. J. Physiol. Cell Physiol. 2005, 289, C846–C852. [Google Scholar] [CrossRef] [Green Version]
- Bonen, A.; Heynen, M.; Hatta, H. Distribution of monocarboxylate transporters MCT1-MCT8 in rat tissues and human skeletal muscle. Appl. Physiol. Nutr. Metab. 2006, 31, 31–39. [Google Scholar] [CrossRef]
- Lu, Y.; Boekschoten, M.V.; Wopereis, S.; Muller, M.; Kersten, S. Comparative transcriptomic and metabolomic analysis of fenofibrate and fish oil treatments in mice. Physiol. Genom. 2011, 43, 1307–1318. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Xu, X.; Zhou, B.; He, Z.; Zhai, Q. Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding. PLoS ONE 2011, 6, e27553. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhu, L.; Qian, C.; Zhou, J.; Geng, D.; Li, P.; Xuan, W.; Wu, F.; Zhao, K.; Kong, W.; et al. Impairment of Intestinal Monocarboxylate Transporter 6 Function and Expression in Diabetic Rats Induced by Combination of High-Fat Diet and Low Dose of Streptozocin: Involvement of Butyrate-Peroxisome Proliferator-Activated Receptor-gamma Activation. Drug Metab. Dispos. Biol. Fate Chem. 2019, 47, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Ricciotti, E.; FitzGerald, G.A. Prostaglandins and inflammation. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 986–1000. [Google Scholar] [CrossRef] [PubMed]
- Colina-Chourio, J.A.; Godoy-Godoy, N.; Avila-Hernandez, R.M. Role of prostaglandins in hypertension. J. Hum. Hypertens. 2000, 14 (Suppl. S1), S16–S19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, Y.C.; Zhou, W.; Chan, H.C. Regulation of smooth muscle contraction by the epithelium: Role of prostaglandins. Physiology 2011, 26, 156–170. [Google Scholar] [CrossRef] [Green Version]
- Schuster, V.L. Prostaglandin transport. Prostaglandins Lipid Mediat. 2002, 68–69, 633–647. [Google Scholar] [CrossRef]
- Schuster, V.L. Molecular mechanisms of prostaglandin transport. Annu. Rev. Physiol. 1998, 60, 221–242. [Google Scholar] [CrossRef]
- Chi, Y.; Schuster, V.L. The prostaglandin transporter PGT transports PGH(2). Biochem. Biophys. Res. Commun. 2010, 395, 168–172. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, T.; Hasegawa, Y.; Mimura, R.; Wakayama, T.; Uetoko, Y.; Komori, H.; Akanuma, S.; Hosoya, K.; Tamai, I. Prostaglandin Transporter (PGT/SLCO2A1) Protects the Lung from Bleomycin-Induced Fibrosis. PLoS ONE 2015, 10, e0123895. [Google Scholar] [CrossRef] [Green Version]
- Seifert, W.; Kuhnisch, J.; Tuysuz, B.; Specker, C.; Brouwers, A.; Horn, D. Mutations in the prostaglandin transporter encoding gene SLCO2A1 cause primary hypertrophic osteoarthropathy and isolated digital clubbing. Hum. Mutat. 2012, 33, 660–664. [Google Scholar] [CrossRef]
- Kraft, M.E.; Glaeser, H.; Mandery, K.; Konig, J.; Auge, D.; Fromm, M.F.; Schlotzer-Schrehardt, U.; Welge-Lussen, U.; Kruse, F.E.; Zolk, O. The prostaglandin transporter OATP2A1 is expressed in human ocular tissues and transports the antiglaucoma prostanoid latanoprost. Investig. Ophthalmol. Vis. Sci. 2010, 51, 2504–2511. [Google Scholar] [CrossRef] [PubMed]
- Enomoto, A.; Takeda, M.; Shimoda, M.; Narikawa, S.; Kobayashi, Y.; Kobayashi, Y.; Yamamoto, T.; Sekine, T.; Cha, S.H.; Niwa, T.; et al. Interaction of human organic anion transporters 2 and 4 with organic anion transport inhibitors. J. Pharmacol. Exp. Ther. 2002, 301, 797–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, M.; Obaidat, A.; Hagenbuch, B. OATPs, OATs and OCTs: The organic anion and cation transporters of the SLCO and SLC22A gene superfamilies. Br. J. Pharmacol. 2012, 165, 1260–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraya, K.; Hirata, T.; Hatano, R.; Nagamori, S.; Wiriyasermkul, P.; Jutabha, P.; Matsubara, M.; Muto, S.; Tanaka, H.; Asano, S.; et al. A novel transporter of SLC22 family specifically transports prostaglandins and co-localizes with 15-hydroxyprostaglandin dehydrogenase in renal proximal tubules. J. Biol. Chem. 2010, 285, 22141–22151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rius, M.; Thon, W.F.; Keppler, D.; Nies, A.T. Prostanoid transport by multidrug resistance protein 4 (MRP4/ABCC4) localized in tissues of the human urogenital tract. J. Urol. 2005, 174, 2409–2414. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Lucitt, M.B.; Stubbe, J.; Cheng, Y.; Friis, U.G.; Hansen, P.B.; Jensen, B.L.; Smyth, E.M.; FitzGerald, G.A. Prostaglandin F-2 alpha elevates blood pressure and promotes atherosclerosis. Proc. Natl. Acad. Sci. USA 2009, 106, 7985–7990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, M.; Kudo, I. Prostaglandin E synthase: A novel drug target for inflammation and cancer. Curr. Pharm. Des. 2006, 12, 943–954. [Google Scholar] [CrossRef]
- Kundu, N.; Ma, X.; Kochel, T.; Goloubeva, O.; Staats, P.; Thompson, K.; Martin, S.; Reader, J.; Take, Y.; Collin, P.; et al. Prostaglandin E receptor EP4 is a therapeutic target in breast cancer cells with stem-like properties. Breast Cancer Res. Treat. 2014, 143, 19–31. [Google Scholar] [CrossRef] [Green Version]
- Dingemanse, J.; Bolli, M.; Iglarz, M. Treatment of obesity and pulmonary arterial hypertension with inhibitors of the prostaglandin transporter: Evaluation of patent WO2014/204895A1. Expert Opin. Ther. Pat. 2015, 25, 1069–1077. [Google Scholar] [CrossRef]
- Yasui, M.; Tamura, Y.; Minami, M.; Higuchi, S.; Fujikawa, R.; Ikedo, T.; Nagata, M.; Arai, H.; Murayama, T.; Yokode, M. The Prostaglandin E2 Receptor EP4 Regulates Obesity-Related Inflammation and Insulin Sensitivity. PLoS ONE 2015, 10, e0136304. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Clipstone, N.A. Prostaglandin F2alpha inhibits adipocyte differentiation via a G alpha q-calcium-calcineurin-dependent signaling pathway. J. Cell. Biochem. 2007, 100, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Volat, F.E.; Pointud, J.C.; Pastel, E.; Morio, B.; Sion, B.; Hamard, G.; Guichardant, M.; Colas, R.; Lefrancois-Martinez, A.M.; Martinez, A. Depressed levels of prostaglandin F2alpha in mice lacking Akr1b7 increase basal adiposity and predispose to diet-induced obesity. Diabetes 2012, 61, 2796–2806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, R.S.; Tu, C.; Zhang, M.; Qu, J.; Morris, M.E. Characterization and Proteomic-Transcriptomic Investigation of Monocarboxylate Transporter 6 Knockout Mice: Evidence of a Potential Role in Glucose and Lipid Metabolism. Mol. Pharmacol. 2019, 96, 364–376. [Google Scholar] [CrossRef]
- Musa-Aziz, R.; Boron, W.F.; Parker, M.D. Using fluorometry and ion-sensitive microelectrodes to study the functional expression of heterologously-expressed ion channels and transporters in Xenopus oocytes. Methods 2010, 51, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Parkening, T.A.; LaGrone, L.F.; Brouhard, B.H. Concentrations of prostaglandins in plasma, seminal vesicles, and ovaries of aging C57BL/6NNia mice. Exp. Gerontol. 1985, 20, 291–294. [Google Scholar] [CrossRef]
- Jose, P.; Niederhauser, U.; Piper, P.J.; Robinson, C.; Smith, A.P. Degradation of Prostaglandin F-2alpha in Human Pulmonary Circulation. Thorax 1976, 31, 713–719. [Google Scholar] [CrossRef] [Green Version]
- Kimura, H.; Takeda, M.; Narikawa, S.; Enomoto, A.; Ichida, K.; Endou, H. Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther. 2002, 301, 293–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- den Besten, G.; van Eunen, K.; Groen, A.K.; Venema, K.; Reijngoud, D.J.; Bakker, B.M. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J. Lipid Res. 2013, 54, 2325–2340. [Google Scholar] [CrossRef] [Green Version]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated Fatty acids. J. Nutr. Metab. 2012, 2012, 539426. [Google Scholar] [CrossRef]
- Simmons, D.L.; Botting, R.M.; Hla, T. Cyclooxygenase isozymes: The biology of prostaglandin synthesis and inhibition. Pharmacol. Rev. 2004, 56, 387–437. [Google Scholar] [CrossRef] [Green Version]
- Tai, H.H. Biosynthesis and metabolism of pulmonary prostaglandins, thromboxanes and prostacyclin. Bulletin Europeen De Physiopathologie Respiratoire 1981, 17, 627–646. [Google Scholar] [PubMed]
- Eling, T.E.; Ally, A.I. Pulmonary biosynthesis and metabolism of prostaglandins and related substances. Environ. Health Perspect. 1984, 55, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Samuelsson, B. Isolation and Identification of Prostaglandins from Human Seminal Plasma. 18. Prostaglandins and Related Factors. J. Biol. Chem. 1963, 238, 3229–3234. [Google Scholar] [PubMed]
- Hassid, A.; Konieczkowski, M.; Dunn, M.J. Prostaglandin synthesis in isolated rat kidney glomeruli. Proc. Natl. Acad. Sci. USA 1979, 76, 1155–1159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zambraski, E.J.; Dodelson, R.; Guidotti, S.M.; Harnett, C.A. Renal prostaglandin E2 and F2 alpha synthesis during exercise: Effects of indomethacin and sulindac. Med. Sci. Sports Exerc. 1986, 18, 678–684. [Google Scholar] [CrossRef]
- Lengacher, S.; Nehiri-Sitayeb, T.; Steiner, N.; Carneiro, L.; Favrod, C.; Preitner, F.; Thorens, B.; Stehle, J.C.; Dix, L.; Pralong, F.; et al. Resistance to diet-induced obesity and associated metabolic perturbations in haploinsufficient monocarboxylate transporter 1 mice. PLoS ONE. 2013, 8, e82505. [Google Scholar] [CrossRef] [Green Version]
- Schutkowski, A.; Wege, N.; Stangl, G.I.; Konig, B. Tissue-specific expression of monocarboxylate transporters during fasting in mice. PLoS ONE 2014, 9, e112118. [Google Scholar] [CrossRef]
- Li, B.; Matter, E.K.; Hoppert, H.T.; Grayson, B.E.; Seeley, R.J.; Sandoval, D.A. Identification of optimal reference genes for RT-qPCR in the rat hypothalamus and intestine for the study of obesity. Int. J. Obes. 2014, 38, 192–197. [Google Scholar] [CrossRef] [Green Version]
- Sun, F.F.; Taylor, B.M.; McGuire, J.C.; Wong, P.Y. Metabolism of prostaglandins in the kidney. Kidney Int. 1981, 19, 760–770. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, T.; Masuzaki, H.; Ebihara, K.; Ogawa, Y.; Yasue, S.; Yukioka, H.; Chusho, H.; Miyanaga, F.; Miyazawa, T.; Fujimoto, M.; et al. Transgenic expression of mutant peroxisome proliferator-activated receptor gamma in liver precipitates fasting-induced steatosis but protects against high-fat diet-induced steatosis in mice. Metab. Clin. Exp. 2005, 54, 1490–1498. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jones, R.S.; Parker, M.D.; Morris, M.E. Monocarboxylate Transporter 6-Mediated Interactions with Prostaglandin F2α: In Vitro and In Vivo Evidence Utilizing a Knockout Mouse Model. Pharmaceutics 2020, 12, 201. https://doi.org/10.3390/pharmaceutics12030201
Jones RS, Parker MD, Morris ME. Monocarboxylate Transporter 6-Mediated Interactions with Prostaglandin F2α: In Vitro and In Vivo Evidence Utilizing a Knockout Mouse Model. Pharmaceutics. 2020; 12(3):201. https://doi.org/10.3390/pharmaceutics12030201
Chicago/Turabian StyleJones, Robert S., Mark D. Parker, and Marilyn E. Morris. 2020. "Monocarboxylate Transporter 6-Mediated Interactions with Prostaglandin F2α: In Vitro and In Vivo Evidence Utilizing a Knockout Mouse Model" Pharmaceutics 12, no. 3: 201. https://doi.org/10.3390/pharmaceutics12030201
APA StyleJones, R. S., Parker, M. D., & Morris, M. E. (2020). Monocarboxylate Transporter 6-Mediated Interactions with Prostaglandin F2α: In Vitro and In Vivo Evidence Utilizing a Knockout Mouse Model. Pharmaceutics, 12(3), 201. https://doi.org/10.3390/pharmaceutics12030201