Synthesis and Antibacterial Activity of Ionic Liquids and Organic Salts Based on Penicillin G and Amoxicillin hydrolysate Derivatives against Resistant Bacteria
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Biological Activity
2.3. Studies on Sensitive Bacteria
2.4. Studies on Resistant Bacteria
3. Conclusions
4. Experimental Section
4.1. Synthesis
4.1.1. Synthesis of seco-Pen-Based OSILs
Preparation of [NH4][seco-Pen]
Preparation of [K][seco-Pen]
Preparation of [Na][seco-Amx]
Preparation of [TEA][seco-Pen]
Preparation of [P6,6,6,14][seco-Pen]
Preparation of [C16Pyr][seco-Pen]
Procedure I
Procedure II
Preparation of [Choline][seco-Pen]
Preparation of [EMIM][seco-Pen]
Preparation of [C2OHMIM][seco-Pen]
4.1.2. Synthesis of seco-Amx-Based OSILs
Preparation of [EMIM][seco-Amx]
Preparation of [P6,6,6,14][seco-Amx]
Preparation of [C16Pyr][seco-Amx]
Preparation [choline][seco-Amx]
Preparation of [C2OHMIM][seco-Amx]
Author Contributions
Funding
Conflicts of Interest
References
- Tseng, S.H.; Lee, C.M.; Lin, T.Y.; Chang, S.C.; Chang, F.Y. Emergence and spread of multi-drug resistant organisms: Think globally and act locally. J. Microbiol. Immunol. Infect. 2011, 44, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M.; British Soc, A. Discovery research: The scientific challenge of finding new antibiotics. J. Antimicrob. Chemother. 2011, 66, 1941–1944. [Google Scholar] [CrossRef]
- Martinez, J.L. General principles of antibiotic resistance in bacteria. Drug Discov. Today Technol. 2014, 11, 33–39. [Google Scholar] [CrossRef]
- Coates, A.R.M.; Halls, G.; Hu, Y. Novel classes of antibiotics or more of the same? Br. J. Pharmacol. 2011, 163, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Laxminarayan, R.; Duse, A.; Wattal, C.; Zaidi, A.K.M.; Wertheim, H.F.L.; Sumpradit, N.; Vlieghe, E.; Hara, G.L.; Gould, I.M.; Goossens, H.; et al. Antibiotic resistance-the need for global solutions. Lancet Infect. Dis. 2013, 13, 1057–1098. [Google Scholar] [CrossRef] [Green Version]
- Wright, G.D. Antibiotic Adjuvants: Rescuing Antibiotics from Resistance. Trends Microbiol. 2016, 24, 862–871. [Google Scholar] [CrossRef]
- Laxminarayan, R.; Matsoso, P.; Pant, S.; Brower, C.; Rottingen, J.A.; Klugman, K.; Davies, S. Access to effective antimicrobials: A worldwide challenge. Lancet 2016, 387, 168–175. [Google Scholar] [CrossRef]
- Amador, P.P.; Fernandes, R.M.; Prudencio, M.C.; Barreto, M.P.; Duarte, I.M. Antibiotic resistance in wastewater: Occurrence and fate of Enterobacteriaceae producers of Class A and Class C beta-lactamases. J. Environ. Sci. Health Part A-Toxic/Hazard. Subst. Environ. Eng. 2015, 50, 26–39. [Google Scholar] [CrossRef]
- Vieira, M.; Pinheiro, C.; Fernandes, R.; Noronha, J.P.; Prudencio, C. Antimicrobial activity of quinoxaline 1,4-dioxide with 2-and 3-substituted derivatives. Microbiol. Res. 2014, 169, 287–293. [Google Scholar] [CrossRef]
- Fernandes, R.; Amador, P.; Prudencio, C. beta-Lactams: Chemical structure, mode of action and mechanisms of resistance. Rev. Med. Microbiol. 2013, 24, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Woodford, N.; Turton, J.F.; Livermore, D.M. Multiresistant Gram-negative bacteria: The role of high-risk clones in the dissemination of antibiotic resistance. Fems Microbiol. Rev. 2011, 35, 736–755. [Google Scholar] [CrossRef] [Green Version]
- Livermore, D.M. beta-Lactamases—the Threat Renews. Curr. Protein Pept. Sci. 2009, 10, 397–400. [Google Scholar] [CrossRef]
- Coates, A.; Hu, Y.M.; Bax, R.; Page, C. The future challenges facing the development of new antimicrobial drugs. Nat. Rev. Drug Discov. 2002, 1, 895–910. [Google Scholar] [CrossRef]
- Ferraz, R.; Noronha, J.; Murtinheira, F.; Nogueira, F.; Machado, M.; Prudencio, M.; Parapini, S.; D’Alessandro, S.; Teixeira, C.; Gomes, A.; et al. Primaquine-based ionic liquids as a novel class of antimalarial hits. RSC Adv. 2016, 6, 56134–56138. [Google Scholar] [CrossRef]
- Ferraz, R.; Costa-Rodrigues, J.; Fernandes, M.H.; Santos, M.M.; Marrucho, I.M.; Rebelo, L.P.N.; Prudencio, C.; Noronha, J.P.; Petrovski, Z.; Branco, L.C. Antitumor Activity of Ionic Liquids Based on Ampicillin. ChemMedChem 2015, 10, 1480–1483. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, R.; Teixeira, V.; Rodrigues, D.; Fernandes, R.; Prudencio, C.; Noronha, J.P.; Petrovski, Z.; Branco, L.C. Antibacterial activity of Ionic Liquids based on ampicillin against resistant bacteria. RSC Adv. 2014, 4, 4301–4307. [Google Scholar] [CrossRef] [Green Version]
- Florindo, C.; Araujo, J.M.M.; Alves, F.; Matos, C.; Ferraz, R.; Prudencio, C.; Noronha, J.P.; Petrovski, Z.; Branco, L.; Rebelo, L.P.N.; et al. Evaluation of solubility and partition properties of ampicillin-based ionic liquids. Int. J. Pharm. 2013, 456, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, R.; Branco, L.C.; Marrucho, I.M.; Araujo, J.M.M.; Rebelo, L.P.N.; da Ponte, M.N.; Prudencio, C.; Noronha, J.P.; Petrovski, Z. Development of novel ionic liquids based on ampicillin. MedChemComm 2012, 3, 494–497. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, R.; Branco, L.C.; Prudencio, C.; Noronha, J.P.; Petrovski, Z. Ionic Liquids as Active Pharmaceutical Ingredients. Chemmedchem 2011, 6, 975–985. [Google Scholar] [CrossRef]
- Egorova, K.S.; Gordeev, E.G.; Ananikov, V.P. Biological Activity of Ionic Liquids and Their Application in Pharmaceutics and Medicine. Chem. Rev. 2017, 117, 7131–7189. [Google Scholar] [CrossRef]
- Cojocaru, O.A.; Bica, K.; Gurau, G.; Narita, A.; McCrary, P.D.; Shamshina, J.L.; Barber, P.S.; Rogers, R.D. Prodrug ionic liquids: Functionalizing neutral active pharmaceutical ingredients to take advantage of the ionic liquid form. MedChemComm 2013, 4, 559–563. [Google Scholar] [CrossRef]
- Bica, K.; Rijksen, C.; Nieuwenhuyzen, M.; Rogers, R.D. In search of pure liquid salt forms of aspirin: Ionic liquid approaches with acetylsalicylic acid and salicylic acid. Phys. Chem. Chem. Phys. 2010, 12, 2011–2017. [Google Scholar] [CrossRef]
- Dias, A.R.; Costa-Rodrigues, J.; Fernandes, M.H.; Ferraz, R.; Prudêncio, C. The Anticancer Potential of Ionic Liquids. ChemMedChem 2017, 12, 11–18. [Google Scholar] [CrossRef]
- Teixeira, S.; Santos, M.M.; Ferraz, R.; Prudêncio, C.; Fernandes, M.H.; Costa-Rodrigues, J.; Branco, L.C. A Novel Approach for Bisphosphonates: Ionic Liquids and Organic Salts from Zoledronic Acid. ChemMedChem 2019, 14, 1767–1770. [Google Scholar] [CrossRef]
- Santos, M.M.; Raposo, L.R.; Carrera, G.V.S.M.; Costa, A.; Dionísio, M.; Baptista, P.V.; Fernandes, A.R.; Branco, L.C. Ionic Liquids and salts from Ibuprofen as promising innovative formulations of an old drug. ChemMedChem 2019, 14, 907–911. [Google Scholar] [CrossRef]
- Marrucho, I.M.; Branco, L.C.; Rebelo, L.P.N. Ionic Liquids in Pharmaceutical Applications. Annu. Rev. Chem. Biomol. Eng. 2014, 5, 527–546. [Google Scholar] [CrossRef]
- Branco, L.C.; Carrera, G.V.S.M.; Aires-de-Sousa, J.; Martin, I.L.; Frade, R.; Afonso, C.A.M. Physico-Chemical Properties of Task-Specific Ionic Liquids, Ionic Liquids: Theory, Properties, New Approaches. In Ionic Liquids: Theory, Properties, New Approaches; Kokorin, P.A., Ed.; InTech: London, UK, 2011. [Google Scholar]
- Hough, W.L.; Smiglak, M.; Rodriguez, H.; Swatloski, R.P.; Spear, S.K.; Daly, D.T.; Pernak, J.; Grisel, J.E.; Carliss, R.D.; Soutullo, M.D.; et al. The third evolution of ionic liquids: Active pharmaceutical ingredients. New J. Chem. 2007, 31, 1429–1436. [Google Scholar] [CrossRef]
- Dean, P.M.; Turanjanin, J.; Yoshizawa-Fujita, M.; MacFarlane, D.R.; Scott, J.L. Exploring an Anti-Crystal Engineering Approach to the Preparation of Pharmaceutically Active Ionic Liquids. Cryst. Growth Des. 2009, 9, 1137–1145. [Google Scholar] [CrossRef]
- Florindo, C.; Costa, A.; Matos, C.; Nunes, S.L.; Matias, A.N.; Duarte, C.M.M.; Rebelo, L.P.N.; Branco, L.C.; Marrucho, I.M. Novel organic salts based on fluoroquinolone drugs: Synthesis, bioavailability and toxicological profiles. Int. J. Pharm. 2014, 469, 179–189. [Google Scholar] [CrossRef]
- Araujo, J.M.M.; Florindo, C.; Pereiro, A.B.; Vieira, N.S.M.; Matias, A.A.; Duarte, C.M.M.; Rebelo, L.P.N.; Marrucho, I.M. Cholinium-based ionic liquids with pharmaceutically active anions. RSC Adv. 2014, 4, 28126–28132. [Google Scholar] [CrossRef]
- Carson, L.; Chau, P.K.W.; Earle, M.J.; Gilea, M.A.; Gilmore, B.F.; Gorman, S.P.; McCann, M.T.; Seddon, K.R. Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem. 2009, 11, 492–497. [Google Scholar] [CrossRef]
- Hough, W.L.; Rogers, R.D. Ionic liquids then and now: From solvents to materials to active pharmaceutical ingredients. Bull. Chem. Soc. Jpn. 2007, 80, 2262–2269. [Google Scholar] [CrossRef]
- Demberelnyamba, D.; Kim, K.S.; Choi, S.J.; Park, S.Y.; Lee, H.; Kim, C.J.; Yoo, I.D. Synthesis and antimicrobial properties of imidazolium and pyrrolidinonium salts. Bioorg. Med. Chem. 2004, 12, 853–857. [Google Scholar] [CrossRef] [PubMed]
- McCrary, P.D.; Beasley, P.A.; Gurau, G.; Narita, A.; Barber, P.S.; Cojocaru, O.A.; Rogers, R.D. Drug specific, tuning of an ionic liquid’s hydrophilic-lipophilic balance to improve water solubility of poorly soluble active pharmaceutical ingredients. New J. Chem. 2013, 37, 2196–2202. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Kelley, S.P.; Gurau, G.; Rogers, R.D. Chemistry: Develop ionic liquid drugs. Nature 2015, 528, 188–189. [Google Scholar] [CrossRef] [Green Version]
- Cherukuvada, S.; Nangia, A. Polymorphism in an API ionic liquid: Ethambutol dibenzoate trimorphs. Crystengcomm 2012, 14, 7840–7843. [Google Scholar] [CrossRef]
- Yang, T.; Gao, G. Ionic Liquids in Pharmaceuticals. Prog. Chem. 2012, 24, 1928–1935. [Google Scholar]
- Sekhon, B.S. Ionic liquids: Pharmaceutical and biotechnological applications. Asian J. Pharm. Biol. Res. 2011, 1, 395–411. [Google Scholar]
- Stoimenovski, J.; MacFarlane, D.R.; Bica, K.; Rogers, R.D. Crystalline vs. Ionic Liquid Salt Forms of Active Pharmaceutical Ingredients: A Position Paper. Pharm. Res. 2010, 27, 521–526. [Google Scholar] [CrossRef]
- Smiglak, M.; Pringle, J.M.; Lu, X.; Han, L.; Zhang, S.; Gao, H.; MacFarlane, D.R.; Rogers, R.D. Ionic liquids for energy, materials, and medicine. Chem. Commun. 2014, 50, 9228–9250. [Google Scholar] [CrossRef] [Green Version]
- Ferraz, R.; Pinheiro, M.; Gomes, A.; Teixeira, C.; Prudêncio, C.; Reis, S.; Gomes, P. Effects of novel triple-stage antimalarial ionic liquids on lipid membrane models. Bioorg. Med. Chem. Lett. 2017, 27, 4190–4193. [Google Scholar] [CrossRef]
- Brunel, F.; Lautard, C.; Garzino, F.; Giorgio, S.; Raimundo, J.M.; Bolla, J.M.; Camplo, M. Antibacterial activities of fluorescent nano assembled triphenylamine phosphonium ionic liquids. Bioorg. Med. Chem. Lett. 2016, 26, 3770–3773. [Google Scholar] [CrossRef]
- Kontro, I.; Svedstrom, K.; Dusa, F.; Ahvenainen, P.; Ruokonen, S.K.; Witos, J.; Wiedmer, S.K. Effects of phosphonium-based ionic liquids on phospholipid membranes studied by small-angle X-ray scattering. Chem. Phys. Lipids 2016, 201, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Busetti, A.; Crawford, D.E.; Earle, M.J.; Gilea, M.A.; Gilmore, B.F.; Gorman, S.P.; Laverty, G.; Lowry, A.F.; McLaughlin, M.; Seddon, K.R. Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chem. 2010, 12, 420–425. [Google Scholar] [CrossRef]
- Iwai, N.; Nakayama, K.; Kitazume, T. Antibacterial activities of imidazolium, pyrrolidinium and piperidinium salts. Bioorg. Med. Chem. Lett. 2011, 21, 1728–1730. [Google Scholar] [CrossRef]
- Cole, M.R.; Hobden, J.A.; Warner, I.M. Recycling Antibiotics into GUMBOS: A New Combination Strategy to Combat Multi-Drug-Resistant Bacteria. Molecules 2015, 20, 6466–6487. [Google Scholar] [CrossRef]
- Bergamo, V.Z.; Donato, R.K.; Dalla Lana, D.F.; Donato, K.J.Z.; Ortega, G.G.; Schrekker, H.S.; Fuentefria, A.M. Imidazolium salts as antifungal agents: Strong antibiofilm activity against multidrug-resistant Candida tropicalis isolates. Lett. Appl. Microbiol. 2015, 60, 66–71. [Google Scholar] [CrossRef]
- Choi, S.Y.; Rodriguez, H.; Gunaratne, H.Q.N.; Puga, A.V.; Gilpin, D.; McGrath, S.; Vyle, J.S.; Tunney, M.M.; Rogers, R.D.; McNally, T. Dual functional ionic liquids as antimicrobials and plasticisers for medical grade PVCs. RSC Adv. 2014, 4, 8567–8581. [Google Scholar] [CrossRef]
- Nancharaiah, Y.V.; Reddy, G.K.K.; Lalithamanasa, P.; Venugopalan, V.P. The ionic liquid 1-alkyl-3-methylimidazolium demonstrates comparable antimicrobial and antibiofilm behavior to a cationic surfactant. Biofouling 2012, 28, 1141–1149. [Google Scholar] [CrossRef]
- Hu, D.Y.; Li, X.; Sreenivasan, P.K.; DeVizio, W. A Randomized, Double-Blind Clinical Study to Assess the Antimicrobial Effects of a Cetylpyridinium Chloride Mouth Rinse on Dental Plaque Bacteria. Clin. Ther. 2009, 31, 2540–2548. [Google Scholar] [CrossRef]
- Coleman, D.; Spulak, M.; Teresa Garcia, M.; Gathergood, N. Antimicrobial toxicity studies of ionic liquids leading to a ’hit’ MRSA selective antibacterial imidazolium salt. Green Chem. 2012, 14, 1350–1356. [Google Scholar] [CrossRef]
- Bielaszewska, M.; Mellmann, A.; Zhang, W.; Koeck, R.; Fruth, A.; Bauwens, A.; Peters, G.; Karch, H. Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: A microbiological study. Lancet Infect. Dis. 2011, 11, 671–676. [Google Scholar] [CrossRef] [Green Version]
- Pennington, H. Escherichia coli O104, Germany 2011. Lancet Infect. Dis. 2011, 11, 652–653. [Google Scholar] [CrossRef]
- Brain, E.G.; Eglington, A.J.; Nayler, J.H.C.; Pearson, M.J.; Southgate, R. Oxidation of some 1,2-seco-penicillins. J. Soc. Chem. Commun. 1972, 4, 229–230. [Google Scholar] [CrossRef]
- Gower, J.L.; Risbridger, G.D.; Redrup, M.J. Positive and negative-ion fast atom bombardment mass-spectra of some penicilloic acids. J. Antibiot. 1984, 37, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Hart, K.M.; Reck, M.; Bowman, G.R.; Wencewicz, T.A. Tabtoxinine-beta-lactam is a “stealth” beta-lactam antibiotic that evades beta-lactamase-mediated antibiotic resistance. MedChemComm 2016, 7, 118–127. [Google Scholar] [CrossRef]
- Paula, M.V.; Barros, A.L.; Wanderley, K.A.; de Sa, G.F.; Eberlin, M.; Soares, T.A.; Alves, S. Metal Organic Frameworks for Selective Degradation of Amoxicillin in Biomedical Wastes. J. Braz. Chem. Soc. 2018, 29, 2127–2136. [Google Scholar] [CrossRef]
- Davis, A.M.; Layland, N.J.; Page, M.I.; Martin, F.; Oferrall, R.M. Thiazolidine ring-opening in penicillin derivatives .2. Enamine formation. J. Chem. Soc. Perkin Trans. 1991, 2, 1225–1229. [Google Scholar] [CrossRef]
- Styring, P.; Chong, S.S.F. Stereoselective synthesis of a thiazolane amide using molecular recognition in the triazolyl-activated ester intermediate. Tetrahedron Lett. 2006, 47, 1737–1740. [Google Scholar] [CrossRef]
- Hamiltonmiller, J.M.; Richards, E.; Abraham, E.P. Changes in proton-magnetic-resonance spectra during aminolysis and enzymic hydrolysis of cephalosporins. Biochem. J. 1970, 116, 385–395. [Google Scholar]
- Salivar, C.J.; Grenfell, T.C.; Brown, E.V. Studies on the naturally occurring penicillins. 2. Precipitation of crystalline ammonium penicillins. J. Biol. Chem. 1948, 176, 977–981. [Google Scholar]
- NCCLS. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically: Approved Standard; NCCLS: Wayne, PA, USA, 2003. [Google Scholar]
- Cole, M.R.; Li, M.; El-Zahab, B.; Janes, M.E.; Hayes, D.; Warner, I.M. Design, Synthesis, and Biological Evaluation of beta-Lactam Antibiotic-Based Imidazolium- and Pyridinium-Type Ionic Liquids. Chem. Biol. Drug Des. 2011, 78, 33–41. [Google Scholar] [CrossRef]
- Drawz, S.M.; Bonomo, R.A. Three Decades of β-Lactamase Inhibitors. Clin. Microbiol. Rev. 2010, 23, 160–201. [Google Scholar] [CrossRef] [Green Version]
- Zapun, A.; Contreras-Martel, C.; Vernet, T. Penicillin-binding proteins and beta-lactam resistance. Fems Microbiol. Rev. 2008, 32, 361–385. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, J.L.; Fourgeaud, M.; Hugonnet, J.E.; Dubost, L.; Brouard, J.P.; Ouazzani, J.; Rice, L.B.; Gutmann, L.; Arthur, M. A novel peptidoglycan cross-linking enzyme for a beta-lactam-resistant transpeptidation pathway. J. Biol. Chem. 2005, 280, 38146–38152. [Google Scholar] [CrossRef] [Green Version]
- Edoo, Z.; Arthur, M.; Hugonnet, J.E. Reversible inactivation of a peptidoglycan transpeptidase by a beta-lactam antibiotic mediated by beta-lactam-ring recyclization in the enzyme active site. Sci. Rep. 2017, 7, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Trapp, S.; Franco, A.; Mackay, D. Activity-Based Concept for Transport and Partitioning of Ionizing Organics. Environ. Sci. Technol. 2010, 44, 6123–6129. [Google Scholar] [CrossRef]
- Shamshina, J.L.; Barber, P.S.; Rogers, R.D. Ionic liquids in drug delivery. Expert Opin. Drug Deliv. 2013, 10, 1367–1381. [Google Scholar] [CrossRef]
- Shimizu, M.; Shiota, S.; Mizushima, T.; Ito, H.; Hatano, T.; Yoshida, T.; Tsuchiya, T. Marked potentiation of activity of beta-lactams against methicillin-resistant Staphylococcus aureus by corilagin. Antimicrob. Agents Chemother. 2001, 45, 3198–3201. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.X.; Sun, W.G.; Li, Q.; Li, X.N.; Zhu, H.C.; Huang, J.F.; Liu, J.J.; Wang, J.P.; Xue, Y.B.; Zhang, Y.H. Spiroaspertrione A, a Bridged Spirocyclic Meroterpenoid, as a Potent Potentiator of Oxacillin against Methicillin-Resistant Staphylococcus aureus from Aspergillus sp TJ23. J. Org. Chem. 2017, 82, 3125–3131. [Google Scholar]
- Wang, H.; Gill, C.J.; Lee, S.H.; Mann, P.; Zuck, P.; Meredith, T.C.; Murgolo, N.; She, X.W.; Kales, S.; Liang, L.Z.; et al. Discovery of Wall Teichoic Acid Inhibitors as Potential Anti-MRSA beta-Lactam Combination Agents. Chem. Biol. 2013, 20, 272–284. [Google Scholar] [CrossRef] [Green Version]
- Löbenberg, R.; Amidon, G.L. Modern bioavailability, bioequivalence and biopharmaceutics classification system. New scientific approaches to international regulatory standards. Eur. J. Pharm. Biopharm. 2000, 50, 3–12. [Google Scholar] [CrossRef]
- Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharm. Res. 1995, 12, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Bakshi, P.S.; Gusain, R.; Dhawaria, M.; Suman, S.K.; Khatri, O.P. Antimicrobial and lubrication properties of 1-acetyl-3-hexylbenzotriazolium benzoate/sorbate ionic liquids. RSC Adv. 2016, 6, 46567–46572. [Google Scholar] [CrossRef]
- Fang, Y.Y.; Liu, T.L.; Zou, Q.L.; Zhao, Y.X.; Wu, F.P. Cationic benzylidene cyclopentanone photosensitizers for selective photodynamic inactivation of bacteria over mammalian cells. RSC Adv. 2015, 5, 56067–56074. [Google Scholar] [CrossRef]
- Mester, P.; Jehle, A.K.; Leeb, C.; Kalb, R.; Grunert, T.; Rossmanith, P. FTIR metabolomic fingerprint reveals different modes of action exerted by active pharmaceutical ingredient based ionic liquids (API-ILs) on Salmonella typhimurium. RSC Adv. 2016, 6, 32220–32227. [Google Scholar] [CrossRef]
- Corte, L.; Tiecco, M.; Roscini, L.; De Vincenzi, S.; Colabella, C.; Germani, R.; Tascini, C.; Cardinali, G. FTIR Metabolomic Fingerprint Reveals Different Modes of Action Exerted by Structural Variants of N-Alkyltropinium Bromide Surfactants on Escherichia coli and Listeria innocua Cells. PLoS ONE 2015, 10, e0115275. [Google Scholar] [CrossRef] [Green Version]
- Vincent, S.P.; Lehn, J.M.; Lazarte, J.; Nicolau, C. Transport of the highly charged myo-inositol hexakisphosphate molecule across the red blood cell membrane: A phase transfer and biological study. Bioorg. Med. Chem. 2002, 10, 2825–2834. [Google Scholar] [CrossRef]
- Langgartner, J.; Lehn, N.; Gluck, T.; Herzig, H.; Kees, F. Comparison of the pharmacokinetics of piperacillin and sulbactam during intermittent and continuous intravenous infusion. Chemotherapy 2007, 53, 370–377. [Google Scholar] [CrossRef]
- Zavgorodnya, O.; Shamshina, J.L.; Mittenthal, M.; McCrary, P.D.; Rachiero, G.P.; Titi, H.M.; Rogers, R.D. Polyethylene glycol derivatization of the non-active ion in active pharmaceutical ingredient ionic liquids enhances transdermal delivery. New J. Chem. 2017, 41, 1499–1508. [Google Scholar] [CrossRef]
- Dobler, D.; Schmidts, T.; Zinecker, C.; Schlupp, P.; Schafer, J.; Runkel, F. Hydrophilic Ionic Liquids as Ingredients of Gel-Based Dermal Formulations. AAPS PharmSciTech 2016, 17, 923–931. [Google Scholar] [CrossRef] [Green Version]
- De Almeida, T.S.; Julio, A.; Caparica, R.; Rosado, C.; Fernandes, A.S.; Saraiva, N.; Ribeiro, M.; Araujo, M.E.; Baby, A.R.; Costa, J.; et al. Ionic liquids as solubility/permeation enhancers for topical formulations: Skin permeation and cytotoxicity characterization. Toxicol. Lett. 2015, 238, S293. [Google Scholar] [CrossRef]
- Jiang, H.; Xiong, M.M.; Bi, Q.Y.; Wang, Y.; Li, C. Self-enhanced targeted delivery of a cell wall- and membrane-active antibiotics, daptomycin, against staphylococcal pneumonia. Acta Pharm. Sin. B 2016, 6, 319–328. [Google Scholar] [CrossRef] [Green Version]
- Khameneh, B.; Iranshahy, M.; Ghandadi, M.; Atashbeyk, D.G.; Bazzaz, B.S.F.; Iranshahi, M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev. Ind. Pharm. 2015, 41, 989–994. [Google Scholar] [CrossRef]
- Pinilla, C.M.B.; Brandelli, A. Antimicrobial activity of nanoliposomes co-encapsulating nisin and garlic extract against Gram-positive and Gram-negative bacteria in milk. Innov. Food Sci. Emerg. Technol. 2016, 36, 287–293. [Google Scholar] [CrossRef]
- Ma, Y.F.; Wang, Z.; Zhao, W.; Lu, T.L.; Wang, R.T.; Mei, Q.B.; Chen, T. Enhanced bactericidal potency of nanoliposomes by modification of the fusion activity between liposomes and bacterium. Int. J. Nanomed. 2013, 8, 2351–2360. [Google Scholar] [CrossRef] [Green Version]
- Rout, B.; Liu, C.H.; Wu, W.C. Enhancement of photodynamic inactivation against Pseudomonas aeruginosa by a nano-carrier approach. Colloids Surf. B-Biointerfaces 2016, 140, 472–480. [Google Scholar] [CrossRef]
- Lopes, L.B.; Garcia, M.T.J.; Bentley, M. Chemical penetration enhancers. Ther. Deliv. 2015, 6, 1053–1061. [Google Scholar] [CrossRef]
- Atashbeyk, D.G.; Khameneh, B.; Tafaghodi, M.; Bazzaz, B.S.F. Eradication of methicillin-resistant Staphylococcus aureus infection by nanoliposomes loaded with gentamicin and oleic acid. Pharm. Biol. 2014, 52, 1423–1428. [Google Scholar] [CrossRef]
- Irizarry, L.; Merlin, T.; Rupp, J.; Griffith, J. Reduced susceptibility of methicillin-resistant Staphylococcus aureus to cetylpyridinium chloride and chlorhexidine. Chemotherapy 1996, 42, 248–252. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.; Zhang, M.B.; Liu, Y.C.; Kang, J.R.; Chu, Z.Y.; Yin, K.L.; Ding, L.Y.; Ding, R.; Xiao, R.X.; Yin, Y.N.; et al. Role of Berberine in the Treatment of Methicillin-Resistant Staphylococcus aureus Infections. Sci. Rep. 2016, 6, 24748. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.H.; Kim, K.J.; Cha, J.D.; Kim, H.K.; Lee, Y.E.; Choi, N.Y.; You, Y.O. Antimicrobial activity of berberine alone and in combination with ampicillin or oxacillin against methicillin-resistant Staphylococcus aureus. J. Med. Food 2005, 8, 454–461. [Google Scholar] [CrossRef]
- Fishovitz, J.; Hermoso, J.A.; Chang, M.; Mobashery, S. Penicillin-binding Protein 2a of Methicillin-resistant Staphylococcus aureus. Iubmb Life 2014, 66, 572–577. [Google Scholar] [CrossRef] [Green Version]
- Tyers, M.; Wright, G.D. Drug combinations: A strategy to extend the life of antibiotics in the 21 st century. Nat. Rev. Microbiol. 2019, 17, 141–155. [Google Scholar] [CrossRef]
- Ocampo, P.S.; Lazar, V.; Papp, B.; Arnoldini, M.; zur Wiesch, P.A.; Busa-Fekete, R.; Fekete, G.; Pal, C.; Ackermann, M.; Bonhoeffer, S. Antagonism between Bacteriostatic and Bactericidal Antibiotics Is Prevalent. Antimicrob. Agents Chemother. 2014, 58, 4573–4582. [Google Scholar] [CrossRef] [Green Version]
- Murray, C.W.; Rees, D.C. The rise of fragment-based drug discovery. Nat. Chem. 2009, 1, 187–192. [Google Scholar] [CrossRef]
- Fukumoto, K.; Yoshizawa, M.; Ohno, H. Room Temperature Ionic Liquids from 20 Natural Amino Acids. J. Am. Chem. Soc. 2005, 127, 2398–2399. [Google Scholar] [CrossRef]
Compound | Yield | Physical State | Melting Point/°C |
---|---|---|---|
[EMIM][seco-Amx] | 77% | Yellow solid | 84–86 |
[C2OHMIM][seco-Amx] | 60% | Yellow solid | 109–111 |
[P6,6,6,14][seco-Amx] | 92% | Yellow viscous liquid | - |
[C16Pyr][seco-Amx] | 94% | Yellow solid | 96–98 |
[Choline][seco-Amx] | 93% | Yellow solid | 143–144 |
[Na][seco-Amx] | 96% | Yellow solid | 137–139 |
[EMIM][seco-Pen] | 81% | Colorless viscous liquid | |
[C2OHMIM][seco-Pen] | 83% | Yellow solid | 48–50 |
[Choline][seco-Pen] | 95% | Yellow solid | 69–71 |
[P6,6,6,14][seco-Pen] | 97% | Yellow viscous liquid | - |
[C16Pyr][seco-Pen] | 89% | Yellow solid | 76–78 |
[TEA][seco-Pen] | 90% | Yellow viscous liquid | - |
[K][seco-Pen] | 97% | White solid | 193–195 |
Compound | S. aureus ATCC25923 | RDIC | E. coli ATCC25922 | RDIC |
---|---|---|---|---|
[EMIM][seco-Amx] | 5.0 | 0.01 | 2.5 | 0.002 |
[C2OHMIM][seco-Amx] | 0.050 | 1 | 5.0 | 0.001 |
[P6,6,6,14][seco-Amx] | >5.0 | <0.01 | 0.5 | 0.01 |
[C16Pyr][seco-Amx] | >5.0 | <0.01 | 0.050 | 0.1 |
[Choline][seco-Amx] | >5.0 | <0.01 | >5.0 | <0.001 |
Na[seco-Amx] | >5.0 | <0.01 | >5.0 | <0.001 |
Amx | 0.050 | 1 | 0.005 | 1 |
[EMIM][seco-Pen] | >5.0 | <0.1 | >5.0 | <0.1 |
[C2OHMIM][seco-Pen] | 0.005 | 100 | >5.0 | <0.1 |
[Choline][seco-Pen] | >5.0 | <0.1 | 5.0 | 0.1 |
[P6,6,6,14][seco-Pen] | >5.0 | <0.1 | >5.0 | <0.1 |
[C16Pyr][seco-Pen] | >5.0 | <0.1 | >5.0 | 0.1 |
[TEA][seco-Pen] | >5.0 | <0.1 | 0.050 | 10 |
K[seco-Pen] | >5.0 | <0.1 | >5.0 | <0.1 |
K[Pen] | 0.500 | 1 | 0.500 | 1 |
[EMIM][Br] | 0.05 | --- | >5 | --- |
[C2OHMIM][Cl] | >5.0 | --- | 5.0 | --- |
[P6,6,6,14][Cl] | 2.5 | --- | 2.5 | --- |
[C16Pyr][Cl] | 0.5 | --- | 0.5 | --- |
[Choline][Cl] | 2.5 | --- | >5.0 | --- |
[TEA][Br] | 2.5 | --- | >5.0 | --- |
Compound | E. coli CTX M9 | RDIC | E. coli CTX M2 | RDIC | MRSA ATCC 43300 | RDIC |
---|---|---|---|---|---|---|
[EMIM][seco-Amx] | >5 | - | >5 | - | >5 | - |
[C2OHMIM][seco-Amx] | >5 | - | > 5 | - | 5 | >1 |
[P6,6,6,14][seco-Amx] | 0.05 | >100 | 1.0 | >5 | > 5 | - |
[C16Pyr][seco-Amx] | 0.05 | >100 | 0.05 | >100 | 0.005 | >1000 |
[Choline][seco-Amx] | 0.5 | >10 | 0.05 | >100 | 0.5 | 10 |
Na[seco-Amx] | >5 | - | >5 | - | >5 | - |
Amx | >5 | 1 | >5 | 1 | >5 | 1 |
[EMIM][seco-Pen] | >5 | - | >5 | - | >5 | - |
[C2OHMIM][seo-Pen] | >5 | - | >5 | - | >5 | - |
[Choline][seco-Pen] | 1.0 | >5 | >5 | - | 1.0 | >5 |
[P6,6,6,14][seco-Pen] | 0.5 | >10 | 0.5 | >10 | >5 | - |
[C16Pyr]seco-[Pen] | 0.5 | >10 | 0.5 | >10 | 0.05 | >100 |
[TEA][seco-Pen] | >5 | - | > 5 | - | >5 | - |
K[seco-Pen] | >5 | - | >5 | - | >5 | - |
K[Pen] | >5 | 1 | >5 | 1 | >5 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraz, R.; Silva, D.; Dias, A.R.; Dias, V.; Santos, M.M.; Pinheiro, L.; Prudêncio, C.; Noronha, J.P.; Petrovski, Ž.; Branco, L.C. Synthesis and Antibacterial Activity of Ionic Liquids and Organic Salts Based on Penicillin G and Amoxicillin hydrolysate Derivatives against Resistant Bacteria. Pharmaceutics 2020, 12, 221. https://doi.org/10.3390/pharmaceutics12030221
Ferraz R, Silva D, Dias AR, Dias V, Santos MM, Pinheiro L, Prudêncio C, Noronha JP, Petrovski Ž, Branco LC. Synthesis and Antibacterial Activity of Ionic Liquids and Organic Salts Based on Penicillin G and Amoxicillin hydrolysate Derivatives against Resistant Bacteria. Pharmaceutics. 2020; 12(3):221. https://doi.org/10.3390/pharmaceutics12030221
Chicago/Turabian StyleFerraz, Ricardo, Dário Silva, Ana Rita Dias, Vitorino Dias, Miguel M. Santos, Luís Pinheiro, Cristina Prudêncio, João Paulo Noronha, Željko Petrovski, and Luís C. Branco. 2020. "Synthesis and Antibacterial Activity of Ionic Liquids and Organic Salts Based on Penicillin G and Amoxicillin hydrolysate Derivatives against Resistant Bacteria" Pharmaceutics 12, no. 3: 221. https://doi.org/10.3390/pharmaceutics12030221
APA StyleFerraz, R., Silva, D., Dias, A. R., Dias, V., Santos, M. M., Pinheiro, L., Prudêncio, C., Noronha, J. P., Petrovski, Ž., & Branco, L. C. (2020). Synthesis and Antibacterial Activity of Ionic Liquids and Organic Salts Based on Penicillin G and Amoxicillin hydrolysate Derivatives against Resistant Bacteria. Pharmaceutics, 12(3), 221. https://doi.org/10.3390/pharmaceutics12030221