Approaches to Dose Finding in Neonates, Illustrating the Variability between Neonatal Drug Development Programs
Abstract
:1. Introduction
- Neonatal disease similar to that in adults and/or older pediatric patients where dosing is known for adult and/or older pediatric patients (meropenem), as anti-infective use is focused on the infectious agent and not the host.
- Neonatal disease related but not similar to that in adults and/or older pediatric patients where dosing is known for adult and/or older pediatric patients (clopidogrel, and thyroid hormone).
- Neonatal disease unique to neonates where these drugs are not utilized for these specific diseases in adults and/or older pediatric patients (caffeine, and surfactant).
2. Approaches When Adult and/or Pediatric Dosing is Available and When the Disease is Similar to the Disease in Adults and/or Older Pediatric Patients
Meropenem
3. Approaches When Adult and/or Pediatric Dosing is Available and the Disease is Related but not Similar to the Disease in Adults and/or Older Pediatric Patients
3.1. Clopidogrel
3.2. Thyroid Hormone
4. Approaches When Neonatal Disease is Unique to Neonates Where These Drugs Are Not Utilized for These Specific Diseases in Adults and/or Older Pediatric Patients
4.1. Caffeine
4.2. Lucinactant (Surfaxin)
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Allegaert, K.; van den Anker, J. Neonatal drug therapy: The first frontier of therapeutics for children. Clin. Pharmacol. Ther. 2015, 98, 288–297. [Google Scholar] [CrossRef]
- Ward, R.M.; Benjamin, D.; Barrett, J.S.; Allegaert, K.; Portman, R.; Davis, J.M.; Turner, M.A. Safety, dosing, and pharmaceutical quality for studies that evaluate medicinal products (including biological products) in neonates. Pediatr. Res. 2017, 81, 692–711. [Google Scholar] [CrossRef]
- O’Brien, F.; Clapham, D.; Krysiak, K.; Batchelor, H.; Field, P.; Caivano, G.; Pertile, M.; Nunn, A.; Tuleu, C. Making medicines baby size: The challenges in bridging the formulation gap in neonatal medicine. Int. J. Mol. Sci. 2019, 20, 2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Food and Drug Administration. Best Pharmaceuticals for Children Act (BPCA). Available online: https://www.fda.gov/drugs/development-resources/best-pharmaceuticals-children-act-bpca (accessed on 8 May 2020).
- Food and Drug Administration. Pediatric Research Equity Act (PREA). Available online: https://www.fda.gov/drugs/development-resources/pediatric-research-equity-act-prea (accessed on 8 May 2020).
- Food and Drug Administration. Food and Drug Administration Safety and Innovation Act (FDASIA). Available online: https://www.fda.gov/regulatory-information/selected-amendments-fdc-act/food-and-drug-administration-safety-and-innovation-act-fdasia (accessed on 8 May 2020).
- Food and Drug Administration. FDA Reauthorization Act of 2017 (FDARA). Available online: https://www.fda.gov/regulatory-information/selected-amendments-fdc-act/fda-reauthorization-act-2017-fdara (accessed on 8 May 2020).
- European Medicines Agency. Guideline on the Investigation of Medical Products in the Term and Preterm Neonate. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-investigation-medicinal-products-term-preterm-neonate-first-version_en.pdf (accessed on 8 May 2020).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/paediatric-medicines/paediatric-regulation (accessed on 4 July 2020).
- Stiers, J.L.; Ward, R.M. Newborns, one of the last therapeutic orphans to be adopted. JAMA Pediatr. 2014, 168, 106–108. [Google Scholar] [CrossRef]
- Schrier, L.; Hadjipanayis, A.; Stiris, T.; Ross-Russell, R.I.; Valiulis, A.; Turner, M.A.; Zhao, W.; De Cock, P.; de Wildt, S.N.; Allegaert, K.; et al. Off-label use of medicines in neonates, infants, children, and adolescents: A joint policy statement by the European Academy of Paediatrics and the European society for Developmental Perinatal and Pediatric Pharmacology. Eur. J. Pediatr. 2020, 179, 839–847. [Google Scholar] [CrossRef]
- Ku, L.C.; Smith, P.B. Dosing in neonates: Special considerations in physiology and trial design. Pediatr. Res. 2015, 77, 2–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allegaert, K.; van de Velde, M.; van den Anker, J. Neonatal clinical pharmacology. Paediatr. Anaesth. 2014, 24, 30–38. [Google Scholar] [CrossRef] [PubMed]
- van den Anker, J.; Reed, M.D.; Allegaert, K.; Kearns, G.L. Developmental changes in pharmacokinetics and pharmacodynamics. J. Clin. Pharmacol. 2018, 58, S10–S25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krekels, E.H.J.; van Hasselt, J.G.C.; van den Anker, J.N.; Allegaert, K.; Tibboel, D.; Knibbe, C.A.J. Evidence-based drug treatment for special patient populations through model-based approaches. Eur. J. Pharm. Sci. 2017, 109, S22–S26. [Google Scholar] [CrossRef]
- De Schaepdrijver, L.M.; Annaert, P.P.J.; Chen, C.L. Ontogeny of ADME processes during postnatal development in man and preclinical species: A comprehensive review. Drug. Metab. Dispos. 2019, 47, 295. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. Draft Guidance: Demonstrating Substantial Evidence of Effectiveness for Human Drug and Biological Products. Guidance for Industry. Available online: https://www.fda.gov/media/133660/download (accessed on 8 May 2020).
- Hsieh, E.M.; Hornik, C.P.; Clark, R.H.; Laughon, M.M.; Benjamin, D.K., Jr.; Smith, P.B. Best Pharmaceuticals for Children Act-Pediatric Trials Network. Medication use in the neonatal intensive care unit. Am. J. Perinatol. 2014, 31, 811–821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulman, J.; Profit, J.; Lee, C.; Duenas, G.; Bennett, M.V.; Parucha, J.; Jocson, M.A.L.; Gould, J.B. Variations in neonatal antibiotic use. Pediatrics 2018, 142, e20180115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metsvaht, T.; Nellis, G.; Varendi, H.; Nunn, A.J.; Graham, S.; Rieutord, A.; Storme, T.; McElnay, J.; Mulla, H.; Turner, M.A.; et al. High variability in the dosing of commonly used antibiotics revealed by a Europe-wide point prevalence study: Implications for research and dissemination. BMC Pediatr. 2015, 15, 41. [Google Scholar] [CrossRef] [Green Version]
- De Cock, R.F.; Allegaert, K.; Sherwin, C.M.; Nielsen, E.I.; de Hoog, M.; van den Anker, J.N.; Danhof, M.; Knibbe, C.A. A neonatal amikacin covariate model can be used to predict ontogeny of other drugs eliminated through glomerular filtration in neonates. Pharm. Res. 2014, 31, 754–767. [Google Scholar] [CrossRef] [PubMed]
- Wilbaux, M.; Fuchs, A.; Samardzic, J.; Rodieux, F.; Csajka, C.; Allegaert, K.; van den Anker, J.N.; Pfister, M. Pharmacometric approaches to personalize use of primarily renally eliminated antibiotics in preterm and term neonates. J. Clin. Pharmacol. 2016, 56, 909–935. [Google Scholar] [CrossRef]
- Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/050706s035lbl.pdf (accessed on 8 May 2020).
- Smith, P.B.; Cohen-Wolkowiez, M.; Castro, L.M.; Poindexter, B.; Bidegain, M.; Weitkamp, J.H.; Schelonka, R.L.; Ward, R.M.; Wade, K.; Valencia, G.; et al. Population pharmacokinetics of meropenem in plasma and cerebrospinal fluid of infants with suspected or complicated intra-abdominal infections. Pediatr. Infect. Dis. J. 2011, 30, 844–849. [Google Scholar] [CrossRef]
- Cohen-Wolkowiez, M.; Poindexter, B.; Bidegain, M.; Weitkamp, J.H.; Schelonka, R.L.; Randolph, D.A.; Ward, R.M.; Wade, K.; Valencia, G.; Burchfield, D.; et al. Safety and effectiveness of meropenem in infants with suspected or complicated intra-abdominal infections. Clin. Infect. Dis. 2012, 55, 1495–1502. [Google Scholar] [CrossRef] [Green Version]
- Hornik, C.P.; Herring, A.H.; Benjamin, D.K., Jr.; Capparelli, E.V.; Kearns, G.L.; van den Anker, J.; Cohen-Wolkowiez, M.; Clark, R.H.; Smith, P.B. Best Pharmaceuticals for Children Act-Pediatric Trials Network. Adverse events associated with meropenem versus imipenem/cilastatin therapy in a large retrospective cohort of hospitalized infants. Pediatr. Infect. Dis. J. 2013, 32, 748–753. [Google Scholar] [CrossRef]
- Germovsek, E.; Lutsar, I.; Kipper, K.; Karlsson, M.O.; Planche, T.; Chazallon, C.; Meyer, L.; Trafojer, U.M.T.; Metsvaht, T.; Fournier, I.; et al. Plasma and CSF pharmacokinetics of meropenem in neonates and young infants: Results from the NeoMero studies. J. Antimicrob. Chemother. 2018, 73, 1908–1916. [Google Scholar] [CrossRef] [Green Version]
- Lutsar, I.; Chazallon, C.; Trafojer, U.; de Cabre, V.M.; Auriti, C.; Bertaina, C.; Calo Carducci, F.I.; Canpolat, F.E.; Esposito, S.; Fournier, I.; et al. Meropenem vs standard of care for treatment of neonatal late onset sepsis (NeoMero1): A randomised controlled trial. PLoS ONE 2020, 15, e0229380. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, S.L.; Murry, D.J.; May, S.; Aleksic, A.; Sowinski, K.M.; Blaney, S. Meropenem pharmacokinetics in children and adolescents receiving hemodialysis. Pediatr. Nephrol. 2001, 16, 1015–1018. [Google Scholar] [CrossRef] [PubMed]
- Raffaeli, G.; Pokorna, P.; Allegaert, K.; Mosca, F.; Cavallaro, G.; Wildschut, E.D.; Tibboel, D. Drug disposition and pharmacotherapy in neonatal ECMO: From fragmented data to integrated knowledge. Front. Pediatr. 2019, 7, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, J.M.; Baer, G.R.; McCune, S.; Klein, A.; Sato, J.; Fabbri, L.; Mangili, A.; Short, M.A.; Tansey, S.; Mangum, B.; et al. Standardizing safety assessment and reporting for neonatal clinical trials. J. Pediatr. 2020, 219, 243–249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monagle, P.; Chan, A.K.C.; Goldenberg, N.A.; Ichord, R.N.; Journeycake, J.M.; Nowak-Göttl, U.; Vesely, S.K. Antithrombotic therapy in neonates and children: Antithrombotic therapy and prevention of thrombosis, American college of chest physicians evidence-based clinical practice guidelines. Chest 2012, 141, e737S–e801S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CAPRIE steering committee. A randomised, blinded, trial of clopidogrel versus aspirin in patients at risk of ischaemic events (CAPRIE). Lancet 1996, 348, 1329–1339. [Google Scholar] [CrossRef]
- Mehta, S.R.; Yusuf, S.; Peters, R.J.; Bertrand, M.E.; Lewis, B.S.; Natarajan, M.K.; Malmberg, K.; Rupprecht, H.; Zhao, F.; Chrolavicius, S.; et al. Effects of pretreatment with clopidogrel and aspirin followed by long-term therapy in patients undergoing percutaneous coronary intervention: The PCI-CURE study. Lancet 2001, 358, 527–533. [Google Scholar] [CrossRef]
- Yusuf, S.; Zhao, F.; Mehta, S.R.; Chrolavicius, S.; Tognoni, G.; Fox, K.K. Clopidogrel in Unstable Angina to Prevent Recurrent Events Trial Investigators. Effects of clopidogrel in addition to aspirin in patients with acute coronary syndromes without ST-segment elevation. N. Engl. J. Med. 2001, 345, 494–502. [Google Scholar] [CrossRef] [Green Version]
- Gentilomo, C.; Huang, Y.S.; Raffini, L. Significant increase in clopidogrel use across U.S. children’s hospitals. Pediatr. Cardiol. 2011, 32, 167–175. [Google Scholar] [CrossRef]
- Li, J.S.; Yow, E.; Berezny, K.Y.; Bokesch, P.M.; Takahashi, M.; Graham, T.P., Jr.; Sanders, S.P.; Sidi, D.; Bonnet, D.; Ewert, P.; et al. Dosing of clopidogrel for platelet inhibition in infants and young children: Primary results of the platelet inhibition in children of clopidogrel (PICOLO) trial. Circulation 2008, 117, 553–559. [Google Scholar] [CrossRef] [Green Version]
- Söderlund, F.; Asztély, A.K.; Jeppsson, A.; Nylander, S.; Berggren, A.; Nelander, K.; Castellheim, A.; Romlin, B.S. In vitro anti-platelet potency of ticagrelor in blood samples from infants and children. Thromb. Res. 2015, 136, 620–624. [Google Scholar] [CrossRef]
- Wessel, D.L.; Berger, F.; Li, J.S.; Dähnert, I.; Rakhit, A.; Fontecave, S.; Newburger, J.W. CLARINET Investigators. Clopidogrel in infants with systemic-to-pulmonary-artery shunt. N. Engl. J. Med. 2013, 368, 2377–2384. [Google Scholar] [CrossRef] [Green Version]
- Hulot, J.S.; Bura, A.; Villard, E.; Azizi, M.; Remones, V.; Goyenvalle, C.; Aiach, M.; Lechat, P.; Gaussem, P. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood 2006, 108, 2244–2247. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Leroux, S.; Biran, V.; Jacqz-Aigrain, E. Developmental pharmacogenetics of CYP2C19 in neonates and young infants: Omeprazole as a probe drug. Br. J. Clin. Pharmacol. 2018, 84, 997–1005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allegaert, K.; van den Anker, J. Ontogeny of phase I metabolism of drugs. J. Clin. Pharmacol. 2019, 59, S33–S41. [Google Scholar] [CrossRef] [Green Version]
- Jennings, L.K.; Michelson, A.D.; Jacoski, M.V.; Tyagi, A.; Grgurevich, S.; Li, J.S. Picolo Investigators Pharmacodynamic effects of clopidogrel in pediatric cardiac patients: A comparative study of platelet aggregation response. Platelets 2012, 23, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Fisher, D.A. Thyroid hormones. In Neonatal and Pediatric Pharmacology. Therapeutic Principles in Practice, 4th ed.; Yaffe, S.J., Aranda, J.V., Eds.; Wolters Kluwer, Lippincott Williams &Wilkins: Philadelphia, PA, USA, 2011; pp. 789–805. [Google Scholar]
- Zamfirescu, I.; Carlson, H.E. Absorption of levothyroxine when coadministered with various calcium formulations. Thyroid 2001, 21, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Balapatabendi, M.; Harris, D.; Shenoy, S.D. Drug interaction of levothyroxine with infant colic drops. Arch. Dis. Child. 2011, 96, 888–889. [Google Scholar] [CrossRef]
- Tabachnick, M.; Downs, F.; Giogio, N.A., Jr. Effect of bilirubin on binding of thyroxine by human serum albumin. Proc. Soc. Exp. Biol. Med. 1965, 118, 1180–1182. [Google Scholar] [CrossRef]
- Osborn, D.A.; Hunt, R.W. Prophylactic postnatal thyroid hormones for prevention of morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2007, 24. [Google Scholar] [CrossRef]
- Taylor, M.A.; Swant, J.; Wagner, J.J.; Fisher, J.W.; Ferguson, D.C. Lower thyroid compensatory reserve of rat pups after maternal hypothyroidism: Correlation of thyroid, hepatic, and cerebrocortical biomarkers with hippocampal neurophysiology. Endocrinology 2008, 149, 3521–3530. [Google Scholar] [CrossRef]
- Liu, D.; Teng, W.; Shan, Z.; Yu, X.; Gao, Y.; Wang, S.; Fan, C.; Wang, H.; Zhang, H. The effect of maternal subclinical hypothyroidism during pregnancy on brain development in rat offspring. Thyroid 2010, 20, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.E.; Goodman, J.H.; Gomez, J.; Johnstone, A.F.M.; Ramos, R.L. Adult hippocampal neurogenesis is impaired by transient and moderate developmental thyroid hormone disruption. Neurotoxicology 2017, 59, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Berbel, P.; Navarro, D.; Ausó, E.; Varea, E.; Rodríguez, A.E.; Ballesta, J.J.; Salinas, M.; Flores, E.; Faura, C.C.; de Escobar, G.M. Role of later maternal thyroid hormones in cerebral cortex development: An experimental model for human prematurity. Cereb. Cortex 2010, 20, 1462–1475. [Google Scholar] [CrossRef] [PubMed]
- Mutapcic, L.; Wren, S.M.; Leske, D.A.; Fautsch, M.P.; Holmes, J.M. The effect of L-thyroxine supplementation on retinal vascular development in neonatal rats. Curr. Eye Res. 2005, 30, 1035–1040. [Google Scholar] [CrossRef] [PubMed]
- Beharry, K.D.; Cai, C.L.; Skelton, J.; Siddiqui, F.; D’Agrosa, C.; Calo, J.; Valencia, G.B.; Aranda, J.V. Oxygen-induced retinopathy from recurrent intermittent hypoxia is not dependent on resolution with room air or oxygen, in neonatal rats. Int. J. Mol. Sci. 2018, 19, 1337. [Google Scholar] [CrossRef] [Green Version]
- Fisher, J.; Lumen, A.; Latendresse, J.; Mattie, D. Extrapolation of hypothalamic-pituitary-thyroid axis perturbations and associated toxicity in rodents to humans: Case study with perchlorate. J. Environ. Sci. Health C Environ. Carcinog. Ecotoxicol. Rev. 2012, 30, 81–105. [Google Scholar] [CrossRef]
- Fisher, J.W.; Li, S.; Crofton, K.; Zoeller, R.T.; McLanahan, E.D.; Lumen, A.; Gilbert, M.E. Evaluation of iodide deficiency in the lactating rat and pup using a biologically based dose-response model. Toxicol. Sci. 2013, 132, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Fisher, D.A. Physiological variations in thyroid hormones: Physiological and pathophysiological considerations. Clin. Chem. 1996, 42, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/020793_000_Cafcit_chemr.pdf (accessed on 8 May 2020).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/peyona-previously-nymusa (accessed on 4 July 2020).
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/smop-initial/chmp-summary-positive-opinion-gencebok_en.pdf (accessed on 4 July 2020).
- Koch, G.; Datta, A.N.; Jost, K.; Schulzke, S.M.; van den Anker, J.; Pfister, M. Caffeine citrate dosing adjustments to assure stable caffeine concentrations in preterm neonates. J. Pediatr. 2017, 191, 50–56. [Google Scholar] [CrossRef]
- Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021746s000lbl.pdf (accessed on 8 May 2020).
- Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/020032s045lbl.pdf (accessed on 8 May 2020).
- Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/20521_INFASURF%20INTRACHEAL%20SUSPENSION_prntlbl.pdf (accessed on 8 May 2020).
- Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/99/20744_CURSURF_chemr.pdf (accessed on 8 May 2020).
- Food and Drug Administration. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2012/021746Orig1s000PharmR.pdf (accessed on 8 May 2020).
- Smits, A.; De Cock, P.; Vermeulen, A.; Allegaert, K. Physiologically based pharmacokinetic (PBPK) modeling and simulation in neonatal drug development: How clinicians can contribute. Expert Opin. Drug Metab. Toxicol. 2019, 15, 25–34. [Google Scholar] [CrossRef]
- Ginsberg, G.; Hattis, D.; Sonawane, B. Incorporating pharmacokinetic differences between children and adults in assessing children’s risks to environmental toxicants. Toxicol. Appl. Pharmacol. 2004, 198, 164–183. [Google Scholar] [CrossRef] [PubMed]
- Verscheijden, L.F.M.; Koenderink, J.B.; de Wildt, S.N.; Russel, F.G.M. Development of a physiologically-based pharmacokinetic pediatric brain model for prediction of cerebrospinal fluid drug concentrations and the influence of meningitis. PLoS Comput. Biol. 2019, 15, e1007117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shebley, M.; Fu, W.; Badri, P.; Bow, D.; Fischer, V. Physiologically based pharmacokinetic modeling suggests limited drug-drug interaction between clopidogrel and dasabuvir. Clin. Pharmacol. Ther. 2017, 102, 679–687. [Google Scholar] [CrossRef] [PubMed]
Age Group | Dose (mg/kg) | Dose Interval |
---|---|---|
infants < 32 weeks GA and PNA < 2 weeks | 20 | every 12 h |
infants < 32 weeks GA and PNA ≥ 2 weeks | 20 | every 8 h |
infants ≥ 32 weeks GA and PNA < 2weeks | 20 | every 8 h |
infants ≥ 32 weeks GA and PNA ≥ 2 weeks | 20 | every 8 h |
there is no recommendation in pediatric patients with renal impairment |
Age | Dose (µg/kg/day) |
---|---|
0–3 months | 10 to 15 |
3–6 months | 8 to 10 |
6–12 months | 6 to 8 |
1–5 years | 5 to 6 |
6–12 years | 4 to 5 |
>12 years, growth and puberty incomplete | 2 to 3 |
growth and puberty completed | 1.7 |
Study Characteristics | Caffeine | Placebo | p-value |
---|---|---|---|
number of cases evaluated | 45 | 37 | |
number (%) without apnea on day 2 | 12 (26.7%) | 3 (8.1%) | 0.03 |
apnea rate on day 2 (/24 h) | 4.9 | 7.2 | 0.134 |
number (%) of cases with 50% reduction in apnea events from baseline to day 2 | (76%) | (57%) | 0.07 |
Product | NDA Number Approval Date | Product Information | Indication, Respiratory Distress |
---|---|---|---|
colfosceril [62] | 20044 (August 1990) | Synthetic colfosceril palmitate 67.5 mg/mL; tyloxapol; cetyl alcohol | prevention treatment |
beractant [63] | 20032 (July 1991) | Bovine Phospholipids 25 mg/mL; SP-B < 0.2 mg/mL | prevention treatment |
calfactant [64] | 20521 (July 1998) | Bovine Phospholipids 25 mg/mL; SP-B 0.26 mg/mL | prevention treatment |
poractant-alpha [65] | 20744 (November 1999) | Porcine phospholipids 80 mg/mL; SP-B 0.3 mg/mL | treatment |
lucinactant [66] | 21746 (March 2012) | Synthetic sinapultide 0.8 mg/mL | prevention |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van den Anker, J.N.; McCune, S.; Annaert, P.; Baer, G.R.; Mulugeta, Y.; Abdelrahman, R.; Wu, K.; Krudys, K.M.; Fisher, J.; Slikker, W.; et al. Approaches to Dose Finding in Neonates, Illustrating the Variability between Neonatal Drug Development Programs. Pharmaceutics 2020, 12, 685. https://doi.org/10.3390/pharmaceutics12070685
Van den Anker JN, McCune S, Annaert P, Baer GR, Mulugeta Y, Abdelrahman R, Wu K, Krudys KM, Fisher J, Slikker W, et al. Approaches to Dose Finding in Neonates, Illustrating the Variability between Neonatal Drug Development Programs. Pharmaceutics. 2020; 12(7):685. https://doi.org/10.3390/pharmaceutics12070685
Chicago/Turabian StyleVan den Anker, John N., Susan McCune, Pieter Annaert, Gerri R. Baer, Yeruk Mulugeta, Ramy Abdelrahman, Kunyi Wu, Kevin M. Krudys, Jeffrey Fisher, William Slikker, and et al. 2020. "Approaches to Dose Finding in Neonates, Illustrating the Variability between Neonatal Drug Development Programs" Pharmaceutics 12, no. 7: 685. https://doi.org/10.3390/pharmaceutics12070685
APA StyleVan den Anker, J. N., McCune, S., Annaert, P., Baer, G. R., Mulugeta, Y., Abdelrahman, R., Wu, K., Krudys, K. M., Fisher, J., Slikker, W., Chen, C., Burckart, G. J., & Allegaert, K. (2020). Approaches to Dose Finding in Neonates, Illustrating the Variability between Neonatal Drug Development Programs. Pharmaceutics, 12(7), 685. https://doi.org/10.3390/pharmaceutics12070685