Glucose-Responsive Gene Delivery at Physiological pH through Tertiary-Amine Stabilized Boronate-PVA Particles Synthesized by One-Pot Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of 3-Acrylamidophenyl Boronic Acid (AAPBA)
2.2. Synthesis of AAPBA-PVA SMPs by Oil Emulsion Method
2.3. Physiochemical Characterization
2.4. Functional Integrity of Boronate
2.5. Transfection
2.6. Polyplex Dose
2.7. Glucose-Responsive Behavior
2.7.1. Hydrodynamic Diameter Change by DLS Measurement
2.7.2. Glucose-Responsive Release of Encapsulated BSA
2.7.3. Glucose-responsive Transfection
2.8. Cytotoxicity
2.8.1. Metabolic Activity
2.8.2. Live Dead Assay
3. Results and Discussion
3.1. Chemical and Morphological Characterization
3.2. Transfection Studies
3.2.1. Optimization of the Plasmid:Polymer Ratio
3.2.2. Optimization of Polyplex Dose in NIH3T3 Cells
3.3. Glucose-Responsive Behavior
3.3.1. Hydrodynamic Diameter
3.3.2. Glucose-responsive BSA Release
3.3.3. Glucose-Responsive Transfection
3.4. Cytocompatibilty
3.4.1. Metabolic Activity
3.4.2. Live Dead Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mathew, A.; Morey, M.; Pandit, A. CHAPTER Cationic Polymers in the Central Nervous System: Past, Present and Future. In Polymer Chemistry Series; Royal Society of Chemistry (RSC): London, UK, 2015; pp. 463–478. [Google Scholar]
- Kulkarni, M.; Greiser, U.; O’Brien, T.; Pandit, A. Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends Biotechnol. 2010, 28, 28–36. [Google Scholar] [CrossRef] [Green Version]
- Browne, S.; Fontana, G.; Rodriguez, B.J.; Pandit, A. A Protective Extracellular Matrix-Based Gene Delivery Reservoir Fabricated by Electrostatic Charge Manipulation. Mol. Pharm. 2012, 9, 3099–3106. [Google Scholar] [CrossRef]
- Morey, M.; Pandit, A. Responsive triggering systems for delivery in chronic wound healing. Adv. Drug Deliv. Rev. 2018, 129, 169–193. [Google Scholar] [CrossRef]
- Yu, J.; Wang, J.; Zhang, Y.; Chen, G.; Mao, W.; Ye, Y.; Kahkoska, A.R.; Buse, J.B.; Langer, R.; Gu, Z. Glucose-responsive insulin patch for the regulation of blood glucose in mice and minipigs. Nat. Biomed. Eng. 2020, 4, 499–506. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Z.; Yu, J.; Kahkoska, A.R.; Buse, J.B.; Gu, Z. Glucose-Responsive Insulin and Delivery Systems: Innovation and Translation. Adv. Mater. 2020, 32, e1902004. [Google Scholar] [CrossRef]
- Chen, S.; Miyazaki, T.; Itoh, M.; Matsumoto, H.; Moro-Oka, Y.; Tanaka, M.; Miyahara, Y.; Suganami, T.; Matsumoto, A. Temperature-Stable Boronate Gel-Based Microneedle Technology for Self-Regulated Insulin Delivery. ACS Appl. Polym. Mater. 2020, 2, 2781–2790. [Google Scholar] [CrossRef]
- Dutt-Ballerstadt, R.; Evans, C.; McNichols, R.; Gowda, A. Concanavalin A for in vivo glucose sensing: A biotoxicity review. Biosens. Bioelectron. 2006, 22, 275–284. [Google Scholar] [CrossRef]
- Resendez, A.; Malhotra, S.V. Boronic Acid Appended Naphthyl-Pyridinium Receptors as Chemosensors for Sugars. Sci. Rep. 2019, 9, 6651. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.; Zhang, Z.; Minami, T. A saccharide chemosensor array developed based on an indicator displacement assay using a combination of commercially available reagents. Front. Chem. 2019, 7, 49. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Sun, H.; Ren, C.; Zhang, M.; Sun, K. A Nonenzymatic Glucose Sensor Platform Based on Specific Recognition and Conductive Polymer-Decorated CuCo2O4 Carbon Nanofibers. Mater. 2020, 13, 2874. [Google Scholar]
- Liu, F.; Kan, X. Conductive imprinted electrochemical sensor for epinephrine sensitive detection and double recognition. J. Electroanal. Chem. 2019, 836, 182–189. [Google Scholar] [CrossRef]
- Huang, Q.; Wang, L.; Yu, H.; Ur-Rahman, K. Advances in phenylboronic acid-based closed-loop smart drug delivery system for diabetic therapy. J. Control. Release 2019, 305, 50–64. [Google Scholar] [CrossRef]
- Wang, C.; Li, M.; Zhu, H.; Bi, F.; Xiao, S.; Wang, L.; Gai, G.; Zhao, L. Recent Advances in Phenylboronic Acid-Based Gels with Potential for Self-Regulated Drug Delivery. Mol. 2019, 24, 1089. [Google Scholar] [CrossRef] [Green Version]
- Mansour, O.; El Joukhar, I.; Belbekhouche, S. H2O2-sensitive delivery microparticles based on the boronic acid chemistry: (Phenylboronic–alginate derivative/dextran) system. React. Funct. Polym. 2019, 145, 104377. [Google Scholar] [CrossRef]
- Liu, X.C.; Scouten, W. Boronate affinity chromatography. Affin. Chromatogr. 2020, 147, 119–128. [Google Scholar]
- Ma, R.; Shi, L. Phenylboronic acid-based glucose-responsive polymeric nanoparticles: Synthesis and applications in drug delivery. Polym. Chem. 2014, 5, 1503–1518. [Google Scholar] [CrossRef]
- Kitano, S.; Koyama, Y.; Kataoka, K.; Okano, T.; Sakurai, Y. A novel drug delivery system utilizing a glucose responsive polymer complex between poly (vinyl alcohol) and poly (N-vinyl-2-pyrrolidone) with a phenylboronic acid moiety. J. Control. Release 1992, 19, 161–170. [Google Scholar] [CrossRef]
- Wang, B.; Ma, R.; Liu, G.; Li, Y.; Liu, X.; An, Y.; Shi, L. Glucose-Responsive Micelles from Self-Assembly of Poly(ethylene glycol)-b-Poly(acrylic acid-co-acrylamidophenylboronic acid) and the Controlled Release of Insulin. Langmuir 2009, 25, 12522–12528. [Google Scholar] [CrossRef]
- Qing, G.; Wang, X.; Fuchs, H.; Sun, T. Nucleotide-Responsive Wettability on a Smart Polymer Surface. J. Am. Chem. Soc. 2009, 131, 8370–8371. [Google Scholar] [CrossRef] [PubMed]
- Reddy, R.M.; Srivastava, A.; Kumar, A. Monosaccharide-Responsive Phenylboronate-Polyol Cell Scaffolds for Cell Sheet and Tissue Engineering Applications. PLoS ONE 2013, 8, e77861. [Google Scholar] [CrossRef]
- Matsumoto, A.; Ishii, T.; Nishida, J.; Matsumoto, H.; Kataoka, K.; Miyahara, Y. A Synthetic Approach Toward a Self-Regulated Insulin Delivery System. Angew. Chem. Int. Ed. 2012, 51, 2124–2128. [Google Scholar] [CrossRef]
- Srivastava, A.; Shakya, A.K.; Kumar, A. Boronate affinity chromatography of cells and biomacromolecules using cryogel matrices. Enzym. Microb. Technol. 2012, 51, 373–381. [Google Scholar] [CrossRef]
- Whyte, G.F.; Vilar, R.; Woscholski, R. Molecular recognition with boronic acids—applications in chemical biology. J. Chem. Biol. 2013, 6, 161–174. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morey, M.; Srivastava, A.; Pandit, A. Glucose-Responsive Gene Delivery at Physiological pH through Tertiary-Amine Stabilized Boronate-PVA Particles Synthesized by One-Pot Reaction. Pharmaceutics 2021, 13, 62. https://doi.org/10.3390/pharmaceutics13010062
Morey M, Srivastava A, Pandit A. Glucose-Responsive Gene Delivery at Physiological pH through Tertiary-Amine Stabilized Boronate-PVA Particles Synthesized by One-Pot Reaction. Pharmaceutics. 2021; 13(1):62. https://doi.org/10.3390/pharmaceutics13010062
Chicago/Turabian StyleMorey, Mangesh, Akshay Srivastava, and Abhay Pandit. 2021. "Glucose-Responsive Gene Delivery at Physiological pH through Tertiary-Amine Stabilized Boronate-PVA Particles Synthesized by One-Pot Reaction" Pharmaceutics 13, no. 1: 62. https://doi.org/10.3390/pharmaceutics13010062
APA StyleMorey, M., Srivastava, A., & Pandit, A. (2021). Glucose-Responsive Gene Delivery at Physiological pH through Tertiary-Amine Stabilized Boronate-PVA Particles Synthesized by One-Pot Reaction. Pharmaceutics, 13(1), 62. https://doi.org/10.3390/pharmaceutics13010062