Real-World Efficacy and Safety of Fluocinolone Acetonide Implant for Diabetic Macular Edema: A Systematic Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Study Population
3.1.1. Efficacy
Visual Acuity
Retinal Thickness
Visual and Anatomical Correlation
Additional Treatments
Safety
- Intraocular Pressure
- Cataract
- Endophthalmitis
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IDF Diabetes Atlas 9th edition 2019. Available online: https://diabetesatlas.org/en/ (accessed on 15 April 2020).
- Romero-Aroca, P. Managing diabetic macular edema: The leading cause of diabetes blindness. World J. Diabetes 2011, 2, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Bandello, F.; Parodi, M.B.; Lanzetta, P.; Loewenstein, A.; Massin, P.; Menchini, F.; Veritti, D. Diabetic Macular Edema. Dev. Ophthalmol. 2017, 58, 102–138. [Google Scholar] [PubMed]
- Antonetti, D.A.; Lieth, E.; Barber, A.J.; Gardner, T.W. Molecular Mechanisms of Vascular Permeability in Diabetic Retinopathy. Semin. Ophthalmol. 1999, 14, 240–248. [Google Scholar] [CrossRef] [PubMed]
- Amoaku, W.M.; Saker, S.; Stewart, E.A. A review of therapies for diabetic macular oedema and rationale for combination therapy. Eye 2015, 29, 1115–1130. [Google Scholar] [CrossRef] [Green Version]
- Romero-Aroca, P.; Baget-Bernaldiz, M.; Pareja-Rios, A.; Lopez-Galvez, M.; Navarro-Gil, R.; Verges, R. Diabetic Macular Edema Pathophysiology: Vasogenic versus Inflammatory. J. Diabetes Res. 2016, 2016, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, X.; Bao, S.; Wang, N.; Gillies, M.C. Diabetic macular edema: New concepts in patho-physiology and treatment. Cell Biosci. 2014, 4, 27. [Google Scholar] [CrossRef] [Green Version]
- Cai, S.; Bressler, N.M. Aflibercept, bevacizumab or ranibizumab for diabetic macular oedema: Recent clinically relevant findings from DRCR.net Protocol T. Curr. Opin. Ophthalmol. 2017, 28, 636–643. [Google Scholar] [CrossRef]
- Korobelnik, J.-F.; Do, D.V.; Schmidt-Erfurth, U.; Boyer, D.; Holz, F.G.; Heier, J.S.; Midena, E.; Kaiser, P.K.; Terasaki, H.; Marcus, D.M.; et al. Intravitreal Aflibercept for Diabetic Macular Edema. Ophthalmology 2014, 121, 2247–2254. [Google Scholar] [CrossRef]
- Wells, J.A.; Glassman, A.R.; Ayala, A.R.; Lee, M.; Neil, M.; Susan, B.; Alexander, J.; Frederick, L.; Ferris, D.; Roy, W.; et al. Aflibercept, Bevacizumab, or Ranibizumab for Diabetic Macular Edema: Two-Year Results from a Comparative Effectiveness Randomized Clinical Trial. Ophthalmology 2016, 123, 1351–1359. [Google Scholar] [CrossRef] [Green Version]
- Brown, D.M.; Nguyen, Q.D.; Marcus, D.M.; Boyer, D.S.; Patel, S.; Feiner, L.; Schlottmann, P.G.; Rundle, A.C.; Zhang, J.; Rubio, R.G.; et al. Long-term outcomes of ranibizumab therapy for diabetic macular edema: The 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 2013, 120, 2013–2022. [Google Scholar] [CrossRef] [Green Version]
- Wells, J.A.; Glassman, A.R.; Allison, R.; Ayala, M.S.; Tampa, F.L.; Dante, J.; Pieramici, M.D.; Paducah, K.Y.; Neil, M.; Bressler, M.D.; et al. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N. Engl. J. Med. 2015, 372, 1193–1203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kodjikian, L.; Bellocq, D.; Mathis, T. Pharmacological Management of Diabetic Macular Edema in Real-Life Observational Studies. BioMed Res. Int. 2018, 2018, 8289253. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; McGuire, P.G.; Rangasamy, S. Diabetic Macular Edema: Pathophysiology and Novel Therapeutic Targets. Ophthalmology 2015, 122, 1375–1394. [Google Scholar] [CrossRef] [PubMed]
- Fusi-Rubiano, W.; Blow, R.R.; Lane, M.; Morjaria, R.; Denniston, A.K.; Iluvien, T.M. Fluocinolone Acetonide 0.19 mg Intravitreal Implant) in the Treatment of Diabetic Macular Edema: A Review. Ophthalmol. Ther. 2018, 7, 293–305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habib, M.S. ILUVIEN® technology in the treatment of center-involving diabetic macular edema: A review of the literature. Ther. Deliv. 2018, 9, 547–556. [Google Scholar] [CrossRef] [Green Version]
- Syed, Y.Y. Fluocinolone Acetonide Intravitreal Implant 0.19 mg (ILUVIEN®): A Review in Diabetic Macular Edema. Drugs 2017, 77, 575–583. [Google Scholar] [CrossRef]
- Whitcup, S.M.; Cidlowski, J.A.; Csaky, K.G.; Ambati, J. Pharmacology of Corticosteroids for Diabetic Macular Edema. Investig. Opthalmol. Vis. Sci. 2018, 59, 1–12. [Google Scholar] [CrossRef]
- Chang-Lin, J.E.; Attar, M.; Acheampong, A.A.; Robinson, M.R.; Whitcup, S.M.; Kuppermann, B.D.; Welty, D. Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Investig. Ophthalmol. Vis. Sci. 2011, 52, 80–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, Y.; Ren, X.-J.; Hu, B.-J.; Lam, W.-C.; Li, X.-R. A meta-analysis of the effect of a dexamethasone intravitreal implant versus intravitreal anti-vascular endothelial growth factor treatment for diabetic macular edema. BMC Ophthalmol. 2018, 18, 121. [Google Scholar] [CrossRef] [PubMed]
- Bellocq, D.; Akesb, J.; Matonti, F.; Vartin, C.; Despreaux, R.; Comet, A.; Kodjikian, L.; Mathis, T.; Denis, P.; Voirin, N. The Pattern of Recurrence in Diabetic Macular Edema Treated by Dexamethasone Implant: The PREDIAMEX Study. Ophthalmol. Retin. 2018, 2, 567–573. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Nguyen, Q.D.; Hafiz, G.; Bloom, S.; Brown, D.M.; Busquets, M.; Ciulla, T.; Feiner, L.; Sabates, N.; Billman, K.; et al. Aqueous Levels of Fluocinolone Acetonide after Administration of Fluocinolone Acetonide Inserts or Fluocinolone Acetonide Implants. Ophthalmology 2013, 120, 583–587. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Brown, D.M.; Pearson, A.; Chen, S.; Boyer, D.; Ruiz-Moreno, J.; Garretson, B.; Gupta, A.; Hariprasad, S.M.; Bailey, C.; et al. Sustained Delivery Fluocinolone Acetonide Vitreous Inserts Provide Benefit for at Least 3 Years in Patients with Diabetic Macular Edema. Ophthalmology 2012, 119, 2125–2132. [Google Scholar] [CrossRef] [PubMed]
- Campochiaro, P.A.; Brown, D.M.; Pearson, A.; Ciulla, T.; Boyer, D.; Holz, F.G.; Tolentino, M.; Gupta, A.; Duarte, L.; Madreperla, S.; et al. Long-term benefit of sustained-delivery fluocinolone acetonide vitreous inserts for diabetic macular edema. Ophthalmology 2011, 118, 626–635.e2. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.A.; Dugel, P.U.; Fine, H.F.; Capone, A., Jr.; Maltman, J. Real-World Assessment of Dexamethasone Intravitreal Implant in DME: Findings of the Prospective, Multicenter REINFORCE Study. Ophthalmic Surg. Lasers Imaging Retin. 2018, 49, 425–435. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alfaqawi, F.; Lip, P.L.; Elsherbiny, S.; Chavan, R.; Mitra, A.; Mushtaq, B. Report of 12-months efficacy and safety of intravitreal fluocinolone acetonide implant for the treatment of chronic diabetic macular oedema: A real-world result in the United Kingdom. Eye Lond. Engl. 2017, 31, 650–656. [Google Scholar] [CrossRef]
- Coelho, J.; Malheiro, L.; Beirão, J.M.; Meireles, A.; Pessoa, B. Real-world retrospective comparison of 0.19 mg fluocinolone acetonide and 0.7 mg dexamethasone intravitreal implants for the treatment of diabetic macular edema in vitrectomized eyes. Clin. Ophthalmol. 2019, 13, 1751–1759. [Google Scholar] [CrossRef] [Green Version]
- Coney, J.M. Fluocinolone acetonide 0.19 mg intravitreal implant improves foveal thickness and reduces treatment burden for up to 1 year in eyes with persistent diabetic macular edema. Int. Med. Case Rep. J. 2019, 12, 161–169. [Google Scholar] [CrossRef] [Green Version]
- El-Ghrably, I.A.; Steel, D.H.; Habib, M.; Vaideanu-Collins, D.; Manvikar, S.; Hillier, R.J. Diabetic Macular Edema Outcomes in Eyes Treated with Fluocinolone Acetonide 0.2 µg/d Intravitreal Implant: Real-World UK Experience. Eur. J. Ophthalmol. 2017, 27, 357–362. [Google Scholar] [CrossRef] [Green Version]
- Elaraoud, I.; Quhill, H.; Quhill, F. Case Series Investigating the Efficacy and Safety of Bilateral Fluocinolone Acetonide (ILUVIEN(®) in Patients with Diabetic Macular Edema: 10 Eyes with 12 Months Follow-up. Ophthalmol. Ther. 2016, 5, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Holden, S.E.; Currie, C.J.; Owens, D.R. Evaluation of the clinical effectiveness in routine practice of fluocinolone acetonide 190 µg intravitreal implant in people with diabetic macular edema. Curr. Med. Res. Opin. 2017, 33, 5–17. [Google Scholar] [CrossRef] [Green Version]
- Chakravarthy, U.; Taylor, S.R.; Koch, F.H.J.; Castro de Sousa, J.P.; Bailey, C. ILUVIEN Registry Safety Study (IRISS) Investigators Group. Changes in intraocular pressure after intravitreal fluocinolone acetonide (ILUVIEN): Real-world experience in three European countries. Br. J. Ophthalmol. 2019, 103, 1072–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- La Mantia, A.; Hawrami, A.; Laviers, H.; Patra, S.; Zambarakji, H. Treatment of refractory diabetic macular edema with a fluocinolone acetonide implant in vitrectomized and non-vitrectomized eyes. Int. J. Ophthalmol. 2018, 11, 1951–1956. [Google Scholar] [PubMed]
- Massin, P.; Erginay, A.; Dupas, B.; Couturier, A.; Tadayoni, R. Efficacy and safety of sustained-delivery fluocinolone acetonide intravitreal implant in patients with chronic diabetic macular edema insufficiently responsive to available therapies: A real-life study. Clin. Ophthalmol. Auckl. NZ. 2016, 10, 1257–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCluskey, J.D.; Kaufman, P.L.; Wynne, K.; Lewis, G. Early adoption of the fluocinolone acetonide (FAc) intravitreal implant in patients with persistent or recurrent diabetic macular edema (DME). Int. Med. Case Rep. J. 2019, 12, 93–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bailey, C.; for the Medisoft Audit Group; Chakravarthy, U.; Lotery, A.; Menon, G.; Talks, J. Real-world experience with 0.2 μg/day fluocinolone acetonide intravitreal implant (ILUVIEN) in the United Kingdom. Eye 2017, 31, 1707–1715. [Google Scholar] [CrossRef] [Green Version]
- Meireles, A.; Goldsmith, C.; El-Ghrably, I.; Erginay, A.; Habib, M.; Pessoa, B.; Coelho, J.; Patel, T.; Tadayoni, R.; Massin, P.; et al. Efficacy of 0.2 μg/day fluocinolone acetonide implant (ILUVIEN) in eyes with diabetic macular edema and prior vitrectomy. Eye 2017, 31, 684–690. [Google Scholar] [CrossRef] [Green Version]
- Panos, G.D.; Arruti, N.; Patra, S. The long-term efficacy and safety of fluocinolone acetonide intravitreal implant 190 μg (ILUVIEN®) in diabetic macular oedema in a multi-ethnic inner-city population. Eur. J. Ophthalmol. 2020. [Google Scholar] [CrossRef]
- Pessoa, B.; Coelho, J.; Correia, N.; Ferreira, N.; Beirão, M.; Meireles, A. Fluocinolone Acetonide Intravitreal Implant 190 μg (ILUVIEN®) in Vitrectomized versus Nonvitrectomized Eyes for the Treatment of Chronic Diabetic Macular Edema. Ophthalmic Res. 2018, 59, 68–75. [Google Scholar] [CrossRef]
- Rehak, M.; Busch, C.; Unterlauft, J.-D.; Jochmann, C.; Wiedemann, P. Outcomes in diabetic macular edema switched directly or after a dexamethasone implant to a fluocinolone acetonide intravitreal implant following anti-VEGF treatment. Acta Diabetol. 2020, 57, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Figueira, J.; Henriques, J.; Amaro, M.; Rosas, V.; Alves, D.; Cunha-Vaz, J. A Nonrandomized, Open-Label, Multicenter, Phase 4 Pilot Study on the Effect and Safety of ILUVIEN® in Chronic Diabetic Macular Edema Patients Considered Insufficiently Responsive to Available Therapies (RESPOND). Ophthalmic Res. 2017, 57, 166–172. [Google Scholar] [CrossRef]
- Augustin, A.J.; Bopp, S.; Fechner, M.; Holz, F.; Sandner, D.; Winkgen, A.; Khoramni, R.; Neuhann, T.; Warscher, M.; Spitzer, M.; et al. Three-year results from the Retro-IDEAL study: Real-world data from diabetic macular edema (DME) patients treated with ILUVIEN® (0.19 mg fluocinolone acetonide implant). Eur. J. Ophthalmol. 2020, 30, 382–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schechet, S.A.; Adams, O.E.; Eichenbaum, D.A.; Hariprasad, S.M. Macular thickness amplitude changes when switching from discontinuous to continuous therapy for diabetic macular oedema. BMJ Open Ophthalmol. 2019, 4, e000271. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Pereira, S.; Castro-de-Sousa, J.P.; Martins, D.; PratesCanelas, J.; Reis, P.; Sampaio, A.; Urbano, H.; Kaku, P.; Nascimento, J.; Marques-Neves, C. The Outcomes of Switching from Short- to Long-Term Intravitreal Corticosteroid Implant Therapy in Patients with Diabetic Macular Edema. Ophthalmic Res. 2020, 63, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Young, J.F.; Walkden, A.; Stone, A.; Mahmood, S. Clinical Effectiveness of Intravitreal Fluocinolone Acetonide (FAc) (ILUVIENTM) in Patients with Diabetic Macular Oedema (DMO) Refractory to Prior Therapy: The Manchester Experience. Ophthalmol. Ther. 2019, 8, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Eaton, A.; Koh, S.S.; Jimenez, J.; Riemann, C.D. The USER Study: A Chart Review of Patients Receiving a 0.2 µg/day Fluocinolone Acetonide Implant for Diabetic Macular Edema. Ophthalmol. Ther. 2019, 8, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Jyothi, S.; Sivaprasad, S. Five-year visual outcome following laser photocoagulation of diabetic macular oedema. Eye Lond. Engl. 2011, 25, 851–858. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, V.H.; Campbell, J.; Holekamp, N.M.; Kiss, S.; Loewenstein, A.; Augustin, A.J.; Ma, J.; Ho, A.C.; Patel, V.; Scott, M.; et al. Early and Long-Term Responses to Anti-Vascular Endothelial Growth Factor Therapy in Diabetic Macular Edema: Analysis of Protocol I Data. Am. J. Ophthalmol. 2016, 172, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Kodjikian, L.; Bellocq, D.; Bandello, F.; Loewenstein, A.; Chakravarthy, U.; Koh, A.; Augustin, A.; De Smet, M.D.; Chhablani, J.; Tufail, A.; et al. First-line treatment algorithm and guidelines in center-involving diabetic macular edema. Eur. J. Ophthalmol. 2019, 29, 573–584. [Google Scholar] [CrossRef]
- Zur, D.; Iglicki, M.; Loewenstein, A. The Role of Steroids in the Management of Diabetic Macular Edema. Ophthalmic Res. 2019, 62, 231–236. [Google Scholar] [CrossRef]
- Silva, P.S.; Sun, J.K.; Aiello, L.P. Role of steroids in the management of diabetic macular edema and proliferative diabetic retinopathy. Semin Ophthalmol. 2009, 24, 93–99. [Google Scholar] [CrossRef]
- Antonetti, D.A.; Wolpert, E.B.; DeMaio, L.; Harhaj, N.S.; Scaduto, R.C., Jr. Hydrocortisone decreases retinal endothelial cell water and solute flux coincident with increased content and decreased phosphorylation of occludin. J. Neurochem. 2002, 80, 667–677. [Google Scholar] [CrossRef] [PubMed]
- Lattanzio, R.; Cicinelli, M.V.; Bandello, F.; Zarbin, M.; Zucchiatti, I. Intravitreal Steroids in Diabetic Macular Edema. Dev. Ophthalmol. 2017, 60, 78–90. [Google Scholar] [PubMed] [Green Version]
- Kane, F.E.; Green, K.E. Ocular Pharmacokinetics of Fluocinolone Acetonide Following Iluvien Implantation in the Vitreous Humor of Rabbits. J. Ocul. Pharmacol. Ther. 2015, 31, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivaprasad, S.; Oyetunde, S. Impact of injection therapy on retinal patients with diabetic macular edema or retinal vein occlusion. Clin. Ophthalmol. Auckl NZ 2016, 10, 939–946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, T.; Yoshimura, N. Structural changes in individual retinal layers in diabetic macular edema. J. Diabetes Res. 2013, 2013, 920713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnin, S.; Tadayoni, R.; Erginay, A.; Massin, P.; Dupas, B. Correlation between Ganglion Cell Layer Thinning and Poor Visual Function after Resolution of Diabetic Macular Edema. Investig. Ophthalmol. Vis. Sci. 2015, 56, 978–982. [Google Scholar] [CrossRef] [Green Version]
- Zeng, H.; Green, W.R.; Tso, M.O.M. Microglial activation in human diabetic retinopathy. Arch. Ophthalmol Chic. Ill. 1960 2008, 126, 227–232. [Google Scholar] [CrossRef] [Green Version]
- Maheshwary, A.S.; Oster, S.F.; Yuson, R.M.; Cheng, L.; Mojana, F.; Freeman, W.R. The Association Between Percent Disruption of the Photoreceptor Inner Segment–Outer Segment Junction and Visual Acuity in Diabetic Macular Edema. Am. J. Ophthalmol. 2010, 150, 63–67.e1. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.K.; Lin, M.M.; Lammer, J. Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol. 2014, 132, 1309–1316. [Google Scholar] [CrossRef] [Green Version]
- Van de Kreeke, J.A.; Darma, S.; Chan, P.Y.; Tan, H.S.; Abramoff, M.D.; Twisk, J.W.; Verbraak, F.D. The spatial relation of diabetic retinal neurodegeneration with diabetic retinopathy. PLoS ONE 2020, 15, e0231552. [Google Scholar] [CrossRef] [Green Version]
Study Group | Study Design | N * (Eyes) | Follow-Up (Months) | DME † Duration (Years) | BL ‡ VA ** (Letters) | Final VA (Letters) | Final VA Gain (Letters) | Peak VA (Letters) | Peak VA Gain (Letters) | BL CRT †† (µm) | Final CRT (µm) | Final CRT Decrease (%) | Peak CRT (µm) | Peak CRT Decrease (%) | OHT at BL (%) ‡‡ | OHT (%) | OHT Meds (%) | OHT Surgery (%) | Phakic at BL (%) | Cataract (%) | Cataract Surgery (%) | Cases of Endopht (n) | Addition. ttt ††† (%) | Time Initiation Addition ttt (Months) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Elaraoud et al. 2016 (all) | Obs ‡‡‡-retro **** | 10 | 12 | NA †††† | 44.5 | 55.0 | 10.5 | 55.5 | 11.0 | 645.3 | 287.4 | −55.5 | 287.4 | −55.5 | 40.0 | NA | NA | NA | NA | NA | NA | NA | NA | NA |
Massin et al. 2016 (prior laser + avegf ‡‡‡‡) | Prosp ***** | 10 | 12 | 3.6 | 44.8 | 45.7 | 0.9 | 52.6 | 7.8 | 701.0 | 450.0 | −35.8 | 450.0 | −35.8 | 0.0 | 20.0 | 20.0 | 0.0 | 50.0 | NA | 20.0 | NA | 30.0 | NA |
Massin et al. 2016 (prior laser) | Prosp | 7 | 12 | 7.6 | 47.7 | 53.3 | 5.6 | 53.3 | 5.6 | 573.0 | 274.0 | −52.2 | 274.0 | −52.2 | 0.0 | 14.3 | 14.3 | 0.0 | 0.0 | NA | NA | NA | 14.3 | NA |
Alfaqawi et al. 2017 (all) | Obs-retro | 28 | 12 | 6.0 | 47.0 | 55.0 | 8.0 | 55.0 | 8.0 | 494.0 | 296.0 | −40.1 | 296.0 | −40.1 | 25.0 | 11.0 | 11.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.0 | 7.0 | 11.0 |
El Ghrably et al. 2017 (all) | Obs-cons | 57 | 14 | 2.6 | 52.7 | 57.8 | 5.1 | 58.3 | 5.6 | 452.0 | 326.0 | −27.9 | 326.0 | −27.9 | NA | NA | 12.3 | 0.0 | 22.8 | NA | NA | 0.0 | NA | NA |
MEDISOFT study. 2017 (all) | Obs-retro | 345 | 14 | NA | 51.9 | 57.2 | 5.3 | 57.2 | 5.3 | 451.2 | 355.5 | −21.2 | 355.5 | −21.2 | 14.2 | 15.4 | 13.9 | 0.3 | 10.4 | NA | NA | NA | 35.7 | . NA |
Meireles et al. 2017 (vitrectomized) | Obs-retro | 26 | 8.5 | 3.7 | 43.1 | 54.8 | 11.7 | 54.8 | 11.7 | 542.0 | 308.4 | −43.1 | 308.4 | −43.1 | NA | NA | 30.8 | 0.0 | 4.0 | NA | NA | NA | 11.5 | NA |
Pessoa et al. 2017 (vitrectomized) | Obs-retro | 24 | 24 | 2.5 | 40.5 | 57.4 | 16.9 | 57.4 | 16.9 | 543.9 | 326.3 | −40.0 | 326.3 | −40.0 | 37.5 | 4.2 | 29.2 | 0.0 | 4.2 | NA | 100.0 | NA | 8.3 | NA |
Pessoa et al. 2017 (non-vitrectomized) | Obs-retro | 19 | 24 | 3.5 | 42.1 | 50.3 | 8.2 | 50.3 | 8.2 | 523.6 | 368.0 | −29.7 | 368.0 | −29.7 | 31.6 | 10.5 | 52.6 | 0.0 | 36.8 | NA | 42.8 | NA | 26.3 | NA |
RESPOND study. 2017 (all) | Prosp | 12 | 12 | 3.4 | 48.8 | 52.5 | 3.7 | 55.6 | 6.8 | 650.5 | 357.7 | −45.0 | 357.7 | −45.0 | NA | 16.7 | NA | 0.0 | 33.0 | NA | 25.0 | NA | NA | NA |
ICE-UK study. 2018 (all) | Obs-retro | 233 | 12 | 2.7 | 53.0 | 55.0 | 2.0 | 58.0 | 5.0 | NA | NA | NA | NA | NA | 19.0 | 25.0 | 15.0 | 0.8 | 11.0 | NA | 73.1 | NA | 30.0 | NA |
IRISS study. 2018 (all) | Obs-retro | 593 | 24 | 4.5 | 51.9 | 54.8 | 2.9 | 55.6 | 3.7 | NA | NA | NA | NA | NA | NA | 19.1 | 23.3 | 0.8 | 16.4 | NA | NA | NA | 31.0 | 12.0 |
La Mantia et al. 2018 (vitrectomized) | Obs-retro | 7 | 12 | NA | 37.0 | 51.0 | 14.0 | 49.0 | 12.0 | 459.0 | 399.0 | −13.1 | 399.0 | −13.1 | 83.3 | NA | 0.0 | NA | 0.0 | 0.0 | 0.0 | NA | NA | NA |
La Mantia et al. 2018 (non vitrectomized) | Obs-retro | 16 | 12 | NA | 51.5 | 59.5 | 8.0 | 63.0 | 11.5 | 416.0 | 344.0 | −17.3 | 343.0 | −17.5 | 6.3 | NA | 18.8 | NA | 0.0 | 0.0 | 0.0 | NA | NA | NA |
Rubiano et al. 2018 (all) | Obs-retro | 29 | 36 | 2.6 | 43.5 | 54.5 | 11.0 | 54.5 | 11.0 | 451.0 | 314.0 | −30.4 | 314.0 | −30.4 | 6.9 | 6.9 | 6.9 | 0.0 | 3.0 | NA | NA | NA | NA | 12.0 |
USER study. 2018 (all) | Obs-retro | 160 | 24 | NA | NA | NA | NA | NA | NA | 370.4 | 276.6 | −25.3 | 276.6 | −25.3 | NA | 35.0 | 24.4 | 1.3 | 22.5 | NA | NA | NA | 37.0 | 14.3 |
Coelho et al. 2019 (vitrectomized) | Obs-retro | 8 | 24 | 3.9 | 31.5 | 49.5 | 18.0 | 50.3 | 18.8 | 594.8 | 337.8 | −43.2 | 337.8 | −43.2 | 51.7 | 12.5 | 62.5 | 0.0 | 6.9 | NA | NA | NA | 25.0 | 15.0 |
Coney et al. 2019 (all) | Obs-retro | 40 | 12 | 5.3 | 66.2 | 67.7 | 1.5 | 69.3 | 3.1 | 430.9 | 336.5 | −21.9 | 336.5 | −21.9 | NA | 17.5 | 12.5 | 0.0 | 22.5 | 0.0 | 0.0 | NA | 40.0 | NA |
McCluskey et al. 2019 (all) | Obs-retro | 18 | 18 | 2.3 | 50.7 | 56.8 | 6.1 | 56.8 | 6.1 | 444.0 | 359.0 | −19.1 | 359.0 | −19.1 | 27.8 | 16.7 | 27.8 | 0.0 | 16.7 | NA | NA | NA | 44.4 | NA |
Vaz-Perreira et al. 2019 (all) | Obs-retro | 44 | 24 | 3.3 | 41.9 | 50.2 | 8.3 | 55.0 | 13.1 | 542.8 | 421.4 | −22.4 | 372.0 | −31.5 | 18.2 | 25.0 | 25.0 | 2.3 | 31.8 | NA | 42.9 | NA | NA | NA |
Young et al. 2019 (all) | Obs-retro | 21 | 36 | 2.7 | 53.4 | 62.7 | 9.3 | 66.5 | 13.1 | 410.3 | 252.5 | −38.5 | 237.5 | −42.1 | 33.0 | 19.0 | 38.1 | 4.7 | 4.8 | NA | NA | NA | 23.8 | NA |
(a) | ||||||
N * (Studies) | Mean Follow- Up (Months) | Mean DME † Duration (Years) | Mean Baseline VA ‡ (Letters) | Mean Peak VA (Letters) | Mean Peak VA Gain (Letters) | |
Baseline VA (letters) | ||||||
<50 letters | 14 | 18.6 | 3.9 | 43.7 | 54.7 | 11.0 |
50–60 letters | 10 | 22.4 | 2.4 | 54.2 | 61.4 | 7.7 |
>60 letters | 5 | 19.2 | 2.7 | 63.4 | 70.4 | 7.0 |
DME duration (years) | ||||||
≤2 years | 7 | 24.0 | 2.0 | 59.6 | 68.3 | 8.7 |
2–4 years | 14 | 20.9 | 3.1 | 47.1 | 56.4 | 9.4 |
>4 years | 4 | 15.0 | 5.9 | 53.2 | 58.3 | 5.1 |
(b) | ||||||
N * (Studies) | Mean Follow- Up (Months) | Mean DME † Duration (Years) | Mean Baseline CRT§(µm) | Mean Peak CRT (µm) | Mean Peak CRT Decrease (%) | |
Baseline CRT (µm) | ||||||
<400 µm | 2 | 18.0 | 2.9 | 349 | 285 | 18 |
400–600 µm | 20 | 22.0 | 3.3 | 505 | 328 | 34 |
>600 µm | 5 | 14.0 | 2.7 | 640 | 361 | 44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodjikian, L.; Baillif, S.; Creuzot-Garcher, C.; Delyfer, M.-N.; Matonti, F.; Weber, M.; Mathis, T. Real-World Efficacy and Safety of Fluocinolone Acetonide Implant for Diabetic Macular Edema: A Systematic Review. Pharmaceutics 2021, 13, 72. https://doi.org/10.3390/pharmaceutics13010072
Kodjikian L, Baillif S, Creuzot-Garcher C, Delyfer M-N, Matonti F, Weber M, Mathis T. Real-World Efficacy and Safety of Fluocinolone Acetonide Implant for Diabetic Macular Edema: A Systematic Review. Pharmaceutics. 2021; 13(1):72. https://doi.org/10.3390/pharmaceutics13010072
Chicago/Turabian StyleKodjikian, Laurent, Stephanie Baillif, Catherine Creuzot-Garcher, Marie-Noëlle Delyfer, Frédéric Matonti, Michel Weber, and Thibaud Mathis. 2021. "Real-World Efficacy and Safety of Fluocinolone Acetonide Implant for Diabetic Macular Edema: A Systematic Review" Pharmaceutics 13, no. 1: 72. https://doi.org/10.3390/pharmaceutics13010072
APA StyleKodjikian, L., Baillif, S., Creuzot-Garcher, C., Delyfer, M. -N., Matonti, F., Weber, M., & Mathis, T. (2021). Real-World Efficacy and Safety of Fluocinolone Acetonide Implant for Diabetic Macular Edema: A Systematic Review. Pharmaceutics, 13(1), 72. https://doi.org/10.3390/pharmaceutics13010072