Highly Osmotic Oxidized Sucrose-Crosslinked Polyethylenimine for Gene Delivery Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Sucrose–PEI2k (SP2K)
2.3. Characterization of SP2K
2.4. Plasmid DNA Purification
2.5. Agarose Gel Electrophoresis
2.6. PicoGreen Assay
2.7. Average Sizes and Zeta-Potential Value Measurement
2.8. Transmission Electron Microscopy (TEM) Observation
2.9. Cell Culture
2.10. Cytotoxicity
2.11. Transfection Experiments In Vitro
2.12. Green Fluorescence Protein (GFP) Expression
2.13. Cellular Uptake Mechanism Analysis
2.14. Intracellular Trafficking of Polyplex
3. Results and Discussion
3.1. Synthesis of Sucrose–PEI2K (SP2K)
3.2. Acid–Base Titration
3.3. pDNA Condensation Ability of SP2K Polymers
3.4. Characterization of SP2K Polyplexes
3.5. Cytotoxicity
3.6. Transfection Efficiency
3.7. Osmolarity Measurement
3.8. Transfection Mechanism
3.9. Intracellular Trafficking of SP2K Polyplexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lungwitz, U.; Breunig, M.; Blunk, T.; Göpferich, A. Polyethylenimine-based non-viral gene delivery systems. Eur. J. Pharm. Biopharm. 2005, 60, 247–266. [Google Scholar] [CrossRef] [PubMed]
- Remy, J.S.; Abdallah, B.; Zanta, M.A.; Boussif, O.; Behr, J.P.; Demeneix, B. Gene transfer with lipospermines and polyethylenimines. Adv. Drug Deliv. Rev. 1998, 30, 85–95. [Google Scholar] [CrossRef]
- Godbey, W.T.; Wu, K.K.; Mikos, A.G. Tracking the intracellular path of poly(ethylenimine)/DNA complexes for gene delivery. Proc. Natl. Acad. Sci. USA 1999, 96, 5177–5181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behr, J.P. Gene transfer with synthetic cationic amphiphiles: Prospects for gene therapy. Bioconj. Chem. 1994, 5, 382–389. [Google Scholar] [CrossRef]
- Bieber, T.; Meissner, W.; Kostin, S.; Niemann, A.; Elsasser, H.P. Intracellular route and transcriptional competence of polyethylenimine–DNA complexes. J. Control. Release 2002, 82, 441–454. [Google Scholar] [CrossRef]
- Von Harpe, A.; Petersen, H.; Li, Y.; Kissel, T. Characterization of commercially available and synthesized polyethylenimines for gene delivery. J. Control. Release 2000, 69, 309–322. [Google Scholar] [CrossRef]
- Fischer, D.; Bieber, T.; Li, Y.; Elsasser, H.P.; Kissel, T. A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: Effect of molecular weight on transfection efficiency and cytotoxicity. Pharm. Res. 1999, 16, 1273–1279. [Google Scholar] [CrossRef]
- Jiang, H.-L.; Islam, M.A.; Xing, L.; Firdous, J.; Cao, W.; He, Y.-J.; Zhu, Y.; Cho, K.-H.; Li, H.-S.; Cho, C.-S. Degradable polyethylenimine-based gene carriers for cancer therapy. Top. Curr. Chem. 2017, 375, 34. [Google Scholar] [CrossRef]
- Forrest, M.L.; Koerber, J.T.; Pack, D.W. A degradable polyethylenimine derivative with low toxicity for highly efficient gene delivery. Bioconj. Chem. 2003, 14, 934–940. [Google Scholar] [CrossRef]
- Kloeckner, J.; Wagner, E.; Ogris, M. Degradable gene carriers based on oligomerized polyamines. Eur. J. Pharm. Sci. 2006, 29, 414–425. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, L.; Huang, P.; Wang, Z.; Tan, Y.; Liu, H.; Pan, J.; He, C.Y.; Chen, Z.Y. Synthesis and characterization of low molecular weight polyethyleneimine-terminated Poly(β-amino ester) for highly efficient gene delivery of minicircle DNA. J. Colloid Interface Sci. 2016, 463, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-I.; Kim, S.W. Bioreducible polymers for gene delivery. React. Funct. Polym. 2011, 71, 344–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosselin, M.A.; Guo, W.; Lee, R.J. Efficient gene transfer using reversibly cross-linked low molecular weight polyethylenimine. Bioconj. Chem. 2001, 12, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Peng, Q.; Zhong, Z.; Zhuo, R. Disulfide cross-linked polyethylenimines (PEI) prepared via thiolation of low molecular weight PEI as highly efficient gene vectors. Bioconj. Chem. 2008, 19, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Xu, H.; Mi, X.; Xu, L.; Yang, Y. Oxidized sucrose: A potent and biocompatible crosslinker for three-dimensional fibrous protein scaffolds. Macromol. Mater. Eng. 2015, 300, 414–422. [Google Scholar] [CrossRef]
- Xu, H.; Canisag, H.; Mu, B.; Yang, Y. Robust and flexible films from 100% starch cross-linked by bio-based disaccharide derivative. ACS Sustain. Chem. Eng. 2015, 3, 2631–2639. [Google Scholar] [CrossRef]
- Jalaja, K.; James, N.R. Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose. Int. J. Biol. Macromol. 2015, 73, 270–278. [Google Scholar] [CrossRef]
- Frazer, J.C.W.; Myrick, R.T. The osmotic pressure of sucrose solutions at 30°. J. Am. Chem. Soc. 1916, 38, 1907–1922. [Google Scholar] [CrossRef] [Green Version]
- Volonte, D.; Galbiati, F.; Pestell, R.G.; Lisanti, M.P. Cellular stress induces the tyrosine phosphorylation of caveolin-1 (Tyr(14)) via activation of p38 mitogen-activated protein kinase and c-Src kinase–evidence for caveolae, the actin cytoskeleton, and focal adhesions as mechanical sensors of osmotic stress. J. Biol. Chem. 2001, 276, 8094–8103. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.H.; Singh, R.D.; Godin, L.; Pagano, R.E.; Hubmayr, R.D. Endocytic response of type I alveolar epithelial cells to hypertonic stress. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 300, L560–L568. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Yun, C.H.; Choi, Y.J.; Shin, J.Y.; Arote, R.; Jiang, H.L.; Kang, S.K.; Nah, J.W.; Park, I.K.; Cho, M.H.; et al. Accelerated gene transfer through a polysorbitol-based transporter mechanism. Biomaterials 2011, 32, 9908–9924. [Google Scholar] [CrossRef] [PubMed]
- Park, T.E.; Kang, B.; Kim, Y.K.; Zhang, Q.; Lee, W.S.; Islam, M.A.; Kang, S.K.; Cho, M.H.; Choi, Y.J.; Cho, C.S. Selective stimulation of caveolae-mediated endocytosis by an osmotic polymannitol-based gene transporter. Biomaterials 2012, 33, 7272–7281. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.S.; Kim, Y.K.; Zhang, Q.; Park, T.E.; Kang, S.K.; Kim, D.W.; Cho, C.S.; Choi, Y.J. Polyxylitol-based gene carrier improves the efficiency of gene transfer through enhanced endosomal osmolysis. Nanomed. Nanotechnol. Biol. Med. 2014, 10, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Schoevaart, R.; Siebum, A.; van Rantwijk, F.; Sheldon, R.; Kieboom, T. Glutaraldehyde Cross-link Analogues from Carbohydrates. Starch Starke 2005, 57, 161–165. [Google Scholar] [CrossRef]
- Xu, H.; Liu, P.; Mi, X.; Xu, L.; Yang, Y. Potent and regularizable crosslinking of ultrafine fibrous protein scaffolds for tissue engineering using a cytocompatible disaccharide derivative. J. Mater. Chem. B 2015, 3, 3609–3616. [Google Scholar]
- Wang, F.; Liu, P.; Nie, T.; Wei, H.; Cui, Z. Characterization of a polyamine microsphere and its adsorption for protein. Int. J. Mol. Sci. 2013, 14, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaaeri, F.; Khoobi, M.; Rouini, M.; Javar, H.A. pH-responsive polymer in a core–shell magnetic structure as an efficient carrier for delivery of doxorubicin to tumor cells. Int. J. Polym. Mater. Polym. Biomater. 2018, 67, 967–977. [Google Scholar] [CrossRef]
- Kim, T.-I.; Rothmund, T.; Kissel, T.; Kim, S.W. Bioreducible polymers with cell penetrating and endosome buffering functionality for gene delivery systems. J. Control. Release 2011, 152, 110–119. [Google Scholar] [CrossRef] [Green Version]
- Singer, V.L.; Jones, L.J.; Yue, S.T.; Haugland, R.P. Characterization of PicoGreen reagent and development of a fluorescence-based solution assay for double-stranded DNA quantitation. Anal. Biochem. 1997, 249, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Grigsby, C.L.; Leong, K.W. Balancing protection and release of DNA: Tools to address a bottleneck of non-viral gene delivery. J. R. Soc. Interface 2010, 7, S67–S82. [Google Scholar] [CrossRef]
- Zauner, W.; Ogris, M.; Wagner, E. Polylysine-based transfection systems utilizing receptor-mediated delivery. Adv. Drug Deliv. Rev. 1998, 30, 97–113. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monnery, B.D.; Wright, M.; Cavill, R.; Hoogenboom, R.; Shaunak, S.; Steinke, J.H.G.; Thanou, M. Cytotoxicity of polycations: Relationship of molecular weight and the hydrolytic theory of the mechanism of toxicity. Int. J. Pharm. 2017, 521, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M.; Snider, M.D. Role of microtubules in transferrin receptor transport from the cell surface to endosomes and the Golgi complex. J. Biol. Chem. 1993, 268, 18390–18397. [Google Scholar] [CrossRef]
- Moeckel, G.W.; Zhang, L.; Fogo, A.B.; Hao, C.M.; Pozzi, A.; Breyer, M.D. COX2 activity promotes organic osmolyte accumulation and adaptation of renal medullary interstitial cells to hypertonic stress. J. Biol. Chem. 2003, 278, 19352–19357. [Google Scholar] [CrossRef] [Green Version]
- Parton, R.G.; Howes, M.T. Revisiting caveolin trafficking: The end of the caveosome. J. Cell Biol. 2010, 191, 439–441. [Google Scholar] [CrossRef]
- Schaffer, D.V.; Fidelman, N.A.; Dan, N.; Lauffenburger, D.A. Vector unpacking as a potential barrier for receptor-mediated polyplex gene delivery. Biotechnol. Bioeng. 2000, 67, 598–606. [Google Scholar] [CrossRef]
- De Graaf, M.; Pinedo, H.M.; Quadir, R.; Haisma, H.J.; Boven, E. Cytosolic b-glycosidase for activation of glycoside prodrugs of daunorubicin. Biochem. Pharmacol. 2003, 65, 1875–1881. [Google Scholar] [CrossRef]
- Grosse, S.; Thévenot, G.; Monsigny, M.; Fajac, I. Which mechanism for nuclear import of plasmid DNA complexes with polyethylenimine derivatives? J. Gene Med. 2006, 8, 845–851. [Google Scholar] [CrossRef]
- Baruna, S.; Rege, K. The influence of mediators of intracellular trafficking on transgene expression efficacy of polymer-plasmid DNA complexes. Biomaterials 2010, 31, 5894–5902. [Google Scholar] [CrossRef]
- Monsigny, M.; Rondanino, C.; Duverger, E.; Fajac, I.; Roche, A.-C. Glyco-dependent nuclear import of glycoproteins, glycoplexes and glycosylated plasmids. Biochim. Biophys. Acta 2004, 1673, 94–103. [Google Scholar] [CrossRef] [PubMed]
SP2K | Initial Feed Molar Ratio | Experimental Molar Ratio a | Mw b (kDa) | PDI |
---|---|---|---|---|
SP2K3 | 3 | 0.37 | 16.9 | 1.71 |
SP2K5 | 5 | 0.53 | 15.5 | 1.71 |
SP2K7 | 7 | 0.65 | 11.1 | 2.01 |
SP2K10 | 10 | 0.83 | 10.4 | 1.86 |
SP2K15 | 15 | 1.02 | 8.7 | 1.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, K.; Jeong, S.; Lee, M.; Kim, T.-i. Highly Osmotic Oxidized Sucrose-Crosslinked Polyethylenimine for Gene Delivery Systems. Pharmaceutics 2021, 13, 87. https://doi.org/10.3390/pharmaceutics13010087
Park J, Kim K, Jeong S, Lee M, Kim T-i. Highly Osmotic Oxidized Sucrose-Crosslinked Polyethylenimine for Gene Delivery Systems. Pharmaceutics. 2021; 13(1):87. https://doi.org/10.3390/pharmaceutics13010087
Chicago/Turabian StylePark, Jaehong, Kyusik Kim, Sohee Jeong, Migyeom Lee, and Tae-il Kim. 2021. "Highly Osmotic Oxidized Sucrose-Crosslinked Polyethylenimine for Gene Delivery Systems" Pharmaceutics 13, no. 1: 87. https://doi.org/10.3390/pharmaceutics13010087
APA StylePark, J., Kim, K., Jeong, S., Lee, M., & Kim, T. -i. (2021). Highly Osmotic Oxidized Sucrose-Crosslinked Polyethylenimine for Gene Delivery Systems. Pharmaceutics, 13(1), 87. https://doi.org/10.3390/pharmaceutics13010087