Inspirations of Cobalt Oxide Nanoparticle Based Anticancer Therapeutics
Abstract
:1. Introduction
2. Synthesis of Cobalt Oxide Nanoparticles
2.1. Chemical Synthesis
2.2. Chemical-Physical Synthesis
2.3. Physical Synthesis
2.4. Green Biosynthesis
3. Biocompatibility of Cobalt Oxide Nanoparticles
4. Anticancer Applications of Cobalt Oxide Nanoparticles
4.1. Selective Cancer Cell Inhibition by Cobalt Oxide Nanoparticles
4.2. Cobalt Nanoparticles as Chemosensitizer and Protective Agents for Anticancer Treatment
4.3. Cobalt Oxide Nanoparticles Re-Influence the Cancer Microenvironment
4.4. Anticancer Application of Cobalt Oxide Nanoparticles as Autophagy Inhibitors, Chemosensitizers and Photosensitizers for Synergetic Anticancer Treatment
4.5. Cobalt Oxide Nanoparticle Based Drug Delivery Systems for Anticancer Treatment
4.6. Other Applications of Cobalt Oxide Nanoparticles in Cancer Field
5. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fang, W.; Su, D.; Lu, W.; Wang, N.; Mao, R.; Chen, Y.; Ge, K.; Shen, A.; Hu, R. Application and future prospect of extracellular matrix targeted nanomaterials in tumor theranostics. Curr. Drug. Targets 2021, 22, 913–921. [Google Scholar] [CrossRef]
- Gao, Y.; Gao, J.; Mu, G.; Zhang, Y.; Huang, F.; Zhang, W.; Ren, C.; Yang, C.; Liu, J. Selectively enhancing radiosensitivity of cancer cells via in situ enzyme-instructed peptide self-assembly. Acta Pharm. Sin. B 2020, 10, 2374–2383. [Google Scholar] [CrossRef]
- Sambrani, R.; Abdolalizadeh, J.; Kohan, L.; Jafari, B. Recent advances in the application of probiotic yeasts, particularly Saccharomyces, as an adjuvant therapy in the management of cancer with focus on colorectal cancer. Mol. Biol. Rep. 2021, 48, 951–960. [Google Scholar] [CrossRef]
- Jasiński, M.; Basak, G.W.; Jedrzejczak, W.W. Perspectives for the use of CAR-T Cells for the treatment of multiple myeloma. Front. Immunol. 2021, 12, 632937. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, Y.; Qu, B.; Yang, H.; Hu, S.; Dong, X. If small molecules immunotherapy comes, can the prime be far behind? Eur. J. Med. Chem. 2021, 218, 113356. [Google Scholar] [CrossRef] [PubMed]
- Domingo, J.L.; Marquès, M. The effects of some essential and toxic metals/metalloids in COVID-19: A review. Food Chem. Toxicol. 2021, 152, 112161. [Google Scholar] [CrossRef] [PubMed]
- Moradpoor, H.; Safaei, M.; Rezaei, F.; Golshah, A.; Jamshidy, L.; Hatam, R.; Abdullah, R.S. Optimisation of cobalt oxide nanoparticles synthesis as bactericidal agents. Open Access Maced. J. Med. Sci 2019, 7, 2757–2762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabani, I.; Yoo, J.; Kim, H.S.; Lam, D.V.; Hussain, S.; Karuppasamy, K.; Seo, Y.S. Highly dispersive Co3O4 nanoparticles incorporated into a cellulose nanofiber for a high-performance flexible supercapacitor. Nanoscale 2021, 13, 355–370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Qian, B.; Sun, S.; Tao, S.; Chu, W.; Wu, D.; Song, L. Ultrafine Co3O4 nanoparticles within nitrogen-doped carbon matrix derived from metal-organic complex for boosting lithium storage and oxygen evolution reaction. Small 2019, 15, e1904260. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, J.; Numan, A.; Omaish Ansari, M.; Jafer, R.; Jagadish, P.R.; Bashir, S.; Hasan, P.M.Z.; Bilgrami, A.L.; Mohamad, S.; Ramesh, K.; et al. Cobalt Oxide nanograins and silver nanoparticles decorated fibrous polyaniline nanocomposite as battery-type electrode for high performance supercapattery. Polymers 2020, 12, 2816. [Google Scholar] [CrossRef] [PubMed]
- Bhojane, P.; Sinha, L.; Devan, R.S.; Shirage, P.M. Mesoporous layered hexagonal platelets of Co3O4 nanoparticles with (111) facets for battery applications: High performance and ultra-high rate capability. Nanoscale 2018, 10, 1779–1787. [Google Scholar] [CrossRef]
- Mujtaba, J.; Sun, H.; Huang, G.; Mølhave, K.; Liu, Y.; Zhao, Y.; Wang, X.; Xu, S.; Zhu, J. Nanoparticle decorated ultrathin porous nanosheets as hierarchical Co3O4 nanostructures for lithium ion battery anode materials. Sci. Rep. 2016, 6, 20592. [Google Scholar] [CrossRef]
- Dhanjai; Balla, P.; Sinha, A.; Wu, L.; Lu, X.; Tan, D.; Chen, J. Co3O4 nanoparticles supported mesoporous carbon framework interface for glucose biosensing. Talanta 2019, 203, 112–121. [Google Scholar] [CrossRef]
- Kim, J.S.; Jang, J.Y.; Cheon, H.J.; Cho, S.; Jang, I.S.; Yu, B.J.; Kim, M.I. Co3O4/Au Hybrid Nanostructures as efficient peroxidase mimics for colorimetric biosensing. J. Nanosci. Nanotechnol. 2019, 19, 6696–6702. [Google Scholar] [CrossRef]
- Sanli, S.; Moulahoum, H.; Ugurlu, O.; Ghorbanizamani, F.; Gumus, Z.P.; Evran, S.; Coskunol, H.; Timur, S. Screen printed electrode-based biosensor functionalized with magnetic cobalt/single-chain antibody fragments for cocaine biosensing in different matrices. Talanta 2020, 217, 121111. [Google Scholar] [CrossRef]
- Lang, X.Y.; Fu, H.Y.; Hou, C.; Han, G.F.; Yang, P.; Liu, Y.B.; Jiang, Q. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors. Nat. Commun. 2013, 4, 2169. [Google Scholar] [CrossRef] [Green Version]
- Dalkıran, B.; Erden, P.E.; Kılıç, E. Graphene and tricobalt tetraoxide nanoparticles based biosensor for electrochemical glutamate sensing. Artif. Cells Nanomed. Biotechnol. 2017, 45, 340–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, B.A.; Iqbal, J.; Khan, Z.; Ahmad, R.; Uddin, S.; Shahbaz, A.; Zahra, S.A.; Shaukat, M.; Kiran, F.; Kanwal, S.; et al. Phytofabrication of cobalt oxide nanoparticles from Rhamnus virgata leaves extract and investigation of different bioactivities. Microsc. Res. Tech. 2021, 84, 192–201. [Google Scholar] [CrossRef]
- Khan, S.; Ansari, A.A.; Khan, A.A.; Ahmad, R.; Al-Obaid, O.; Al-Kattan, W. In vitro evaluation of anticancer and antibacterial activities of cobalt oxide nanoparticles. J. Biol. Inorg. Chem. 2015, 20, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Cai, H.; Zhou, H.; Li, T.; Jin, H.; Evans, C.E.; Cai, J.; Pi, J. Cobalt oxide nanoparticle-synergized protein degradation and phototherapy for enhanced anticancer therapeutics. Acta Biomater. 2021, 121, 605–620. [Google Scholar] [CrossRef] [PubMed]
- Jarestan, M.; Khalatbari, K.; Pouraei, A.; Sadat Shandiz, S.A.; Beigi, S.; Hedayati, M.; Majlesi, A.; Akbari, F.; Salehzadeh, A. Preparation, characterization, and anticancer efficacy of novel cobalt oxide nanoparticles conjugated with thiosemicarbazide. 3 Biotech 2020, 10, 230. [Google Scholar] [CrossRef]
- Alarifi, S.; Ali, D.; Y, A.O.; Ahamed, M.; Siddiqui, M.A.; Al-Khedhairy, A.A. Oxidative stress contributes to cobalt oxide nanoparticles-induced cytotoxicity and DNA damage in human hepatocarcinoma cells. Int. J. Nanomed. 2013, 8, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Chakraborty, S.P.; Laha, D.; Baral, R.; Pramanik, P.; Roy, S. Surface-modified cobalt oxide nanoparticles: New opportunities for anti-cancer drug development. Cancer Nanotechnol. 2012, 3, 13–23. [Google Scholar] [CrossRef] [Green Version]
- Javed, K.R.; Ahmad, M.; Ali, S.; Butt, M.Z.; Nafees, M.; Butt, A.R.; Nadeem, M.; Shahid, A. Comparison of doxorubicin anticancer drug loading on different metal oxide nanoparticles. Medicine 2015, 94, e617. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Dash, S.K.; Ghosh, T.; Das, S.; Tripathy, S.; Mandal, D.; Das, D.; Pramanik, P.; Roy, S. Anticancer and immunostimulatory role of encapsulated tumor antigen containing cobalt oxide nanoparticles. J. Biol. Inorg. Chem. 2013, 18, 957–973. [Google Scholar] [CrossRef]
- Raman, V.; Suresh, S.; Savarimuthu, P.A.; Raman, T.; Tsatsakis, A.M.; Golokhvast, K.S.; Vadivel, V.K. Synthesis of Co3O4 nanoparticles with block and sphere morphology, and investigation into the influence of morphology on biological toxicity. Exp. Ther. Med. 2016, 11, 553–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanwal, Z.; Raza, M.A.; Manzoor, F.; Riaz, S.; Jabeen, G.; Fatima, S.; Naseem, S. A comparative assessment of nanotoxicity induced by metal (silver, nickel) and metal oxide (cobalt, chromium) nanoparticles in Labeo rohita. Nanomaterials 2019, 9, 309. [Google Scholar] [CrossRef] [Green Version]
- Chattopadhyay, S.; Dash, S.K.; Ghosh, T.; Das, D.; Pramanik, P.; Roy, S. Surface modification of cobalt oxide nanoparticles using phosphonomethyl iminodiacetic acid followed by folic acid: A biocompatible vehicle for targeted anticancer drug delivery. Cancer Nanotechnol. 2013, 4, 103–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.W.; Choi, S.H.; Lillehei, P.T.; Chu, S.H.; King, G.C.; Watt, G.D. Cobalt oxide hollow nanoparticles derived by bio-templating. Chem. Commun. (Camb). 2005, 28, 4101–4103. [Google Scholar] [CrossRef]
- Dogra, V.; Kaur, G.; Jindal, S.; Kumar, R.; Kumar, S.; Singhal, N.K. Bactericidal effects of metallosurfactants based cobalt oxide/hydroxide nanoparticles against Staphylococcus aureus. Sci. Total Environ. 2019, 681, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Dekkers, S.; Wagner, J.G.; Vandebriel, R.J.; Eldridge, E.A.; Tang, S.V.Y.; Miller, M.R.; Römer, I.; de Jong, W.H.; Harkema, J.R.; Cassee, F.R. Role of chemical composition and redox modification of poorly soluble nanomaterials on their ability to enhance allergic airway sensitisation in mice. Part. Fibre Toxicol. 2019, 16, 39. [Google Scholar] [CrossRef]
- Schuster, R.; Wähler, T.; Kettner, M.; Agel, F.; Bauer, T.; Wasserscheid, P.; Libuda, J. Model studies on the ozone-mediated synthesis of cobalt oxide nanoparticles from dicobalt octacarbonyl in ionic liquids. ChemistryOpen 2021, 10, 141–152. [Google Scholar] [CrossRef]
- Yu, M.; Waag, F.; Chan, C.K.; Weidenthaler, C.; Barcikowski, S.; Tüysüz, H. Laser fragmentation-induced defect-rich cobalt oxide nanoparticles for electrochemical oxygen evolution reaction. ChemSusChem 2020, 13, 520–528. [Google Scholar] [CrossRef] [Green Version]
- Samuel, M.S.; Selvarajan, E.; Mathimani, T.; Santhanam, N.; Phuong, T.N.; Brindhadevi, K.; Pugazhendhi, A. Green synthesis of cobalt-oxide nanoparticle using jumbo Muscadine (Vitis rotundifolia): Characterization and photo-catalytic activity of acid Blue-74. J. Photochem. Photobiol. B. Biol. 2020, 211, 112011. [Google Scholar] [CrossRef]
- Waris, A.; Din, M.; Ali, A.; Afridi, S.; Baset, A.; Khan, A.U.; Ali, M. Green fabrication of Co and Co3O4 nanoparticles and their biomedical applications: A review. Open Life Sci. 2021, 16, 14–30. [Google Scholar] [CrossRef]
- Hasan, M.; Zafar, A.; Shahzadi, I.; Luo, F.; Hassan, S.G.; Tariq, T.; Zehra, S.; Munawar, T.; Iqbal, F.; Shu, X. Fractionation of Biomolecules in Withania coagulans Extract for Bioreductive Nanoparticle Synthesis, Antifungal and Biofilm Activity. Molecules 2020, 25, 3478. [Google Scholar] [CrossRef] [PubMed]
- Kiani, M.; Rabiee, N.; Bagherzadeh, M.; Ghadiri, A.M.; Fatahi, Y.; Dinarvand, R.; Webster, T.J. Improved green biosynthesis of chitosan decorated Ag-and Co3O4-nanoparticles: A relationship between surface morphology, photocatalytic and biomedical applications. Nanomedicine 2021, 32, 102331. [Google Scholar] [CrossRef] [PubMed]
- Raeisi, M.; Alijani, H.Q.; Peydayesh, M.; Khatami, M.; Bagheri Baravati, F.; Borhani, F.; Šlouf, M.; Soltaninezhad, S. Magnetic cobalt oxide nanosheets: Green synthesis and in vitro cytotoxicity. Bioprocess. Biosyst. Eng. 2021, 44, 1423–1432. [Google Scholar] [CrossRef] [PubMed]
- Jang, E.; Ryu, B.H.; Shim, H.W.; Ju, H.; Kim, D.W.; Kim, T.D. Adsorption of microbial esterases on Bacillus subtilis-templated cobalt oxide nanoparticles. Int J. Biol Macromol 2014, 65, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Allen, M.; Willits, D.; Young, M.; Douglas, T. Constrained synthesis of cobalt oxide nanomaterials in the 12-subunit protein cage from Listeria innocua. Inorg. Chem. 2003, 42, 6300–6305. [Google Scholar] [CrossRef]
- Vijayanandan, A.S.; Balakrishnan, R.M. Impact of precursor concentration on biological synthesis of cobalt oxide nanoparticles. Data Brief. 2018, 19, 1941–1947. [Google Scholar] [CrossRef] [PubMed]
- Omran, B.A.; Nassar, H.N.; Younis, S.A.; El-Salamony, R.A.; Fatthallah, N.A.; Hamdy, A.; El-Shatoury, E.H.; El-Gendy, N.S. Novel mycosynthesis of cobalt oxide nanoparticles using Aspergillus brasiliensis ATCC 16404-optimization, characterization and antimicrobial activity. J. Appl. Microbiol. 2020, 128, 438–457. [Google Scholar] [CrossRef]
- Kim, H.; Bang, K.M.; Ha, H.; Cho, N.H.; Namgung, S.D.; Im, S.W.; Cho, K.H.; Kim, R.M.; Choi, W.I.; Lim, Y.C.; et al. Tyrosyltyrosylcysteine-Directed Synthesis of Chiral Cobalt Oxide Nanoparticles and Peptide Conformation Analysis. ACS Nano. 2021, 15, 979–988. [Google Scholar] [CrossRef]
- Al Samri, M.T.; Silva, R.; Almarzooqi, S.; Albawardi, A.; Othman, A.R.; Al Hanjeri, R.S.; Al Dawaar, S.K.; Tariq, S.; Souid, A.K.; Asefa, T. Lung toxicities of core-shell nanoparticles composed of carbon, cobalt, and silica. Int. J. Nanomed. 2013, 8, 1223–1244. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.; Zhen, X.; Jiang, X. Development of mesoporous silica-based nanoprobes for optical bioimaging applications. Biomater. Sci. 2021, 9, 3603–3620. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Xu, Y.; Huang, J.; Li, Y.; Wang, L.; Yang, L.; Mao, H. Going even smaller: Engineering sub-5 nm nanoparticles for improved delivery, biocompatibility, and functionality. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020, 12, e1644. [Google Scholar] [CrossRef]
- Chen, X.; Zhao, X.; Wang, G. Review on marine carbohydrate-based gold nanoparticles represented by alginate and chitosan for biomedical application. Carbohydr. Polym. 2020, 244, 116311. [Google Scholar] [CrossRef]
- da Silva, A.B.; Rufato, K.B.; de Oliveira, A.C.; Souza, P.R.; da Silva, E.P.; Muniz, E.C.; Vilsinski, B.H.; Martins, A.F. Composite materials based on chitosan/gold nanoparticles: From synthesis to biomedical applications. Int. J. Biol. Macromol. 2020, 161, 977–998. [Google Scholar] [CrossRef]
- Khan, F.A.; Albalawi, R.; Pottoo, F.H. Trends in targeted delivery of nanomaterials in colon cancer diagnosis and treatment. Med. Res. Rev. 2021. [Google Scholar] [CrossRef] [PubMed]
- Munteanu, C.R.; Suntharalingam, K. Advances in cobalt complexes as anticancer agents. Dalton Trans. 2015, 44, 13796–13808. [Google Scholar] [CrossRef] [PubMed]
- Thamilarasan, V.; Sengottuvelan, N.; Sudha, A.; Srinivasan, P.; Chakkaravarthi, G. Cobalt (III) complexes as potential anticancer agents: Physicochemical, structural, cytotoxic activity and DNA/protein interactions. J. Photochem. Photobiol. B 2016, 162, 558–569. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cao, Z.; Yu, L.; Huang, Q.; Zhu, D.; Lu, C.; Lu, A.; Liu, Y. Hierarchical drug release designed Au @PDA-PEG-MTX NPs for targeted delivery to breast cancer with combined photothermal-chemotherapy. J. Nanobiotech. 2021, 19, 143. [Google Scholar] [CrossRef] [PubMed]
- Vinardell, M.P.; Mitjans, M. Antitumor activities of metal oxide nanoparticles. Nanomaterials 2015, 5, 1004–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alghamdi, N.J.; Balaraman, L.; Emhoff, K.A.; Salem, A.M.H.; Wei, R.; Zhou, A.; Boyd, W.C. Cobalt (II) Diphenylazodioxide Complexes Induce Apoptosis in SK-HEP-1 Cells. ACS Omega 2019, 4, 14503–14510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demin, A.M.; Pershina, A.G.; Minin, A.S.; Mekhaev, A.V.; Ivanov, V.V.; Lezhava, S.P.; Zakharova, A.A.; Byzov, I.V.; Uimin, M.A.; Krasnov, V.P.; et al. PMIDA-Modified Fe3O4 Magnetic Nanoparticles: Synthesis and Application for Liver MRI. Langmuir 2018, 34, 3449–3458. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Dash, S.K.; Tripathy, S.; Pramanik, P.; Roy, S. Phosphonomethyl iminodiacetic acid-conjugated cobalt oxide nanoparticles liberate Co(++) ion-induced stress associated activation of TNF-alpha/p38 MAPK/caspase 8-caspase 3 signaling in human leukemia cells. J. Biol. Inorg. Chem. 2015, 20, 123–141. [Google Scholar] [CrossRef]
- Fishman, M.A. Th1/Th2 Differentiation and Cross-regulation. Bull. Math. Biol. 1999, 61, 403–436. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Dash, S.K.; Kar Mahapatra, S.; Tripathy, S.; Ghosh, T.; Das, B.; Das, D.; Pramanik, P.; Roy, S. Chitosan-modified cobalt oxide nanoparticles stimulate TNF-alpha-mediated apoptosis in human leukemic cells. J. Biol. Inorg. Chem. 2014, 19, 399–414. [Google Scholar] [CrossRef]
- Arsalan, N.; Hassan Kashi, E.; Hasan, A.; Edalat Doost, M.; Rasti, B.; Ahamad Paray, B.; Zahed Nakhjiri, M.; Sari, S.; Sharifi, M.; Shahpasand, K.; et al. Exploring the interaction of cobalt oxide nanoparticles with albumin, leukemia cancer cells and pathogenic bacteria by multispectroscopic, docking, cellular and antibacterial approaches. Int. J. Nanomed. 2020, 15, 4607–4623. [Google Scholar] [CrossRef]
- Ferro, A.; Rosato, V.; Rota, M.; Costa, A.R.; Morais, S.; Pelucchi, C.; Johnson, K.C.; Hu, J.; Palli, D.; Ferraroni, M.; et al. Meat intake and risk of gastric cancer in the stomach cancer pooling (StoP) project. Int. J. Cancer 2020, 147, 45–55. [Google Scholar] [CrossRef]
- Dutta, B.; Nema, A.; Shetake, N.G.; Gupta, J.; Barick, K.C.; Lawande, M.A.; Pandey, B.N.; Priyadarsini, I.K.; Hassan, P.A. Glutamic acid-coated Fe3O4 nanoparticles for tumor-targeted imaging and therapeutics. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 112, 110915. [Google Scholar] [CrossRef]
- Meng, W.; Xiaojun, Y. Cisplatin-induced ototoxicity in children with solid tumor. J. Pediatr. Hematol. Oncol. 2018, 4, e97–e100. [Google Scholar]
- Saad, S.Y.; Najjar, T.A.; Alashari, M. Role of non-selective adenosine receptor blockade and phosphodiestersae inhibition in cisplatin-induced nephrogonadal toxicity in rats. Clin. Exp. Pharmacol. Physiol. 2004, 31, 862–867. [Google Scholar] [CrossRef]
- Ertugrul, M.S.; Nadaroglu, H.; Nalci, O.B.; Hacimuftuoglu, A.; Alayli, A. Preparation of CoS nanoparticles-cisplatin bio-conjugates and investigation of their effects on SH-SY5Y neuroblastoma cell line. Cytotechnology 2020, 72, 885–896. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Roy, S. Antigen conjugated nanoparticles reprogrammed the tumor-conditioned macrophages toward pro-immunogenic type through regulation of NADPH oxidase and p38MAPK. Cytokine 2019, 113, 162–176. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Wang, J.; Qiu, J.; Liu, H.; Wang, Y.; Cui, Y.; Humphry, R.; Wang, N.; DurKan, C.; Chen, Y.; et al. Nanoparticles retard immune cells recruitment in vivo by inhibiting chemokine expression. Biomaterials 2021, 265, 120392. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, S.; Dash, S.K.; Mandal, D.; Das, B.; Tripathy, S.; Dey, A.; Pramanik, P.; Roy, S. Metal based nanoparticles as cancer antigen delivery vehicles for macrophage based antitumor vaccine. Vaccine 2016, 34, 957–967. [Google Scholar] [CrossRef]
- DeLong, R.K.; Comer, J.; Mathew, E.N.; Jaberi-Douraki, M. Comparative molecular immunological activity of physiological metal oxide nanoparticle and its anticancer peptide and rna complexes. Nanomaterials 2019, 9, 1670. [Google Scholar] [CrossRef] [Green Version]
- Choi, A.M.; Ryter, S.W.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 2013, 368, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Folkerts, H.; Hilgendorf, S.; Vellenga, E.; Bremer, E.; Wiersma, V.R. The multifaceted role of autophagy in cancer and the microenvironment. Med. Res. Rev. 2019, 39, 517–560. [Google Scholar] [CrossRef]
- Zhou, Z.; Yan, Y.; Hu, K.; Zou, Y.; Li, Y.; Ma, R.; Zhang, Q.; Cheng, Y. Autophagy inhibition enabled efficient photothermal therapy at a mild temperature. Biomaterials 2017, 141, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Bhat, P.; Kriel, J.; Shubha Priya, B.; Basappa; Shivananju, N.S.; Loos, B. Modulating autophagy in cancer therapy: Advancements and challenges for cancer cell death sensitization. Biochem. Pharmacol. 2018, 147, 170–182. [Google Scholar] [CrossRef]
- Cordani, M.; Somoza, A. Targeting autophagy using metallic nanoparticles: A promising strategy for cancer treatment. Cell. Mol. Life Sci. 2019, 76, 1215–1242. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.; Hou, Z.; Wang, M.; Wang, M.; Dang, P.; Liu, J.; Shu, M.; Ding, B.; Al Kheraif, A.A.; Li, C.; et al. Cu2MoS4 /Au heterostructures with enhanced catalase-like activity and photoconversion efficiency for primary/metastatic tumors eradication by phototherapy-induced immunotherapy. Small 2020, 16, e1907146. [Google Scholar] [CrossRef]
- Hessel, C.M.; Pattani, V.P.; Rasch, M.; Panthani, M.G.; Koo, B.; Tunnell, J.W.; Korgel, B.A. Copper selenide nanocrystals for photothermal therapy. Nano. Lett. 2011, 11, 2560–2566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, P.; Lin, J.; Li, W.; Rong, P.; Wang, Z.; Wang, S.; Wang, X.; Sun, X.; Aronova, M.; Niu, G.; et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angew. Chem. Int. Ed. 2013, 52, 13958–13964. [Google Scholar] [CrossRef]
- Cheng, X.; Wei, J.; Ge, Q.; Xing, D.; Zhou, X.; Qian, Y.; Jiang, G. The optimized drug delivery systems of treating cancer bone metastatic osteolysis with nanomaterials. Drug. Deliv. 2021, 28, 37–53. [Google Scholar] [CrossRef]
- Dheer, D.; Nicolas, J.; Shankar, R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv. Drug. Deliv. Rev. 2019, 151–152, 130–151. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Ni, Q.; Wang, Y.; Zhang, Y.; He, H.; Gao, D.; Ma, X.; Liang, X.J. Nanoscale drug delivery systems for controllable drug behaviors by multi-stage barrier penetration. J. Control. Release 2021, 331, 282–295. [Google Scholar] [CrossRef]
- Ren, Q.; Yang, K.; Zou, R.; Wan, Z.; Shen, Z.; Wu, G.; Zhou, Z.; Ni, Q.; Fan, W.; Hu, J.; et al. Biodegradable hollow manganese/cobalt oxide nanoparticles for tumor theranostics. Nanoscale 2019, 11, 23021–23026. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Gong, L.; Zhang, S.; Xu, G.; Li, Y.; Hong, Z.; Lin, Y. All-in-one bioprobe devised with hierarchical-ordered magnetic NiCo2O4 superstructure for ultrasensitive dual-readout immunosensor for logic diagnosis of tumor marker. Biosens. Bioelectron. 2016, 77, 928–935. [Google Scholar] [CrossRef]
- Zhang, W.; Dong, J.; Wu, Y.; Cao, P.; Song, L.; Ma, M.; Gu, N.; Zhang, Y. Shape-dependent enzyme-like activity of Co3O4 nanoparticles and their conjugation with his-tagged EGFR single-domain antibody. Colloids Surf. B Biointerfaces 2017, 154, 55–62. [Google Scholar] [CrossRef]
- Bastide, K.; Ugolin, N.; Levalois, C.; Bernaudin, J.F.; Chevillard, S. Are adenosquamous lung carcinomas a simple mix of adenocarcinomas and squamous cell carcinomas, or more complex at the molecular level? Lung Cancer 2010, 68, 1–9. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Li, F.; Feng, J.; Li, M.; Chen, L.; Dong, Y. Ultrasensitive electrochemical immunosensor for quantitative detection of SCCA using Co3O4@CeO2-Au@Pt nanocomposite as enzyme-mimetic labels. Biosens. Bioelectron. 2017, 92, 33–39. [Google Scholar] [CrossRef] [PubMed]
- DeLong, R.K.; Mitchell, J.A.; Morris, R.T.; Comer, J.; Hurst, M.N.; Ghosh, K.; Wanekaya, A.; Mudge, M.; Schaeffer, A.; Washington, L.L.; et al. Enzyme and cancer cell selectivity of nanoparticles: Inhibition of 3d metastatic phenotype and experimental melanoma by zinc oxide. J. Biomed. Nanotech. 2017, 13, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Ren, T.; Zhu, N.; Yu, Q.; Li, M. Co3O4 nanoparticles at sublethal concentrations inhibit cell growth by impairing mitochondrial function. Biochem. Biophys. Res. Commun. 2018, 505, 775–780. [Google Scholar] [CrossRef]
- Uboldi, C.; Orsiere, T.; Darolles, C.; Aloin, V.; Tassistro, V.; George, I.; Malard, V. Poorly soluble cobalt oxide particles trigger genotoxicity via multiple pathways. Part. Fibre. Toxicol. 2016, 13, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, M.D.; Hur, M.; Chen, J.J.; Bhatti, M.T. Cobalt toxic optic neuropathy and retinopathy: Case report and review of the literature. Am. J. Ophthalmol. Case Rep. 2020, 17, 100606. [Google Scholar] [CrossRef]
- Leyssens, L.; Vinck, B.; Van Der Straeten, C.; Wuyts, F.; Maes, L. Cobalt toxicity in humans-A review of the potential sources and systemic health effects. Toxicology 2017, 387, 43–56. [Google Scholar] [CrossRef]
Synthesis Method | Principle | Advantages and Limitations | Typical Reference | Size (nm) | Structure or Shape |
---|---|---|---|---|---|
Chemical precipitation | The cobalt precursor and the precipitant solution are mixed and stirred first, then centrifuged, dried to collect the precipitates and then heated to obtain cobalt oxide nanoparticles. | This method is simple and easy. The prepared nanoparticles have high antibacterial and anticancer activity; however, the prepared nanoparticles have low purity and large particle radius. | [7] | 27 | Spinel structure |
[19] | 20−25 | Non-spherical, irregular-shaped | |||
[10] | Spherical, cuboidal or hexagonal | ||||
[24] | <100 | Quasi-spherical | |||
[26] | 40−60 | Spherical | |||
Chemical reduction | The reducing agent is chemically reduced with the metal salt solution. | The particles are basically spherical with good dispersibility. The process can be controlled, but the particle radius is large. | [27] | 60 ± 6 | Spherical |
Thermal decomposition | Compound is decomposed at high temperature to prepare cobalt oxide nanopowder. | This method can quickly produce cobalt oxide nanoparticles but requires a higher temperature. | [23,25,28] | <100 | Spherical |
Template synthesis | Using the voids in the matrix as a template for synthesis. | This method obtained nanoparticles with uniform size and periodic configuration in space. | [29] | ~6 | Hollow |
Microemulsion method | The immiscible solvents form emulsions under the action of surfactants and form nuclei in the “microbubbles”, coalesce, agglomerate and heat-treat to obtain nanoparticles. | The nanoparticles have small average particle size and high stability. | [30] | 1−5 | Spherical |
Supercritical water hydrothermal synthesis | In the critical state, the gas and liquid phases of the removed liquid no longer coexist during the solvent removal process, thereby eliminating surface tension and capillary as a force to prevent the gel structure from collapsing and agglomerating and obtaining ultrafine oxides. | The prepared cobalt oxide nanoparticles have high surface area and have adjuvant activity under certain conditions. | [31] | 6.9−32.5 | NA |
Low-temperature synthesis in ionic liquids | Ionic liquids are used as stabilizers or structure-directing agents to synthesize nanoparticles with specific shapes, sizes and structures in a low-temperature environment. | This method avoids high-temperature calcination and hydroxide formation, resulting in a narrow size distribution of nanoparticles. | [32] | 4 | Monocrystalline |
Laser fragmentation | Cobalt oxide nanoparticles are produced by pulsed laser fragmentation of liquid (PLFL) in a flowing water system. | It is simple and sustainable, and the produced nanoparticles have high surface area and strong catalytic activity. | [33] | <5 | Spinel structure |
Plant-mediated synthesis | Using plants as raw materials to prepare nanoparticles through co-precipitation, fractionation, typical reactions, etc. | The method is reliable, efficient and reduces the physical and chemical burden. The prepared nanoparticles have good catalytic activity, anti-microorganism, antifungal or anticancer activity. | [18] | <100 | |
[34] | Rhombus-shaped | ||||
[36] | <100 | Bead-shaped, crystal-shaped or cube-shaped | |||
[37] | 41 ± 3.0 | Nearly spherical | |||
[38] | ~10 | Cubic-phase structure | |||
Bacteria-mediated synthesis | Using bacteria or bacterial components as templates to synthesize nanoparticles at different temperatures. | The method is environmental. Raw materials are easy to obtain but may introduce contamination. | [39] | ~5 | Rod-shaped |
[40] | 5 | Crystal-shaped | |||
Fungi-mediated synthesis | Fungi are used as reducing media to synthesize nanoparticles in the presence of precursor solutions. | This method is safe and environmentally friendly. Fungi are easy to obtain and cultivate. | [41] | 10−30 | Predominantly spherical |
[42] | 20−27 | Quasi-spherical | |||
Biological-molecules-mediated synthesis | Nanoparticles were synthesized using biomolecules as medium. | A safe, environment-friendly and sustainable preparation method. The prepared nanoparticles have good biocompatibility and catalytic activity. | [43] | <50 | Spinel |
Complex Form | Cobalt Complexes | Application | Insufficient | Implications for Nano Cobalt Oxide | Reference |
---|---|---|---|---|---|
Cobalt–Schiff-base complex | Cobalt (II) complex containing 2,6-bis (2,6-diethylthio-aminomethyl) pyridine | Anti-colorectal adenocarcinoma (HCT-15) and cervical adenocarcinoma (HELA) cells | 1. The biological activities of cobalt–Schiff-base complexes vary, requiring systematic structure–activity relationship studies to determine the true pharmaceutical potential of these compounds. 2. Although this compound has a good performance in inducing DNA damage and apoptosis of cancer cells, the use of concentration still needs to be studied. | / | [50] |
Cobalt (III) complex containing three Schiff-base ligands derived from the reaction of salicylaldehyde and ethylenediamine | Anti-human breast cancer cells (moderate activity) | / | |||
Cobalt–carbonyl clusters | Co-ass [Co2(CO)] complex with acetylene-containing aspirin derivatives | When combined with imatinib, it showed inhibition of proliferation of acute and chronic myelogenous leukemia cells | 1. Weak ability to inhibit cancer cells. 2. The anticancer potential and in vitro COX inhibition of these compounds cannot be evaluated because no cell-based studies have been reported. | / | [50] |
Cobalt (II) complexes bind to non-steroidal anti-inflammatory drugs (NSAIDs) | They showed strong affinity for biphasic DNA and HSA | / | |||
Preparation of hypoxia selective prodrugs | Cobalt(III)-mustard agents | Hypoxic cancer cells | In vivo studies showed metabolic instability and high systemic toxicity. | 1. Given that many tumors are acidic and hypoxic, this strategy may be very useful in the development of new tumor-specific delivery systems. 2. The complexation of curcumin ligand to CO(III)-TPA enables better provision of cobalt protein, uniform delivery of curcumin ligand throughout the tumor model and free curcumin that accumulates in the outer edge. | [50] |
Cobalt (III) complexes as bioactive ligands | A longer administration time is needed to test the true efficacy of the complex. | ||||
CO (III)-1,4,7,10-Tetraazadecane (cyclonin) complex | Stability and hypoxia selectivity need to be improved. | ||||
CO (III) -cyclam-azaCBI | In view of the test results, the identity of the reductase or non-enzymatic reductant responsible for reducing these complexes is still unknown. | ||||
Cobalt (III) complex for imaging hypoxic areas | Cobalt (III) complexes are thought to produce unstable cobalt (II) complexes and the release of one or more biologically active ligands. However, the exact mechanism that activates this process is still elusive. | ||||
Cobalt-containing cobalamin | Cobalamin-Chlormagnesium Biological Heterocyclic Protein | Nano-toxicity of breast cancer and melanoma cancer cells | IC50 value is 10 times higher than free serum curve. | Nitric oxide (NO) transfers to cancer cells in the form of nitrocobalamin. Extensive cytotoxic studies have shown that nitrosocobalamin preferentially kills cancer cells. It has good application prospects in hard-to-reach areas in the body. | [50] |
Cobalamin | Used to transport small gas molecules of high significance | / | |||
Diphenylhydrazine cobalt (II) complex | Co(II)complex [Co(bpy)(az)2](PF6)2 and [Co(az)4](PF6) | Apoptosis of SKHEP-1 cells was induced | The pharmacokinetics of the complex against cancer need to be tested to detect changes in the proteins associated with apoptosis of cancer cells. | / | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, H.; Wang, J.; Zhang, J.; Cai, J.; Pi, J.; Xu, J.-F. Inspirations of Cobalt Oxide Nanoparticle Based Anticancer Therapeutics. Pharmaceutics 2021, 13, 1599. https://doi.org/10.3390/pharmaceutics13101599
Huang H, Wang J, Zhang J, Cai J, Pi J, Xu J-F. Inspirations of Cobalt Oxide Nanoparticle Based Anticancer Therapeutics. Pharmaceutics. 2021; 13(10):1599. https://doi.org/10.3390/pharmaceutics13101599
Chicago/Turabian StyleHuang, Huanshao, Jiajun Wang, Junai Zhang, Jiye Cai, Jiang Pi, and Jun-Fa Xu. 2021. "Inspirations of Cobalt Oxide Nanoparticle Based Anticancer Therapeutics" Pharmaceutics 13, no. 10: 1599. https://doi.org/10.3390/pharmaceutics13101599
APA StyleHuang, H., Wang, J., Zhang, J., Cai, J., Pi, J., & Xu, J. -F. (2021). Inspirations of Cobalt Oxide Nanoparticle Based Anticancer Therapeutics. Pharmaceutics, 13(10), 1599. https://doi.org/10.3390/pharmaceutics13101599