Enhanced Stability and Bioactivity of Natural Anticancer Topoisomerase I Inhibitors through Cyclodextrin Complexation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instruments and Materials
2.2. Complexation Studies in Solution
2.3. Synthesis and Isolation of Inclusion Complexes and Their NMR Characterization
2.4. Computational Study of the Alkaloid-CD Complexes
2.5. Verification of the Formation of Inclusion Complexes by UV-Vis Absorption and Fluorescence Spectrometries
2.6. HPLC-FL Evaluation of the Stability of Camptothecin Inclusion Complexes
2.7. Cell Lines Culture
2.8. Cytotoxic Effects of the Alkaloid-CD Complexes
3. Results and Discussion
3.1. Studies of Supramolecular Complex Formation in Solution
3.2. NMR Characterization of the Cyclodextrin Complexes
3.3. Computational Study of the Alkaloid-Cyclodextrin Complexes
3.4. Study of the Inclusion Complexes by UV-VIS Absorption and Fluorescence Emission
3.5. HPLC-FL Evaluation of the Stability of Camptothecin Inclusion Complexes
3.6. Effect of Cyclodextrin Complexation on the Cytotoxicity of Camptothecin and Luotonin A
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hevener, K.E.; Verstak, T.A.; Lutat, K.E.; Riggsbee, D.L.; Mooney, J.W. Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm. Sin. B. 2018, 8, 844–861. [Google Scholar] [CrossRef] [PubMed]
- Avendaño, C.; Menéndez, J.C. Medicinal Chemistry of Anticancer Drugs; Elsevier: Amsterdam, The Netherlands, 2015; Chapter 7. [Google Scholar]
- Venditto, V.J.; Simanek, E.E. Cancer therapies utilizing the camptothecins: A review of the in vivo literature. Mol. Pharm. 2010, 7, 307–349. [Google Scholar] [CrossRef] [Green Version]
- Malgorzata, N.D.; Agama, K.; Wakelin, L.P.G.; Pommier, Y.; Griffith, R. Exploring DNA topoisomerase I ligand space in search of novel anticancer agents. PLoS ONE 2011, 6, e25150. [Google Scholar]
- Li, Q.-Y.; Zu, Y.-G.; Shi, R.-Z.; Yao, L.-P. Review camptothecin: Current perspectives. Curr. Med. Chem. 2006, 13, 2021–2039. [Google Scholar] [CrossRef] [PubMed]
- Kacprzak, K.M. Chemistry and biology of camptothecin and its derivatives. In Natural Products; Ramawat, K., Mérillon, J.M., Eds.; Springer: Berlin, Germany, 2013. [Google Scholar]
- Thambi, T.; Yoon, H.Y.; Kim, K.; Kwon, I.C.; Yoo, C.K.; Park, J.H. Bioreducible block copolymers based on poly(ethyleneglycol) and poly(γ-benzyl L-glutamate) for intracellular delivery of camptothecin. Bioconjug. Chem. 2011, 22, 1924–1931. [Google Scholar] [CrossRef]
- Galbiati, A.; Tabolacci, C.; Della Rocca, B.M.; Mattioli, P.; Beninati, S.; Paradossi, G.; Desideri, A. Targeting tumor cells through chitosan-folate modified microcapsules loaded with camptothecin. Bioconjug. Chem. 2011, 22, 1066–1072. [Google Scholar] [CrossRef]
- Botella, P.; Abasolo, I.; Fernández, Y.; Muniesa, C.; Miranda, S.; Quesada, M.; Ruiz, J.; Schwartz, S.J.; Corma, A. Surface-modified silica nanoparticles for tumor-targeted delivery of camptothecin and its biological evaluation. J. Controll. Release 2011, 156, 246–257. [Google Scholar] [CrossRef]
- Aydin, A.; Sipahi, H.; Charehsaz, M. Nanoparticles toxicity and their routes of exposures. In Recent Advances in Novel Drug Carrier Systems; Sezer, A.D., Ed.; IntechOpen: London, UK, 2012. [Google Scholar]
- Liang, J.L.; Cha, H.C.; Jahng, Y. Recent advances in the studies on luotonins. Molecules 2011, 16, 4861–4883. [Google Scholar] [CrossRef] [Green Version]
- Cagir, A.; Eisenhauer, B.M.; Gao, R.; Thomas, S.J.; Hecht, S.M. Synthesis and topoisomerase I inhibitory properties of luotonin A analogues. Bioorg. Med. Chem. 2004, 12, 6287–6299. [Google Scholar] [CrossRef]
- Golubev, A.S.; Bogomolov, V.O.; Shidlovskii, A.F.; Dezhenkova, L.G.; Peregudov, A.S.; Shtil, A.A.; Chkanikov, N.D. Synthesis of fluoromethyl-containing analogs of antitumor alkaloid luotonin A. Russ. Chem. Bull. 2010, 59, 209–218. [Google Scholar] [CrossRef]
- González-Ruiz, V.; Pascua, I.; Fernández-Marcelo, T.; Ribelles, P.; Bianchini, G.; Sridharan, V.; Iniesta, P.; Ramos, M.T.; Olives, A.I.; Martín, M.A.; et al. B-ring-aryl substituted luotonin A analogues with a new binding mode to the topoisomerase 1-DNA complex show enhanced cytotoxic activity. PLoS ONE 2014, 9, e095998. [Google Scholar] [CrossRef] [Green Version]
- Almansour, A.I.; Arumugam, N.; Suresh Kumar, R.; Mahalingam, S.M.; Sau, S.; Bianchini, G.; Menéndez, J.C.; Altaf, M.; Ghabbour, A. Design, synthesis and antiproliferative activity of decarbonyl luotonin analogues. Eur. J. Med. Chem. 2017, 138, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Almansour, A.I.; Suresh Kumar, R.; Arumugam, N.; Bianchini, G.; Menéndez, J.C.; Mohammad, F.; Dupadahalli, K.; Altaf, M. D-ring-modified analogues of luotonin A with reduced planarity: Design, synthesis, and evaluation of their topoisomerase inhibition-associated cytotoxicity. BioMed Res. Int. 2019, 2019, 2514524. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.-Z.; Zhang, J.; Peng, J.-W.; Zhang, Z.-J.; Zhao, W.-B.; Wang, R.-X.; Ma, K.-Y.; Li, J.-C.; Liu, Y.-Q.; Zhao, Z.-M.; et al. Discovery of luotonin A analogues as potent fungicides and insecticides: Design 4524, synthesis and biological evaluation inspired by natural alkaloid. Eur. J. Med. Chem. 2020, 194, 112253. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Wang, K.; Wang, Z.; Liu, Y.; Ma, D.; Wang, Q. Luotonin A and its derivatives as novel antiviral and antiphytopathogenic fungus agents. J. Agric. Food Chem. 2020, 68, 8764–8773. [Google Scholar] [CrossRef] [PubMed]
- Uekama, K.; Hirayama, F. Improvement of drug properties by cyclodextrins. In The practice of Medicinal Chemistry, 3rd ed.; Wermuth, C.G., Ed.; Academic Press: Cambridge, MA, USA, 2008; pp. 813–839. [Google Scholar]
- Qiu, N.; Li, X.; Liu, J. Application of cyclodextrins in cancer treatment. J. Incl. Phenom. Macrocycl. Chem. 2017, 89, 229–246. [Google Scholar] [CrossRef]
- Gidwani, B.; Vyas, A. A comprehensive review on cyclodextrin-based carriers for delivery of chemotherapeutic cytotoxic anticancer drugs. BioMed Res. Int. 2015, 2015, 198268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of cyclodextrins and drug/cyclodextrin complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popielec, A.; Loftsson, T. Effects of cyclodextrins on the chemical stability of drugs. Int. J. Pharm. 2017, 531, 532–542. [Google Scholar] [CrossRef]
- Diniz, T.C.; Pinto, T.C.C.; Menezes, P.P.; Silva, J.C.; Teles, R.B.A.; Ximenes, R.C.C.; Guimarães, A.G.; Serafini, M.R.; Araújo, A.A.S.; Quintans, L.J.; et al. Cyclodextrins improving the physicochemical and pharmacological properties of antidepressant drugs: A patent review. Expert Opin. Ther. Pat. 2018, 28, 81–92. [Google Scholar] [CrossRef]
- Li, X.; Uehara, S.; Sawangrat, K.; Morishita, M.; Kusamori, K.; Katsumi, H.; Sakane, T.; Yamamoto, A. Improvement of intestinal absorption of curcumin by cyclodextrins and the mechanisms underlying absorption enhancement. Int. J. Pharm. 2018, 535, 340–349. [Google Scholar] [CrossRef]
- Popielec, A.; Agnes, M.; Yannakopoulou, K.; Fenyvesi, É.; Loftsson, T. Effect of β- and γ-cyclodextrins and their methylated derivatives on the degradation rate of benzylpenicillin. J. Incl. Phenom. Macrocycl. Chem. 2018, 91, 199–209. [Google Scholar] [CrossRef]
- Malaquias, L.F.B.; Sá-Barreto, L.C.L.; Freire, D.O.; Silva, I.C.R.; Karan, K.; Durig, T.; Lima, E.M.; Marreto, R.N.; Gelfuso, G.M.; Gratieri, T.; et al. Taste masking and rheology improvement of drug complexed with beta-cyclodextrin and hydroxypropyl-β-cyclodextrin by hot-melt extrusion. Carbohydr. Polym. 2018, 185, 19–26. [Google Scholar] [CrossRef]
- Chattah, A.K.; Pfund, L.Y.; Zoppi, A.; Longhi, M.R.; Garnero, C. Toward novel antiparasitic formulations: Complexes of albendazole desmotropes and β-cyclodextrin. Carbohydr. Polym. 2017, 164, 379–385. [Google Scholar] [CrossRef]
- Michalska, P.; Wojnicz, A.; Ruiz-Nuño, A.; Abril, S.; Buendia, I.; León, R. Inclusion complex of ITH12674 with 2-hydroxypropyl-β-cyclodextrin: Preparation, physical characterization and pharmacological effect. Carbohydr. Polym. 2017, 157, 94–104. [Google Scholar] [CrossRef]
- Yee, E.M.H.; Hook, J.M.; Bhadbhade, M.M.; Vittorio, O.; Kuchel, R.P.; Brandl, M.B.; Tilley, R.D.; Black St, C.D.; Kumar, N. Preparation, characterization and in vitro biological evaluation of (1:2) phenoxodiol-β-cyclodextrin complex. Carbohydr. Polym. 2017, 165, 444–454. [Google Scholar] [CrossRef] [PubMed]
- Braga Carneiro, S.; Costa Duarte, F.Í.; Heimfarth, L.; de Souza Siqueira Quintans, J.; Quintans-Júnior, L.J.; Florêncio da Veiga Júnior, V.; Neves de Lima, A.A. Cyclodextrin–drug inclusion complexes: In vivo and in vitro approaches. Int. J. Mol. Sci. 2019, 20, 642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Cáceres, M.I.; Bohoyo, D.; Durán-Merás, I.; Hurtado, M.C. Spectrofluorimetric determination of SN-38, a promising new anti-tumor agent, in the presence and absence of organized media. Appl. Spectrosc. 2011, 65, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Foulon, C.; Tedou, J.; Queruau Lamerie, T.; Vaccher, C.; Bonte, J.P.; Goossens, J.F. Assessment of the complexation degree of camptothecin derivatives and cyclodextrins using spectroscopic and separative methodologies. Tetrahedron Asymmetry 2009, 20, 2482–2489. [Google Scholar] [CrossRef]
- Kang, J.; Kumar, V.; Yang, D.; Chowdhury, P.R.; Hohl, R.J. Cyclodextrin complexation: Influence on the solubility, stability, and cytotoxicity of camptothecin, an antineoplastic agent. Eur. J. Pharm. Sci. 2002, 15, 163–170. [Google Scholar] [CrossRef]
- Sætern, A.M.; Nguyen, N.B.; Bauer-Brandl, A.; Brandl, M. Effect of hydroxypropyl- β-cyclodextrin complexation and pH on solubility of camptothecin. Int. J. Pharm. 2004, 284, 61–68. [Google Scholar] [CrossRef]
- Cheng, J.G.; Yu, H.-J.; Chen, Y.; Liu, Y. Selective binding and controlled release of anticancer drugs by polyanionic cyclodextrins. Bioorg. Med. Chem. 2018, 26, 2287–2290. [Google Scholar] [CrossRef]
- Jiang, Y.; Sha, X.; Zhang, W.; Fang, X. Complex of 9-nitro-camptothecin in hydroxypropyl-β-cyclodextrin: In vitro and in vivo evaluation. Int. J. Pharm. 2010, 397, 116–121. [Google Scholar] [CrossRef]
- Jiang, Y.; Jiang, X.; Law, K.; Chen, Y.; Gu, J.; Zhang, W.; Xin, H.; Sha, X.; Fang, X. Enhanced anti-tumor effect of 9-nitro-camptothecin complexed by hydroxypropyl-β-cyclodextrin and safety evaluation. Int. J. Pharm. 2011, 415, 252–258. [Google Scholar] [CrossRef] [PubMed]
- Ünal, H.; Öztürk, N.; Bilensoy, E. Formulation development, stability and anticancer efficacy of core-shell cyclodextrin nanocapsules for oral chemotherapy with camptothecin. Beilstein J. Org. Chem. 2015, 11, 204–212. [Google Scholar] [CrossRef] [PubMed]
- Çirpanli, Y.; Bilensoy, E.; Doğan, A.L.; Çaliș, S. Comparative evaluation of polymeric and amphiphilic cyclodextrin nanoparticles for effective camptothecin delivery. Eur. J. Pharm. Biopharm. 2009, 73, 82–89. [Google Scholar] [CrossRef] [PubMed]
- González-Ruiz, V.; Olives, A.I.; Martín, M.A. A down-scaled fluorimetric determination of the solubility properties of drugs to minimize waste generation. Green Chem. 2013, 15, 2558–2565. [Google Scholar] [CrossRef]
- Di Nunzio, M.R.; Cohen, B.; Douhal, A. Structural photodynamics of camptothecin, an anticancer drug in aqueous solutions. J. Phys. Chem. A 2011, 115, 5094–5104. [Google Scholar] [CrossRef]
- González-Ruiz, V.; Mussardo, P.; Corda, E.; Girotti, S.; Olives, A.I.; Martín, M.A. Liquid chromatographic analysis of the anticancer alkaloid luotonin A and some new derivatives in human serum samples. J. Sep. Sci. 2010, 33, 2086–2093. [Google Scholar] [CrossRef] [PubMed]
- Day, J.; Warner, I.M. Exceited state tautomerization of camptothecin in aqueous solution. J. Photochem. Photobiol. A Chem. 1996, 101, 21–27. [Google Scholar] [CrossRef]
- Schalley, C. (Ed.) . Analytical Methods In Supramolecular Chemistry; Wiley-VCH: Hoboken, NJ, USA, 2012. [Google Scholar]
- Connors, K.A. Measurement of cyclodextrin complex stability constants. In Cyclodextrins; Szejtli, J., Osa, T., Eds.; Elsevier: Amsterdam, The Netherlands, 1996. [Google Scholar]
- Martín del Valle, E.M. Cyclodextrins and their uses: A review. Process Biochem. 2004, 39, 1033–1046. [Google Scholar] [CrossRef]
- González-Ruiz, V.; González-Cuevas, Y.; Arunachalam, S.; Martín, M.A.; Olives, A.I.; Ribelles, P.; Ramos, M.T.; Menéndez, J.C. Fluorescence properties of the anti-tumour alkaloid luotonin A and new synthetic analogues: pH modulation as an approach to their fluorimetric quantitation in biological samples. J. Lumin. 2012, 132, 2468–2475. [Google Scholar] [CrossRef]
- Mi, Z.; Burke, T.G. Differential interactions of camptothecine lactone and carboxylate forms with human blood components. Biochemistry 1994, 33, 10325–10336. [Google Scholar] [CrossRef] [PubMed]
- Pistolozzi, M.; Varchi, G.; Degli Esposti, A.; Guerrini, A.; Sotgiu, G.; Ballestri, M.; Ferroni, C.; Venturini, A.; Bertucci, C. Camptothecin and thiocamptothecin: The role of sulfur in shifting the hydrolysis equilibrium towards the closed lactone form. ChemMedChem 2011, 6, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
pH | CPT/β-CD | CPT/HP-β-CD | LUO A/β-CD | LUO A/HP-β-CD |
---|---|---|---|---|
5.5 | 668 (2.82) | 227 (2.35) | 103 (2.01) | 242 (2.38) |
1.0 | 65 (1.81) | 84 (1.92) | 11 (1.04) | 91 (1.95) |
Compound | % Hydrolysis (aq. Ammonia, 15 min) | % Hydrolysis (Serum Albumin, 30 min) |
---|---|---|
Camptothecin (CPT) | 40.2 | 4.98 |
CPT/β-CD complex | 3.4 | 1.72 |
CPT/HPβ-CD complex | 6.7 | 1.38 |
Entry | Compound | AREc32 | H23 | HepG2 | A2780 | SH-SY5Y |
---|---|---|---|---|---|---|
1 | Camptothecin | 0.489 ± 0.040 | 0.233 ± 0.030 | 0.066 ± 0.008 | 0.225 ± 0.074 | 0.023 ± 0.003 |
2 | CPT/β-CD | 0.222 ± 0.040 | 0.058 ± 0.014 | 0.013 ± 0.004 | 0.073 ± 0.041 | 0.009 ± 0.001 |
3 | CPT/HPβ-CD | 0.215 ± 0.029 | 0.030 ± 0.008 | 0.009 ± 0.002 | 0.106 ± 0.022 | 0.014 ± 0.002 |
4 | Luotonin A | 6.800 ± 0.440 | 31.010 ± 3.370 | 21.880 ± 7.700 | 45.570 ± 7.310 | 26.270 ± 6.500 |
5 | Luo A/β-CD | 0.589 ± 0.090 | 18.100 ± 1.770 | 0.796 ± 0.905 | 16.025 ± 2.290 | 7.800 ± 1.505 |
6 | Luo A/HPβ-CD | 0.139 ± 0.010 | 1.047 ± 0.550 | 0.283 ± 0.065 | 9.625 ± 1.770 | 4.620 ± 1.140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Ruiz, V.; Cores, Á.; Martín-Cámara, O.; Orellana, K.; Cervera-Carrascón, V.; Michalska, P.; Olives, A.I.; León, R.; Martín, M.A.; Menéndez, J.C. Enhanced Stability and Bioactivity of Natural Anticancer Topoisomerase I Inhibitors through Cyclodextrin Complexation. Pharmaceutics 2021, 13, 1609. https://doi.org/10.3390/pharmaceutics13101609
González-Ruiz V, Cores Á, Martín-Cámara O, Orellana K, Cervera-Carrascón V, Michalska P, Olives AI, León R, Martín MA, Menéndez JC. Enhanced Stability and Bioactivity of Natural Anticancer Topoisomerase I Inhibitors through Cyclodextrin Complexation. Pharmaceutics. 2021; 13(10):1609. https://doi.org/10.3390/pharmaceutics13101609
Chicago/Turabian StyleGonzález-Ruiz, Víctor, Ángel Cores, Olmo Martín-Cámara, Karen Orellana, Víctor Cervera-Carrascón, Patrycja Michalska, Ana I. Olives, Rafael León, M. Antonia Martín, and J. Carlos Menéndez. 2021. "Enhanced Stability and Bioactivity of Natural Anticancer Topoisomerase I Inhibitors through Cyclodextrin Complexation" Pharmaceutics 13, no. 10: 1609. https://doi.org/10.3390/pharmaceutics13101609
APA StyleGonzález-Ruiz, V., Cores, Á., Martín-Cámara, O., Orellana, K., Cervera-Carrascón, V., Michalska, P., Olives, A. I., León, R., Martín, M. A., & Menéndez, J. C. (2021). Enhanced Stability and Bioactivity of Natural Anticancer Topoisomerase I Inhibitors through Cyclodextrin Complexation. Pharmaceutics, 13(10), 1609. https://doi.org/10.3390/pharmaceutics13101609