Molecular Epidemiology, Antimicrobial Surveillance, and PK/PD Analysis to Guide the Treatment of Neisseria gonorrhoeae Infections
Abstract
:1. Introduction
2. Materials and Methods
2.1. N. gonorrhoeae Isolates
2.2. Antibiotic Susceptibility Testing
2.3. WGS Molecular Epidemiology and Antimicrobial Resistance Determinants
2.4. Pharmacokinetic/Pharmacodynamic (PK/PD) Analysis
3. Results
3.1. N. gonorrhoeae Isolates and Antibiotic Susceptibility Testing
3.2. Genotyping: MLST and NG-MAST
3.3. Antimicrobial Resistance Determinants
3.4. Pharmacokinetic/Pharmacodynamic (PK/PD) Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fasciana, T.; Capra, G.; Di Carlo, P.; Calà, C.; Vella, M.; Pistone, G.; Colomba, C.; Giammanco, A. Socio-Demographic Characteristics and Sexual Behavioral Factors of Patients with Sexually Transmitted Infections Attending a Hospital in Southern Italy. Int. J. Environ. Res. Public Health 2021, 18, 4722. [Google Scholar] [CrossRef]
- World Health Organization, WHO. Antimicrobial Resistance: Global Report on Surveillance; World Health Organization: Geneva, Switzerland, 2014. [Google Scholar]
- Chesson, H.W.; Kirkcaldy, R.D.; Gift, T.L.; Owusu-Edusei, K., Jr.; Weinstock, H.S. Ciprofloxacin resistance and gonorrhea incidence rates in 17 cities, United States, 1991–2006. Emerg. Infect. Dis. 2014, 20, 612–619. [Google Scholar] [CrossRef] [PubMed]
- Hook, E.W., 3rd; Kirkcaldy, R.D. A Brief History of Evolving Diagnostics and Therapy for Gonorrhea: Lessons Learned. Clin. Infect. Dis. 2018, 67, 1294–1299. [Google Scholar] [CrossRef]
- World Health Organization, WHO. Report on Global Sexually Transmitted Infection Surveillance; World Health Organization: Geneva, Switzerland, 2018; Available online: https://www.who.int/reproductivehealth/publications/stis-surveillance-2018/en/ (accessed on 3 August 2021).
- Cole, M.J.; Quinten, C.; Jacobsson, S.; Amato-Gauci, A.J.; Woodford, N.; Spiteri, G.; Unemo, M.; Euro-GASP Network. The European gonococcal antimicrobial surveillance programme (Euro-GASP) appropriately reflects the antimicrobial resistance situation for Neisseria gonorrhoeae in the European Union/European Economic Area. BMC Infect. Dis. 2019, 19, 1040. [Google Scholar] [CrossRef] [PubMed]
- Unemo, M.; Ross, J.; Serwin, A.B.; Gomberg, M.; Cusini, M.; Jensen, J.S. Background review for the ‘2020 European guideline for the diagnosis and treatment of gonorrhoea in adults’. Int. J. STD AIDS 2021, 32, 108–126. [Google Scholar] [CrossRef] [PubMed]
- St Cyr, S.; Barbee, L.; Workowski, K.A.; Bachmann, L.H.; Pham, C.; Schlanger, K.; Torrone, E.; Weinstock, H.; Kersh, E.N.; Thorpe, P. Update to CDC’s Treatment Guidelines for Gonococcal Infection, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1911–1916. [Google Scholar] [CrossRef]
- Unemo, M. Current and future antimicrobial treatment of gonorrhoea—The rapidly evolving Neisseria gonorrhoeae continues to challenge. BMC Infect. Dis. 2015, 15, 364. [Google Scholar] [CrossRef] [Green Version]
- Hook, E.W.; Newman, L.; Drusano, G.; Evans, S.; Handsfield, H.H.; Jerse, A.E.; Kong, F.Y.S.; Lee, J.Y.; Taylor, S.N.; Deal, C. Development of New Antimicrobials for Urogenital Gonorrhea Therapy: Clinical Trial Design Considerations. Clin. Infect Dis. 2020, 70, 1495–1500. [Google Scholar] [CrossRef] [PubMed]
- Asín-Prieto, E.; Rodríguez-Gascón, A.; Isla, A. Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J. Infect. Chemother. 2015, 21, 319–329. [Google Scholar] [CrossRef]
- Caruso, G.; Giammanco, A.; Virruso, R.; Fasciana, T. Current and Future Trends in the Laboratory Diagnosis of Sexually Transmitted Infections. Int. J. Environ. Res. Public Health 2021, 18, 1038. [Google Scholar] [CrossRef]
- The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 10.0. 2020. Available online: http://www.eucast.org (accessed on 3 August 2021).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing, 30th ed.; CLSI Supplement M100; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020. [Google Scholar]
- Lettieri, J.T.; Rogge, M.C.; Kaiser, L.; Echols, R.M.; Heller, A.H. Pharmacokinetic profiles of ciprofloxacin after single intravenous and oral doses. Antimicrob. Agents Chemother. 1992, 36, 993–996. [Google Scholar] [CrossRef] [Green Version]
- Koomanachai, P.; Bulik, C.C.; Kuti, J.L.; Nicolau, D.P. Pharmacodynamic modeling of intravenous antibiotics against gram-negative bacteria collected in the United States. Clin. Ther. 2010, 32, 766–779. [Google Scholar] [CrossRef]
- Dumitrescu, T.P.; Anic-Milic, T.; Oreskovic, K.; Padovan, J.; Brouwer, K.L.R.; Zuo, P.; Schmith, V.D. Development of a population pharmacokinetic model to describe azithromycin whole-blood and plasma concentrations over time in healthy subjects. Antimicrob. Agents Chemother. 2013, 57, 3194–3201. [Google Scholar] [CrossRef] [Green Version]
- Soda, M.; Ito, S.; Matsumaru, N.; Matsumaru, N.; Nakamura, S.; Nagase, I.; Takahashi, H.; Ohno, Y.; Yasuda, M.; Yamamoto, M.; et al. Evaluation of the microbiological efficacy of a single 2-gram dose of extended-release azithromycin by population pharmacokinetics and simulation in japanese patients with gonococcal urethritis. Antimicrob. Agents Chemother. 2017, 62, e01409-17. [Google Scholar] [CrossRef] [Green Version]
- Chisholm, S.A.; Mouton, J.W.; Lewis, D.A.; Nichols, T.; Ison, C.A.; Livermore, D.M. Cephalosporin MIC creep among gonococci: Time for a pharmacodynamic rethink? J. Antimicrob. Chemother. 2010, 65, 2141–2148. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Torres, M.D.; Menéndez, M.B.; Guerras, C.S.; Tello, E.; Ballesteros, J.; Clavo, P.; Puerta, T.; Vera, M.; Ayerdi, O.; Carrio, J.C.; et al. Epidemiology, molecular characterisation and antimicrobial susceptibility of Neisseria gonorrhoeae isolates in Madrid, Spain, in 2016. Epidemiol. Infect. 2019, 147, e274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmerón, P.; Viñado, B.; El Ouazzani, R.; Hernández, M.; Barbera, M.J.; Alberny, M.; Jané, M.; Larrosa, N.; Pumarola, T.; Hoyos-Mallecot, Y. Antimicrobial susceptibility of Neisseria gonorrhoeae in Barcelona during a five-year period, 2013 to 2017. Eur. Surveill. 2020, 25, 1900576. [Google Scholar] [CrossRef]
- Salmerón, P.; Moreno-Mingorance, A.; Trejo, J.; Amado, R.; Viñado, B.; Cornejo-Sanchez, T.; Alberny, M.; Barbera, M.J.; Arando, M.; Pumarola, T.; et al. Emergence and dissemination of three mild outbreaks of Neisseria gonorrhoeae with high-level resistance to azithromycin in Barcelona, 2016–2018. J. Antimicrob. Chemother. 2021, 76, 930–935. [Google Scholar] [CrossRef]
- Unemo, M.; Lahra, M.M.; Cole, M.M.; Galarza, P.; Ndowa, F.; Martin, I.; Dillon, I.A.R.; Ramon-Pardo, P.; Bolan, G.; Ti, T.W. World Health Organization Global Gonococcal Antimicrobial Surveillance Program (WHO GASP): Review of new data and evidence to inform international collaborative actions and research efforts. Sex Health 2019, 16, 412–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unemo, M.; Workowski, K. Dual antimicrobial therapy for gonorrhoea: What is the role of azithromycin? Lancet Infect. Dis. 2018, 18, 486–488. [Google Scholar] [CrossRef]
- Calado, J.; Castro, R.; Lopes, Â.; Campos, M.J.; Rocha, M.; Pereira, F. Antimicrobial resistance and molecular characteristics of Neisseria gonorrhoeae isolates from men who have sex with men. Int. J. Infect. Dis. 2019, 79, 116–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, L.; Golparian, D.; Fennelly, N.; Rose, L.; Walsh, P.; Lawlor, B.; Mac Aogáin, M.; Unemo, M.; Crowley, B. Antimicrobial resistance and molecular epidemiology using whole-genome sequencing of Neisseria gonorrhoeae in Ireland, 2014–2016: Focus on extended-spectrum cephalosporins and azithromycin. Eur. J. Clin. Microbiol. Infect. Dis. 2018, 37, 1661–1672. [Google Scholar] [CrossRef]
- Młynarczyk-Bonikowska, B.; Majewska, A.; Malejczyk, M.; Młynarczyk, G.; Majewski, S. Multiresistant Neisseria gonorrhoeae: A new threat in second decade of the XXI century. Med. Microbiol. Immunol. 2020, 209, 95–108. [Google Scholar] [CrossRef]
- Low, N.; Unemo, M. Molecular tests for the detection of antimicrobial resistant Neisseria gonorrhoeae: When, where, and how to use? Curr. Opin. Infect. Dis. 2016, 29, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Ohneck, E.A.; Zalucki, Y.M.; Johnson, P.J.; Dhulipala, V.; Golparian, D.; Unemo, M.; Jerse, A.E.; Shafer, W.M. A novel mechanism of high-level, broad-spectrum antibiotic resistance caused by a single base pair change in Neisseria gonorrhoeae. mBio 2011, 2, e00187-11. [Google Scholar] [CrossRef] [Green Version]
- Asín, E.; Isla, A.; Canut, A.; Rodríguez Gascón, A. Comparison of antimicrobial pharmacokinetic/pharmacodynamic breakpoints with EUCAST and CLSI clinical breakpoints for Gram-positive bacteria. Int. J. Antimicrob. Agents 2012, 40, 313–322. [Google Scholar] [CrossRef] [PubMed]
- Valero, A.; Isla, A.; Rodríguez-Gascón, A.; Canut, A.; Solinís, M.A. Susceptibility of Pseudomonas aeruginosa and antimicrobial activity using PK/PD analysis: An 18-year surveillance study. Enferm. Infecc. Microbiol. Clin. 2019, 37, 626–633. [Google Scholar] [CrossRef] [PubMed]
- Zelenitsky, S.A.; Rubinstein, E.; Ariano, R.E.; Zhanel, G.G.; Canadian Antimicrobial Resistance Alliance. Integrating pharmacokinetics, pharmacodynamics and MIC distributions to assess changing antimicrobial activity against clinical isolates of Pseudomonas aeruginosa causing infections in Canadian hospitals (CANWARD). J. Antimicrob. Chemother. 2013, 68 (Suppl. S1), i67–i72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Theuretzbacher, U.; Barbee, L.; Connolly, K.; Drusano, G.; Fernandes, P.; Hook, E.; Jerse, A.; O’Donnell, J.; Unemo, M.; Van Bambeke, F.; et al. Pharmacokinetic/pharmacodynamic considerations for new and current therapeutic drugs for uncomplicated gonorrhoea-challenges and opportunities. Clin. Microbiol. Infect. 2020, 26, 1630–1635. [Google Scholar] [CrossRef] [PubMed]
- Matzneller, P.; Krasniqi, S.; Kinzig, M.; Sörgel, F.; Hüttner, S.; Lackner, E.; Müller, M.; Zeitlinger, M. Blood, tissue, and intracellular concentrations of azithromycin during and after end of therapy. Antimicrob. Agents Chemother. 2013, 57, 1736–1742. [Google Scholar] [CrossRef] [Green Version]
- Tapsall, J. Antimicrobial Resistance in Neisseria Gonorrhoeae; World Health Organization: Geneva, Switzerland, 2001; Available online: https://apps.who.int/iris/bitstream/handle/10665/66963/WHO_CDS_CSR_DRS_2001.3.pdf (accessed on 3 August 2021).
- Ibar-Bariain, M.; Isla, A.; Solinís, M.Á.; Sanz-Moreno, J.C.; Canut, A.; Rodríguez-Gascón, A. Pharmacokinetic/pharmacodynamic evaluation of the antimicrobial therapy of pneumococcal invasive disease in adults in post-PCV13 vaccine period in Madrid, Spain. Eur. J. Clin. Microbiol. Infect. Dis. 2021, 40, 2145–2152. [Google Scholar] [CrossRef] [PubMed]
- Valero, A.; Isla, A.; Rodríguez-Gascón, A.; Calvo, B.; Canut, A.; Solinís, M.Á. Pharmacokinetic/pharmacodynamic analysis as a tool for surveillance of the activity of antimicrobials against Pseudomonas aeruginosa strains isolated in critically ill patients. Enferm. Infecc. Microbiol. Clin. 2019, 37, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Gascón, A.; Solinís, M.Á.; Isla, A. The Role of PK/PD Analysis in the Development and Evaluation of Antimicrobials. Pharmaceutics 2021, 13, 833. [Google Scholar] [CrossRef] [PubMed]
Ciprofloxacin | Azithromycin | Ceftriaxone | Cefixime | |
---|---|---|---|---|
Dose regimen | 500 mg single dose, PO | 1 g, 2 g single dose, PO | 0.25, 0.5, 1 g single dose, IM 2 g/day, IV | 400 mg/day, PO |
PK/PD index | AUC0–∞/MIC ≥125 | AUC0–∞/MIC ≥59.5 | fT>MIC ≥ 20 h (IM) fT>MIC ≥ 60% (IV) | fT>MIC ≥ 60% |
AUC0–∞ (mg h/L) | 10.7 ± 2.6 | |||
CL/F (L/h) | 144 ± 39.5 | |||
Ke (h−1) | 0.082 ± 0.029 | 0.204 ± 0.02 | ||
Vd (L) | 14.70 ± 4.93 | 19 ± 0.03 | ||
Fu | 0.05 | 0.35 | ||
F | 1 | 0.42 ± 0.045 | ||
Ka (h−1) | 1 | 0.55 | ||
References | [15,16] | [17,18] | [19] | [19] |
Antimicrobial | MIC Range (mg/L) | MIC50 (mg/L) | MIC90 (mg/L) | R (%) EUCAST | R (%) CLSI |
---|---|---|---|---|---|
Penicillin | 0.002–64 | 0.19 | 3 | 12.6 | 12.6 |
Cefixime | 0.008–0.75 | 0.008 | 0.047 | 6.4 | 1.6 |
Ceftriaxone | 0.002–0.5 | 0.008 | 0.094 | 2.0 | 0.5 |
Azithromycin | 0.016–16 | 0.19 | 0.75 | 5.4 a | 5.4 |
Ciprofloxacin | 0.015–64 | 0.012 | 8 | 48.2 | 45.2 |
Tetracycline | 0.9->256 | 1 | 32 | 34.2 | 34.2 |
Genotype | Susceptibility (mg/L) | Chromosomal Mutations | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Isolate | Year | MLST | NG-MAST | P | CRO | CFM | TET | CIP | AZM | Adquired Gene | PBP2 | PBP1 | PorB | GyrA | ParC | S10 | mtrR Promoter a | MtrR | 23S rRNA |
2 | 2017 | 10,314 | 12,547 | 0.25 | 0.016 | nd | 0.5 | 3 | 0.125 | - | Type V non-mosaic | L421P | - | S91F, D95A | S87R | V57M | - | A39T | - |
3 | 2017 | 1588 | 3750 | 0.38 | 0.023 | nd | 64 | 8 | 0.125 | tet(M) | Type XIX non-mosaic | L421P | G120K A121G | S91F, D95A | S87R | V57M | - | A39T | - |
6 | 2017 | 1596 | 19,728 | 0.125 | 0.008 | nd | 0.125 | 0.006 | 0.25 | - | Type 81 semi Mosaic | - | - | - | - | - | - | - | - |
9 | 2017 | 1583 | 19,729 | 0.125 | 0.006 | nd | 0.25 | 0.004 | 0.125 | - | Type II non-mosaic | L421P | - | - | - | - | -35A Del | - | - |
11 | 2017 | 14,274 | 587 | 0.19 | 0.008 | nd | 0.5 | 0.006 | 0.75 | - | Type II non-mosaic | - | - | - | - | V57M | G | - | - |
17 | 2017 | 1587 | 13,971 | >32 | 0.012 | nd | 24 | 1.5 | 0.094 | blaTEM-1B, tet(M) | Type II non-mosaic | - | - | S91F, D95A | D86N | V57M | - | - | - |
19 | 2017 | 10,935 | 15,728 | 2 | 0.006 | nd | 24 | 0.003 | 0.032 | blaTEM-1B, tet(M) | Type XIV non-mosaic | - | - | - | - | V57M | - | - | - |
24 | 2017 | 8145 | 19,730 | 2 | 0.004 | nd | 0.5 | 0.004 | 0.125 | blaTEM-1B | Type XIV non-mosaic | - | - | - | - | V57M | - | - | - |
31 | 2017 | 7363 | 11,547 | 0.5 | 0.094 | nd | 1 | >32 | 0.094 | - | Type X mosaic | L421P | G120N A121G | S91F, D95N | S87R, S88P | V57M | - | - | - |
33 | 2017 | 7363 | 13,070 | 0.75 | 0.125 | nd | 1 | >32 | 0.25 | - | Type X mosaic | L421P | G120N A121G | S91F, D95N | S87R, S88P | V57M | - | - | - |
35 | 2017 | 8143 | 14,306 | 0.125 | 0.008 | nd | 1 | 8 | 0.125 | - | Type II non-mosaic | - | S91F, D95A | S87R | V57M | - | A39T | - | |
50 | 2018 | 14,304 | 13,070 | 0.5 | 0.125 | nd | 1 | >32 | 0.125 | - | Type X mosaic | L421P | G120N A121G | S91F, D95N | S87R, S88P | V57M | - | - | - |
51 | 2018 | 7363 | 9184 | 0.38 | 0.064 | nd | 1.5 | 8 | 0.25 | - | Type IX non-mosaic | L421P | G120K A121D | S91F, D95G | E91G | V57M | -35A Del | - | - |
52 | 2018 | 1901 | 1407 | 0.75 | 0.25 | nd | 3 | >32 | 0.5 | - | Type XXXIV mosaic | L421P | G120K A121N | S91F, D95G | S87R | V57M | -35A Del | - | - |
56 | 2018 | 10,890 | 1407 | 0.5 | 0.125 | nd | 4 | >32 | 0.5 | - | Type XXXIV mosaic | L421P | G120K, A121N | S91F, D95G | S87R | V57M | -35A Del | - | - |
58 | 2018 | 1901 | 19,111 | 0.5 | 0.125 | nd | 2 | >32 | 0.5 | - | Type XXXIV mosaic | L421P | G120K, A121N | S91F, D95G | S87R | V57M | -35A Del | - | - |
59 | 2018 | 1583 | 217 | >32 | 0.006 | nd | 64 | 16 | 0.064 | blaTEM-1B, tet(M) | Type II non-mosaic | - | G120K, A121D | S91F, D95G | D86N | V57M | - | G45D | - |
61 | 2018 | 7363 | 15,198 | 0.25 | 0.064 | nd | 2 | 8 | 0.25 | - | Type IX non-mosaic | L421P | - | S91F, D95G | E91G | V57M | -35A Del | - | - |
7244 | 2018 | 11428 | 2992 | 0.025 | 0.008 | <0.016 | 0.25 | 0.016 | 0.75 | - | Type II non-mosaic | - | - | - | - | V57M | - | A39T | - |
8661 | 2018 | 15,573 | 17,371 | 0.125 | 0.012 | 0.016 | 2 | 0.016 | 1 | - | Type II non-mosaic | - | G120K, A121N | - | - | V57M | G | - | - |
293 | 2019 | 9363 | 6765 | 0.19 | 0.012 | <0.016 | 2 | 0.012 | 1 | - | Type II non-mosaic | - | G120K, A121N | - | - | V57M | G | - | - |
1941 | 2019 | 1580 | 470 | 0.125 | 0.03 | 0.016 | 2 | 0.002 | 1.5 | - | Type 93 semi Mosaic | - | A121S | - | - | V57M | - | G45D | C2599T |
1943 | 2019 | 1580 | 470 | 0.125 | 0.008 | <0.016 | 2 | 0.002 | 1.5 | - | Type 93 semi Mosaic | - | A121S | - | - | V57M | - | G45D | C2599T |
3023 | 2019 | 9363 | 6765 | 0.25 | 0.016 | <0.016 | 1.5 | 0.008 | 2 | - | Type II non-mosaic | - | G120K, A121N | - | - | V57M | G | - | - |
3526 | 2019 | 9363 | 6765 | 0.19 | 0.023 | <0.016 | 3 | 0.008 | 0.75 | - | Type II non-mosaic | - | G120K, A121N | - | - | V57M | G | - | - |
3569 | 2019 | 9363 | 6765 | 0.38 | 0.012 | <0.016 | 2 | 0.016 | 2 | - | Type II non-mosaic | - | G120K, A121N | - | - | V57M | G | - | - |
3700 | 2019 | 11,706 | 17,972 | 0.19 | 0.003 | <0.016 | 1.5 | 2 | 0.75 | - | Type V non-mosaic | L421P | - | S91FD95A | S87R | V57M | - | A39T | - |
4458 | 2019 | 13,292 | 9208 | 0.094 | 0.004 | nd | 2 | 0.003 | 0.75 | - | Type II non-mosaic | - | - | - | - | V57M | - | A39T | C2611T |
4515 | 2019 | 9363 | 6765 | 0.38 | 0.016 | 0.032 | 1 | 0.008 | 1.5 | - | Type II non-mosaic | - | G120K, A121N | - | - | V57M | G | - | - |
4726 | 2019 | 9363 | 6765 | 0.19 | 0.016 | <0.016 | 3 | 0.008 | 1 | - | Type II non-mosaic | - | G120K, A121N | - | - | V57M | G | - | - |
5903 | 2019 | 7822 | 14,994 | 0.25 | 0.023 | <0.016 | 1 | 4 | 1 | - | Type V non-mosaic | L421P | - | S91F, D95A | S87R | V57M | G | A39T | - |
7079 | 2019 | 9363 | 6765 | 0.125 | 0.008 | <0.016 | 1.5 | 0.012 | 1.5 | - | Type II non-mosaic | - | G120K, A121N | - | - | V57M | G | - | - |
7181 | 2019 | 9363 | 19,731 | 0.19 | 0.016 | <0.016 | 3 | 0.004 | 1.5 | - | Type II non-mosaic | - | G120K, A121N | - | - | V57M | G | - | - |
7789 | 2019 | 7822 | 14,994 | 0.125 | 0.012 | <0.016 | 0.75 | 2 | 1 | - | Type V non-mosaic | L421P | S91F, D95A | S87R | V57M | G | A39T | - | |
9051 | 2019 | 7822 | 14,994 | 0.38 | 0.016 | <0.016 | 1.5 | 6 | 1.5 | - | Type V non-mosaic | L421P | - | S91F, D95A | S87R | V57M | G | A39T | - |
Antibiotic | Dosing Regimen | CFR (%) |
---|---|---|
Ciprofloxacin | 500 mg, single dose, PO | 51 |
Azithromycin | 1 g single dose, PO | 33 |
2 g single dose, PO | 64 | |
Ceftriaxone | 1 g, single dose, IM | 100 |
500 mg, single dose, IM | 98 | |
250 mg, single dose, IM | 96 | |
2 g/day, IV | 100 | |
Cefixime | 400 mg/day, PO | 97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alonso, R.; Rodríguez-Achaerandio, A.; Aguirre-Quiñonero, A.; Artetxe, A.; Martínez-Ballesteros, I.; Rodríguez-Gascón, A.; Garaizar, J.; Canut, A. Molecular Epidemiology, Antimicrobial Surveillance, and PK/PD Analysis to Guide the Treatment of Neisseria gonorrhoeae Infections. Pharmaceutics 2021, 13, 1699. https://doi.org/10.3390/pharmaceutics13101699
Alonso R, Rodríguez-Achaerandio A, Aguirre-Quiñonero A, Artetxe A, Martínez-Ballesteros I, Rodríguez-Gascón A, Garaizar J, Canut A. Molecular Epidemiology, Antimicrobial Surveillance, and PK/PD Analysis to Guide the Treatment of Neisseria gonorrhoeae Infections. Pharmaceutics. 2021; 13(10):1699. https://doi.org/10.3390/pharmaceutics13101699
Chicago/Turabian StyleAlonso, Rodrigo, Ainara Rodríguez-Achaerandio, Amaia Aguirre-Quiñonero, Aitor Artetxe, Ilargi Martínez-Ballesteros, Alicia Rodríguez-Gascón, Javier Garaizar, and Andrés Canut. 2021. "Molecular Epidemiology, Antimicrobial Surveillance, and PK/PD Analysis to Guide the Treatment of Neisseria gonorrhoeae Infections" Pharmaceutics 13, no. 10: 1699. https://doi.org/10.3390/pharmaceutics13101699
APA StyleAlonso, R., Rodríguez-Achaerandio, A., Aguirre-Quiñonero, A., Artetxe, A., Martínez-Ballesteros, I., Rodríguez-Gascón, A., Garaizar, J., & Canut, A. (2021). Molecular Epidemiology, Antimicrobial Surveillance, and PK/PD Analysis to Guide the Treatment of Neisseria gonorrhoeae Infections. Pharmaceutics, 13(10), 1699. https://doi.org/10.3390/pharmaceutics13101699