Effect of Surfactants and Polymers on the Dissolution Behavior of Supersaturable Tecovirimat-4-Hydroxybenzoic Acid Cocrystals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of TEC-HBA Cocrystals
2.2.2. Preparation of TEC/HBA Physical Mixture
2.2.3. HPLC Analysis
2.2.4. Solubility Measurements
2.2.5. Intrinsic Dissolution Measurements
2.2.6. Powder Dissolution under Sink Conditions
2.2.7. Powder Dissolution under Nonsink Conditions
2.3. Characterization Techniques
2.3.1. Powder X-ray Diffractometry (PXRD)
2.3.2. Differential Scanning Calorimetry (DSC)
2.3.3. Scanning Electron Microscope (SEM)
2.3.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characterization of TEC-HBA Cocrystals
3.2. Solubility Study
3.2.1. Effects of Additives on the Solubility of TEC
3.2.2. Effects of pH on Solubility of TEC-HBA Cocrystals
3.2.3. Effects of Additives on the Solubility of TEC-HBA Cocrystals
3.3. Intrinsic Dissolution
3.4. Powder Dissolution under Sink and Nonsink Conditions
3.5. Effect of Additives on Dissolution under Nonsink Conditions
3.5.1. Effect of Surfactants
3.5.2. Effect of Polymers
3.5.3. Relationship between the Parameters of Dissolution and Solubility Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int. J. Pharm. 2011, 420, 1–10. [Google Scholar] [CrossRef]
- Yang, M.; Gong, W.; Wang, Y.; Shan, L.; Li, Y.; Gao, C. Bioavailability improvement strategies for poorly water-soluble drugs based on the supersaturation mechanism: An update. J. Pharm. Pharm. Sci. 2016, 19, 208–225. [Google Scholar] [CrossRef] [Green Version]
- Kavanagh, O.N.; Croker, D.M.; Walker, G.M.; Zaworotko, M.J. Pharmaceutical cocrystals: From serendipity to design to application. Drug Discov. Today 2019, 24, 796–804. [Google Scholar] [CrossRef] [Green Version]
- Berry, D.J.; Steed, J.W. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv. Drug Deliv. Rev. 2017, 117, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; He, S.; Fan, Y.; Wang, Y.; Ge, Z.; Shan, L.; Gong, W.; Huang, X.; Tong, Y.; Gao, C. Microenvironmental pH-modified solid dispersions to enhance the dissolution and bioavailability of poorly water-soluble weakly basic GT0918, a developing anti-prostate cancer drug: Preparation, characterization and evaluation in vivo. Int. J. Pharm. 2014, 475, 97–109. [Google Scholar] [CrossRef]
- Callender, S.P.; Mathews, J.A.; Kobernyk, K.; Wettig, S.D. Microemulsion utility in pharmaceuticals: Implications for multi-drug delivery. Int. J. Pharm. 2017, 526, 425–442. [Google Scholar] [CrossRef]
- Li, X.; Yang, M.; Li, Y.; Gong, W.; Wang, Y.; Shan, L.; Shao, S.; Gao, C.; Zhong, W. Formulation and characterization of a ternary inclusion complex containing hydroxypropyl-beta-cyclodextrin and meglumine for solubility enhancement of poorly water-soluble ST-246, an anti-smallpox drug. Curr. Drug Deliv. 2017, 14, 1130–1143. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Dai, W.G. Drug precipitation inhibitors in supersaturable formulations. Int. J. Pharm. 2013, 453, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Machado Cruz, R.; Boleslavska, T.; Beranek, J.; Tieger, E.; Twamley, B.; Santos-Martinez, M.J.; Dammer, O.; Tajber, L. Identification and pharmaceutical characterization of a new itraconazole terephthalic acid cocrystal. Pharmaceutics 2020, 12, 741. [Google Scholar] [CrossRef] [PubMed]
- Cerreia Vioglio, P.; Chierotti, M.R.; Gobetto, R. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Adv. Drug Deliv. Rev. 2017, 117, 86–110. [Google Scholar] [CrossRef]
- Panzade, P.; Shendarkar, G.; Shaikh, S.; Balmukund Rathi, P. Pharmaceutical cocrystal of piroxicam: Design, formulation and evaluation. Adv. Pharm. Bull. 2017, 7, 399–408. [Google Scholar] [CrossRef] [PubMed]
- Surov, A.O.; Volkova, T.V.; Churakov, A.V.; Proshin, A.N.; Terekhova, I.V.; Perlovich, G.L. Cocrystal formation, crystal structure, solubility and permeability studies for novel 1,2,4-thiadiazole derivative as a potent neuroprotector. Eur. J. Pharm. Sci. 2017, 109, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.-L.; Li, S.; Chen, J.-M.; Lu, T.-B. Improving the membrane permeability of 5-fluorouracil via cocrystallization. Cryst. Growth Des. 2016, 16, 4430–4438. [Google Scholar] [CrossRef]
- Thakuria, R.; Delori, A.; Jones, W.; Lipert, M.P.; Roy, L.; Rodriguez-Hornedo, N. Pharmaceutical cocrystals and poorly soluble drugs. Int. J. Pharm. 2013, 453, 101–125. [Google Scholar] [CrossRef]
- Omori, M.; Watanabe, T.; Uekusa, T.; Oki, J.; Inoue, D.; Sugano, K. Effects of coformer and polymer on particle surface solution-mediated phase transformation of cocrystals in aqueous media. Mol. Pharm. 2020, 17, 3825–3836. [Google Scholar] [CrossRef]
- Greco, K.; Bogner, R. Solution-mediated phase transformation: Significance during dissolution and implications for bioavailability. J. Pharm. Sci. 2012, 101, 2996–3018. [Google Scholar] [CrossRef]
- Guzman, H.R.; Tawa, M.; Zhang, Z.; Ratanabanangkoon, P.; Shaw, P.; Gardner, C.R.; Chen, H.; Moreau, J.P.; Almarsson, O.; Remenar, J.F. Combined use of crystalline salt forms and precipitation inhibitors to improve oral absorption of celecoxib from solid oral formulations. J. Pharm. Sci. 2007, 96, 2686–2702. [Google Scholar] [CrossRef]
- Childs, S.L.; Kandi, P.; Lingireddy, S.R. Formulation of a danazol cocrystal with controlled supersaturation plays an essential role in improving bioavailability. Mol. Pharm. 2013, 10, 3112–3127. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Rege, B.D.; Amidon, G.L.; Polli, J.E. Surfactant-mediated dissolution: Contributions of solubility enhancement and relatively low micelle diffusivity. J. Pharm. Sci. 2004, 93, 2064–2075. [Google Scholar] [CrossRef]
- He, H.; Zhang, Q.; Li, M.; Wang, J.-R.; Mei, X. Modulating the dissolution and mechanical properties of resveratrol by cocrystallization. Cryst. Growth Des. 2017, 17, 3989–3996. [Google Scholar] [CrossRef]
- Shi, N.Q.; Lai, H.W.; Zhang, Y.; Feng, B.; Xiao, X.; Zhang, H.M.; Li, Z.Q.; Qi, X.R. On the inherent properties of Soluplus and its application in ibuprofen solid dispersions generated by microwave-quench cooling technology. Pharm. Dev. Technol. 2018, 23, 573–586. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Qiao, N.; Wang, K. Influence of sodium lauryl sulfate and tween 80 on carbamazepine-nicotinamide cocrystal solubility and dissolution behaviour. Pharmaceutics 2013, 5, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Shi, N.Q.; Wang, S.R.; Zhang, Y.; Huo, J.S.; Wang, L.N.; Cai, J.H.; Li, Z.Q.; Xiang, B.; Qi, X.R. Hot melt extrusion technology for improved dissolution, solubility and “spring-parachute” processes of amorphous self-micellizing solid dispersions containing BCS II drugs indomethacin and fenofibrate: Profiles and mechanisms. Eur. J. Pharm. Sci. 2019, 130, 78–90. [Google Scholar] [CrossRef] [PubMed]
- Cavanagh, K.L.; Kuminek, G.; Rodriguez-Hornedo, N. Cocrystal solubility advantage and dose/solubility ratio diagrams: A mechanistic approach to selecting additives and controlling dissolution-supersaturation-precipitation behavior. Mol. Pharm. 2020, 17, 4286–4301. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Kuminek, G.; Roy, L.; Cavanagh, K.L.; Yin, Q.; Rodriguez-Hornedo, N. Cocrystal solubility advantage diagrams as a means to control dissolution, supersaturation, and precipitation. Mol. Pharm. 2019, 16, 3887–3895. [Google Scholar] [CrossRef]
- Kale, D.P.; Zode, S.S.; Bansal, A.K. Challenges in translational development of pharmaceutical cocrystals. J. Pharm. Sci. 2017, 106, 457–470. [Google Scholar] [CrossRef]
- Salas-Zuniga, R.; Rodriguez-Ruiz, C.; Hopfl, H.; Morales-Rojas, H.; Sanchez-Guadarrama, O.; Rodriguez-Cuamatzi, P.; Herrera-Ruiz, D. Dissolution advantage of nitazoxanide cocrystals in the presence of cellulosic polymers. Pharmaceutics 2019, 12, 23. [Google Scholar] [CrossRef] [Green Version]
- Kirubakaran, P.; Wang, K.; Rosbottom, I.; Cross, R.B.M.; Li, M. Understanding the effects of a polymer on the surface dissolution of pharmaceutical cocrystals using combined experimental and molecular dynamics simulation approaches. Mol. Pharm. 2020, 17, 517–529. [Google Scholar] [CrossRef]
- Qiu, S.; Li, M. Effects of coformers on phase transformation and release profiles of carbamazepine cocrystals in hydroxypropyl methylcellulose based matrix tablets. Int. J. Pharm. 2015, 479, 118–128. [Google Scholar] [CrossRef]
- Weyna, D.R.; Cheney, M.L.; Shan, N.; Hanna, M.; Zaworotko, M.J.; Sava, V.; Song, S.; Sanchez-Ramos, J.R. Improving solubility and pharmacokinetics of meloxicam via multiple-component crystal formation. Mol. Pharm. 2012, 9, 2094–2102. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wang, K.; Hamill, N.; Lorimer, K.; Li, M. Investigating the influence of polymers on supersaturated flufenamic acid cocrystal solutions. Mol. Pharm. 2016, 13, 3292–3307. [Google Scholar] [CrossRef]
- Yamashita, H.; Sun, C.C. Improving dissolution rate of carbamazepine-glutaric acid cocrystal through solubilization by excess coformer. Pharm. Res. 2018, 35, 4. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, H.; Sun, C.C. Harvesting potential dissolution advantages of soluble cocrystals by depressing precipitation using the common coformer effect. Cryst. Growth Des. 2016, 16, 6719–6721. [Google Scholar] [CrossRef]
- Janine, T.; Fernando, B.; Cristiano, K.; Gabriel, V.S.; Israel, J.R.B.; Alexandre, J.M. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion. Appl. Surf. Sci. 2014, 303, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Cao, F.; Amidon, G.L.; Rodriguez-Hornedo, N.; Amidon, G.E. Mechanistic analysis of cocrystal dissolution as a function of ph and micellar solubilization. Mol. Pharm. 2016, 13, 1030–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, F.; Rodriguez-Hornedo, N.; Amidon, G.E. Mechanistic analysis of cocrystal dissolution, surface pH, and dissolution advantage as a guide for rational selection. J. Pharm. Sci. 2019, 108, 243–251. [Google Scholar] [CrossRef] [Green Version]
- Jasani, M.S.; Kale, D.P.; Singh, I.P.; Bansal, A.K. Influence of drug-polymer interactions on dissolution of thermodynamically highly unstable cocrystal. Mol. Pharm. 2019, 16, 151–164. [Google Scholar] [CrossRef]
- Qiao, N.; Wang, K.; Schlindwein, W.; Davies, A.; Li, M. In situ monitoring of carbamazepine-nicotinamide cocrystal intrinsic dissolution behaviour. Eur. J. Pharm. Biopharm. 2013, 83, 415–426. [Google Scholar] [CrossRef]
- Banik, M.; Gopi, S.P.; Ganguly, S.; Desiraju, G.R. Cocrystal and salt forms of furosemide: Solubility and diffusion variations. Cryst. Growth Des. 2016, 16, 5418–5428. [Google Scholar] [CrossRef]
- Guo, M.; Wang, K.; Qiao, N.; Fabian, L.; Sadiq, G.; Li, M. Insight into flufenamic acid cocrystal dissolution in the presence of a polymer in solution: From single crystal to powder dissolution. Mol. Pharm. 2017, 14, 4583–4596. [Google Scholar] [CrossRef]
- Sun, D.D.; Wen, H.; Taylor, L.S. Non-sink dissolution conditions for predicting product quality and in vivo performance of supersaturating drug delivery systems. J. Pharm. Sci. 2016, 105, 2477–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Chen, Z.; Chen, Y.; Lu, J.; Li, Y.; Wang, S.; Wu, G.; Qian, F. Improving oral bioavailability of sorafenib by optimizing the "Spring" and "Parachute" based on molecular interaction mechanisms. Mol. Pharm. 2016, 13, 599–608. [Google Scholar] [CrossRef] [PubMed]
- Kuminek, G.; Cao, F.; Bahia de Oliveira da Rocha, A.; Goncalves Cardoso, S.; Rodriguez-Hornedo, N. Cocrystals to facilitate delivery of poorly soluble compounds beyond-rule-of-5. Adv. Drug Deliv. Rev. 2016, 101, 143–166. [Google Scholar] [CrossRef] [Green Version]
- Lipert, M.P.; Rodriguez-Hornedo, N. Cocrystal transition points: Role of cocrystal solubility, drug solubility, and solubilizing agents. Mol. Pharm. 2015, 12, 3535–3546. [Google Scholar] [CrossRef] [Green Version]
- Beig, A.; Miller, J.M.; Lindley, D.; Dahan, A. Striking the optimal solubility-permeability balance in oral formulation development for lipophilic drugs: Maximizing carbamazepine blood levels. Mol. Pharm. 2017, 14, 319–327. [Google Scholar] [CrossRef]
- Jacobsen, A.C.; Elvang, P.A.; Bauer-Brandl, A.; Brandl, M. A dynamic in vitro permeation study on solid mono- and diacyl-phospholipid dispersions of celecoxib. Eur. J. Pharm. Sci. 2019, 127, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Wen, H.; Morris, K.R.; Park, K. Hydrogen bonding interactions between adsorbed polymer molecules and crystal surface of acetaminophen. J. Colloid Interface Sci. 2005, 290, 325–335. [Google Scholar] [CrossRef]
- Karavas, E.; Ktistis, G.; Xenakis, A.; Georgarakis, E. Effect of hydrogen bonding interactions on the release mechanism of felodipine from nanodispersions with polyvinylpyrrolidone. Eur. J. Pharm. Biopharm. 2006, 63, 103–114. [Google Scholar] [CrossRef]
- Li, M.; Qiu, S.; Lu, Y.; Wang, K.; Lai, X.; Rehan, M. Investigation of the effect of hydroxypropyl methylcellulose on the phase transformation and release profiles of carbamazepine-nicotinamide cocrystal. Pharm. Res. 2014, 31, 2312–2325. [Google Scholar] [CrossRef] [PubMed]
Surfactants | SDS | Poloxamer 188 | Poloxamer 407 | Cremophor RH 40 | Polysorbate 80 |
---|---|---|---|---|---|
CMC/(%w/v) | 0.24 | 1.5 | 0.71 | 0.039 | 0.0014 |
Solvent System | Tmax/min | Cmax/μg·min−1 | Spring-Parachute Properties | ||
---|---|---|---|---|---|
Water (without additives) | 30 | 5.07 | + | ||
Surfactants | SDS | 0.25% | 45 | 9.66 | + |
0.5% | 30 | 25.33 | + | ||
Lutrol® F68 | 0.25% | 120 | 6.80 | + | |
0.5% | 60 | 7.38 | + | ||
Kolliphor® P407 | 0.25% | 120 | 8.38 | + | |
0.5% | 180 | 10.66 | - | ||
Tween 80 | 0.25% | 90 | 15.72 | + | |
0.5% | 180 | 17.65 | + | ||
Cremophor RH 40 | 0.25% | 90 | 14.20 | + | |
0.5% | 90 | 20.87 | + | ||
Polymers | PVP K30 | 0.25% | 240 | 6.18 | + |
0.5% | 240 | 6.79 | + | ||
PVP VA64 | 0.25% | 240 | 7.90 | + | |
0.5% | 240 | 8.63 | + | ||
HPMC-E5 | 0.25% | 300 | 18.75 | + | |
0.5% | 300 | 22.68 | + | ||
HPC-LF | 0.25% | / | / | - | |
0.5% | / | / | - | ||
CMC-Na7L2P | 0.25% | 240 | 4.61 | + | |
0.5% | 240 | 5.17 | + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, Y.; Meng, Y.; Tan, F.; Lv, L.; Li, Z.; Wang, Y.; Yang, Y.; Gong, W.; Yang, M. Effect of Surfactants and Polymers on the Dissolution Behavior of Supersaturable Tecovirimat-4-Hydroxybenzoic Acid Cocrystals. Pharmaceutics 2021, 13, 1772. https://doi.org/10.3390/pharmaceutics13111772
Feng Y, Meng Y, Tan F, Lv L, Li Z, Wang Y, Yang Y, Gong W, Yang M. Effect of Surfactants and Polymers on the Dissolution Behavior of Supersaturable Tecovirimat-4-Hydroxybenzoic Acid Cocrystals. Pharmaceutics. 2021; 13(11):1772. https://doi.org/10.3390/pharmaceutics13111772
Chicago/Turabian StyleFeng, Yumiao, Yuanyuan Meng, Fangyun Tan, Lin Lv, Zhiping Li, Yuli Wang, Yang Yang, Wei Gong, and Meiyan Yang. 2021. "Effect of Surfactants and Polymers on the Dissolution Behavior of Supersaturable Tecovirimat-4-Hydroxybenzoic Acid Cocrystals" Pharmaceutics 13, no. 11: 1772. https://doi.org/10.3390/pharmaceutics13111772
APA StyleFeng, Y., Meng, Y., Tan, F., Lv, L., Li, Z., Wang, Y., Yang, Y., Gong, W., & Yang, M. (2021). Effect of Surfactants and Polymers on the Dissolution Behavior of Supersaturable Tecovirimat-4-Hydroxybenzoic Acid Cocrystals. Pharmaceutics, 13(11), 1772. https://doi.org/10.3390/pharmaceutics13111772