Biomarkers for Optimization and Personalization of Anti-TNFs in Pediatric Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Pediatric Inflammatory Bowel Disease. Differences with Adults
2.1. Clinical Differences
2.2. Treatment of Pediatric IBD
3. Clinical and Biochemical Biomarkers of Response to Anti-TNFs in pIBD
4. Genomic Biomarkers of Response to Anti-TNFs in pIBD
4.1. Genetic Variants
4.2. Biomarkers of Gene Expression
Gen | Comparison | Time/Tissue | Disease/Treatment | Ref |
---|---|---|---|---|
SMAD7 | *R vs. NR | 0, 2 W/Blood | IBD/Anti-TNFs | [99] |
FCGR1A | *NR vs. R | 2 W/Blood | IBD/Anti-TNFs | [108] |
FCGR1B | *NR vs. R | 2 W/Blood | IBD/Anti-TNFs | [108] |
GBP1 | *NR vs. R | 2 W/Blood | IBD/Anti-TNFs | [108] |
ANOS1 | *Active IBD vs. Controls | Blood | IBD | [110] |
ANXA3 | *Active IBD vs. Controls | Blood | IBD | [110] |
ATP9A | *Active IBD vs. Controls | Blood | IBD | [110] |
CACNA1E | *Active IBD vs. Controls | Blood | IBD | [110] |
COX6B2 | *Active IBD vs. Controls | Blood | IBD | [110] |
FCGR1B | *Active IBD vs. Controls | Blood | IBD | [110] |
GALNT14 | *Active IBD vs. Controls | Blood | IBD | [110] |
IL18R1 | *Active IBD vs. Controls | Blood | IBD | [110] |
ITGB4 | *Active IBD vs. Controls | Blood | IBD | [110] |
KLRF1 | *Active IBD vs. Controls | Blood | IBD | [110] |
MMP9 | *Active IBD vs. Controls | Blood | IBD | [110] |
OPLAH | *Active IBD vs. Controls | Blood | IBD | [110] |
PFKFB3 | *Active IBD vs. Controls | Blood | IBD | [110] |
S100A12 | *Active IBD vs. Controls | Blood | IBD | [110] |
UTS2R | *Active IBD vs. Controls | Blood | IBD | [110] |
TNFRSF1B | *UC vs. Controls | Blood/CB | UC | [109] |
OSMR | *UC vs. Controls | Blood/CB | UC | [109] |
IFNAR2 | *UC vs. Controls | Blood/CB | UC | [109] |
CSFR2A | *UC vs. Controls | Blood/CB | UC | [109] |
5. Other Biomarkers of Response to Anti-TNFs in pIBD
6. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.C.; Ferry, G.D. Inflammatory bowel diseases in pediatric and adolescent patients: Clinical, therapeutic, and psychosocial considerations. Gastroenterology 2004, 126, 1550–1560. [Google Scholar] [CrossRef]
- Levine, A.; Griffiths, A.; Markowitz, J.; Wilson, D.C.; Turner, D.; Russell, R.K.; Fell, J.; Ruemmele, F.M.; Walters, T.; Sherlock, M.; et al. Pediatric modification of the Montreal classification for inflammatory bowel disease: The Paris classification. Inflamm. Bowel Dis. 2011, 17, 1314–1321. [Google Scholar] [CrossRef]
- Muise, A.M.; Snapper, S.B.; Kugathasan, S. The age of gene discovery in very early onset inflammatory bowel disease. Gastroenterology 2012, 143, 285–288. [Google Scholar] [CrossRef]
- Park, S.; Kang, Y.; Koh, H.; Kim, S. Increasing incidence of inflammatory bowel disease in children and adolescents: Significance of environmental factors. Clin. Exp. Pediatr. 2020, 63, 337–344. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, A.M. Specificities of inflammatory bowel disease in childhood. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 509–523. [Google Scholar] [CrossRef]
- Henderson, P.; Wilson, D.C.; Satsangi, J. Differences in phenotype and disease course in adult and paediatric inflammatory bowel disease. Aliment. Pharmacol. Ther. 2012, 35, 391–393. [Google Scholar] [CrossRef]
- Penagini, F.; Cococcioni, L.; Pozzi, E.; Dilillo, D.; Rendo, G.; Mantegazza, C.; Zuccotti, G.V. Biological therapy in pediatric age. Pharmacol. Res. 2020, 161, 105120. [Google Scholar] [CrossRef]
- Lev-Tzion, R.; Turner, D. Is pediatric IBD treatment different than in adults? Minerva Gastroenterol. Dietol. 2012, 58, 137–150. [Google Scholar]
- Salvador-Martín, S.; López-Cauce, B.; Nuñez, O.; Laserna-Mendieta, E.J.; García, M.I.; Lobato, E.; Abarca-Zabalía, J.; Sanjurjo-Saez, M.; Lucendo, A.J.; Marín-Jiménez, I.; et al. Genetic predictors of long-term response and trough levels of infliximab in crohn’s disease. Pharmacol. Res. 2019, 149, 104478. [Google Scholar] [CrossRef]
- Salvador-Martín, S.; Bossacoma, F.; Pujol-Muncunill, G.; Navas-López, V.M.; Gallego-Fernández, C.; Viada, J.; Muñoz-Codoceo, R.; Magallares, L.; Martínez-Ojinaga, E.; Moreno-Álvarez, A.; et al. Genetic Predictors of Long-term Response to Antitumor Necrosis Factor Agents in Pediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 508–515. [Google Scholar] [CrossRef]
- Cui, G.; Fan, Q.; Li, Z.; Goll, R.; Florholmen, J. Evaluation of anti-TNF therapeutic response in patients with inflammatory bowel disease: Current and novel biomarkers. EBioMedicine 2021, 66, 103329. [Google Scholar] [CrossRef] [PubMed]
- Krawiec, P.; Pawłowska-Kamieniak, A.; Pac-Kożuchowska, E. Interleukin 10 and interleukin 10 receptor in paediatric inflammatory bowel disease: From bench to bedside lesson. J. Inflamm. 2021, 18, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Crowley, E.; Warner, N.; Pan, J.; Khalouei, S.; Elkadri, A.; Fiedler, K.; Foong, J.; Turinsky, A.L.; Bronte-Tinkew, D.; Zhang, S.; et al. Prevalence and Clinical Features of Inflammatory Bowel Diseases Associated with Monogenic Variants, Identified by Whole-Exome Sequencing in 1000 Children at a Single Center. Gastroenterology 2020, 158, 2208–2220. [Google Scholar] [CrossRef] [PubMed]
- Corica, D.; Romano, C. Biological Therapy in Pediatric Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2017, 51, 100–110. [Google Scholar] [CrossRef]
- Grover, Z. Predicting and preventing complications in children with inflammatory bowel disease. Transl. Pediatr. 2019, 8, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.R.; Rodriguez, J.R. Clinical presentation of Crohn’s, ulcerative colitis, and indeterminate colitis: Symptoms, extraintestinal manifestations, and disease phenotypes. Semin. Pediatr. Surg. 2017, 26, 349–355. [Google Scholar] [CrossRef]
- Chaparro, M.; Garre, A.; Ricart, E.; Iglesias-Flores, E.; Taxonera, C.; Domènech, E.; Gisbert, J.P. Differences between childhood- and adulthood-onset inflammatory bowel disease: The CAROUSEL study from GETECCU. Aliment. Pharmacol. Ther. 2019, 49, 419–428. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.J.; Dhawan, A.; Saeed, S.A. Inflammatory Bowel Disease in Children and Adolescents. JAMA Pediatr. 2015, 169, 1053–1060. [Google Scholar] [CrossRef] [Green Version]
- Harbord, M.; Annese, V.; Vavricka, S.R.; Allez, M.; Barreiro-de Acosta, M.; Boberg, K.M.; Burisch, J.; De Vos, M.; De Vries, A.-M.; Dick, A.D.; et al. The First European Evidence-based Consensus on Extra-intestinal Manifestations in Inflammatory Bowel Disease. J. Crohn’s Colitis 2016, 10, 239–254. [Google Scholar] [CrossRef]
- Jansson, S.; Malham, M.; Paerregaard, A.; Jakobsen, C.; Wewer, V. Extraintestinal Manifestations Are Associated with Disease Severity in Pediatric Onset Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 40–45. [Google Scholar] [CrossRef]
- Oliveira, S.B.; Monteiro, I.M. Diagnosis and management of inflammatory bowel disease in children. BMJ 2017, 357, j2083. [Google Scholar] [CrossRef]
- Brooks, A.J.; Rowse, G.; Ryder, A.; Peach, E.J.; Corfe, B.M.; Lobo, A.J. Systematic review: Psychological morbidity in young people with inflammatory bowel disease-risk factors and impacts. Aliment. Pharmacol. Ther. 2016, 44, 3–15. [Google Scholar] [CrossRef] [Green Version]
- Abraham, B.P.; Mehta, S.; El-Serag, H.B. Natural history of pediatric-onset inflammatory bowel disease: A systematic review. J. Clin. Gastroenterol. 2012, 46, 581–589. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Däbritz, J.; Gerner, P.; Enninger, A.; Claßen, M.; Radke, M. Inflammatory bowel disease in childhood and adolescence-Diagnosis and treatment. Dtsch. Arztebl. Int. 2017, 114, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Eszter Müller, K.; Laszlo Lakatos, P.; Papp, M.; Veres, G. Incidence and Paris classification of pediatric inflammatory bowel disease. Gastroenterol. Res. Pract. 2014, 2014, 904307. [Google Scholar] [CrossRef] [Green Version]
- Conrad, M.A.; Rosh, J.R. Pediatric Inflammatory Bowel Disease. Pediatr. Clin. N. Am. 2017, 64, 577–591. [Google Scholar] [CrossRef]
- Ygberg, S.; Nilsson, A. The developing immune system-from foetus to toddler. Acta Paediatr. 2012, 101, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Filimoniuk, A.; Daniluk, U.; Samczuk, P.; Wasilewska, N.; Jakimiec, P.; Kucharska, M.; Lebensztejn, D.M.; Ciborowski, M. Metabolomic profiling in children with inflammatory bowel disease. Adv. Med. Sci. 2020, 65, 65–70. [Google Scholar] [CrossRef] [PubMed]
- Carr, E.J.; Dooley, J.; Garcia-Perez, J.E.; Lagou, V.; Lee, J.C.; Wouters, C.; Meyts, I.; Goris, A.; Boeckxstaens, G.; Linterman, M.A.; et al. The cellular composition of the human immune system is shaped by age and cohabitation. Nat. Immunol. 2016, 17, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Aardoom, M.A.; Veereman, G.; de Ridder, L. A Review on the Use of Anti-TNF in Children and Adolescents with Inflammatory Bowel Disease. Int. J. Mol. Sci. 2019, 20, 2529. [Google Scholar] [CrossRef] [Green Version]
- Ruemmele, F.; Veres, G.; Kolho, K.; Griffiths, A.; Levine, A.; Escher, J.; Dias, J.A.; Barabino, A.; Braegger, C.; Bronsky, J.; et al. Consensus guidelines of ECCO/ESPGHAN on the medical management of pediatric Crohn’s disease. J. Crohn’s Colitis 2014, 8, 1179–1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walters, T.D.; Kim, M.-O.; Denson, L.A.; Griffiths, A.M.; Dubinsky, M.; Markowitz, J.; Baldassano, R.; Crandall, W.; Rosh, J.; Pfefferkorn, M.; et al. Increased effectiveness of early therapy with anti-tumor necrosis factor-α vs an immunomodulator in children with Crohn’s disease. Gastroenterology 2014, 146, 383–391. [Google Scholar] [CrossRef]
- Van Rheenen, P.F.; Aloi, M.; Assa, A.; Bronsky, J.; Escher, J.C.; Fagerberg, U.L.; Gasparetto, M.; Gerasimidis, K.; Griffiths, A.; Henderson, P.; et al. The Medical Management of Paediatric Crohn’s Disease: An ECCO-ESPGHAN Guideline Update. J. Crohn’s Colitis 2021, 15, 171–194. [Google Scholar] [CrossRef]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.-F.; Sandborn, W.J.; Van Assche, G.; Axler, J.; Kim, H.-J.; Danese, S.; et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feagan, B.G.; Sandborn, W.J.; Gasink, C.; Jacobstein, D.; Lang, Y.; Friedman, J.R.; Blank, M.A.; Johanns, J.; Gao, L.-L.; Miao, Y.; et al. Ustekinumab as Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2016, 375, 1946–1960. [Google Scholar] [CrossRef]
- Nakase, H. Optimizing the Use of Current Treatments and Emerging Therapeutic Approaches to Achieve Therapeutic Success in Patients with Inflammatory Bowel Disease. Gut Liver 2020, 14, 7–19. [Google Scholar] [CrossRef] [Green Version]
- Sulz, M.C.; Burri, E.; Michetti, P.; Rogler, G.; Peyrin-Biroulet, L.; Seibold, F. Treatment Algorithms for Crohn’s Disease. Digestion 2020, 101 (Suppl. S1), 43–57. [Google Scholar] [CrossRef]
- Shim, H.H.; Chan, P.W.; Chuah, S.W.; Schwender, B.J.; Kong, S.C.; Ling, K.L. A review of vedolizumab and ustekinumab for the treatment of inflammatory bowel diseases. JGH Open Open Access J. Gastroenterol. Hepatol. 2018, 2, 223–234. [Google Scholar] [CrossRef] [Green Version]
- Von Allmen, D. Pediatric Crohn’s Disease. Clin. Colon Rectal Surg. 2018, 31, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Topf-Olivestone, C.; Turner, D. How effective is the use of long-term anti-TNF for paediatric IBD? Clues from real-life surveillance cohorts. Arch. Dis. Child. 2015, 100, 391–392. [Google Scholar] [CrossRef]
- Cameron, F.L.; Wilson, M.L.; Basheer, N.; Jamison, A.; McGrogan, P.; Bisset, W.M.; Gillett, P.M.; Russell, R.K.; Wilson, D.C. Anti-TNF therapy for paediatric IBD: The Scottish national experience. Arch. Dis. Child. 2015, 100, 399–405. [Google Scholar] [CrossRef]
- Gisbert, J.P.; Chaparro, M. Predictors of Primary Response to Biologic Treatment [Anti-TNF, Vedolizumab, and Ustekinumab] in Patients with Inflammatory Bowel Disease: From Basic Science to Clinical Practice. J. Crohn’s Colitis 2020, 14, 694–709. [Google Scholar] [CrossRef]
- Ungar, B.; Levy, I.; Yavne, Y.; Yavzori, M.; Picard, O.; Fudim, E.; Loebstein, R.; Chowers, Y.; Eliakim, R.; Kopylov, U.; et al. Optimizing Anti-TNF-α Therapy: Serum Levels of Infliximab and Adalimumab Are Associated with Mucosal Healing in Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. 2016, 14, 550–557.e2. [Google Scholar] [CrossRef] [Green Version]
- Ding, N.S.; Hart, A.; De Cruz, P. Systematic review: Predicting and optimising response to anti-TNF therapy in Crohn’s disease-algorithm for practical management. Aliment. Pharmacol. Ther. 2016, 43, 30–51. [Google Scholar] [CrossRef]
- Naviglio, S.; Giuffrida, P.; Stocco, G.; Lenti, M.V.; Ventura, A.; Corazza, G.R.; Di Sabatino, A. How to predict response to anti-tumour necrosis factor agents in inflammatory bowel disease. Expert Rev. Gastroenterol. Hepatol. 2018, 12, 797–810. [Google Scholar] [CrossRef]
- Laserna-Mendieta, E.J.; Lucendo, A.J. Faecal calprotectin in inflammatory bowel diseases: A review focused on meta-analyses and routine usage limitations. Clin. Chem. Lab. Med. 2019, 57, 1295–1307. [Google Scholar] [CrossRef]
- Scaldaferri, F.; D’Ambrosio, D.; Holleran, G.; Poscia, A.; Petito, V.; Lopetuso, L.; Graziani, C.; Laterza, L.; Pistone, M.T.; Pecere, S.; et al. Body mass index influences infliximab post-infusion levels and correlates with prospective loss of response to the drug in a cohort of inflammatory bowel disease patients under maintenance therapy with Infliximab. PLoS ONE 2017, 12, e0186575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, N.A.; Heap, G.A.; Green, H.D.; Hamilton, B.; Bewshea, C.; Walker, G.J.; Thomas, A.; Nice, R.; Perry, M.H.; Bouri, S.; et al. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: A prospective, multicentre, cohort study. Lancet Gastroenterol. Hepatol. 2019, 4, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Cornillie, F.; Hanauer, S.B.; Diamond, R.H.; Wang, J.; Tang, K.L.; Xu, Z.; Rutgeerts, P.; Vermeire, S. Postinduction serum infliximab trough level and decrease of C-reactive protein level are associated with durable sustained response to infliximab: A retrospective analysis of the ACCENT I trial. Gut 2014, 63, 1721–1727. [Google Scholar] [CrossRef] [PubMed]
- Hendy, P.; Hart, A.; Irving, P. Anti-TNF drug and antidrug antibody level monitoring in IBD: A practical guide. Frontline Gastroenterol. 2016, 7, 122–128. [Google Scholar] [CrossRef] [PubMed]
- Van Hoeve, K.; Dreesen, E.; Hoffman, I.; Van Assche, G.; Ferrante, M.; Gils, A.; Vermeire, S. Higher Infliximab Trough Levels Are Associated with Better Outcome in Paediatric Patients with Inflammatory Bowel Disease. J. Crohn’s Colitis 2018, 12, 1316–1325. [Google Scholar] [CrossRef] [PubMed]
- Van Hoeve, K.; Hoffman, I.; Vermeire, S. Therapeutic drug monitoring of anti-TNF therapy in children with inflammatory bowel disease. Expert Opin. Drug Saf. 2018, 17, 185–196. [Google Scholar] [CrossRef]
- Merras-Salmio, L.; Kolho, K.-L. Clinical Use of Infliximab Trough Levels and Antibodies to Infliximab in Pediatric Patients with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 64, 272–278. [Google Scholar] [CrossRef]
- Lucafò, M.; Curci, D.; Bramuzzo, M.; Alvisi, P.; Martelossi, S.; Silvestri, T.; Guastalla, V.; Labriola, F.; Stocco, G.; Decorti, G. Serum Adalimumab Levels After Induction Are Associated with Long-Term Remission in Children with Inflammatory Bowel Disease. Front. Pediatr. 2021, 9, 646671. [Google Scholar] [CrossRef]
- Chaparro, M.; Barreiro-de Acosta, M.; Echarri, A.; Almendros, R.; Barrio, J.; Llao, J.; Gomollón, F.; Vera, M.; Cabriada, J.L.; Guardiola, J.; et al. Correlation Between Anti-TNF Serum Levels and Endoscopic Inflammation in Inflammatory Bowel Disease Patients. Dig. Dis. Sci. 2019, 64, 846–854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nobile, S.; Gionchetti, P.; Rizzello, F.; Calabrese, C.; Campieri, M. Mucosal healing in pediatric Crohn’s disease after anti-TNF therapy: A long-term experience at a single center. Eur. J. Gastroenterol. Hepatol. 2014, 26, 458–465. [Google Scholar] [CrossRef]
- Nuti, F.; Civitelli, F.; Bloise, S.; Oliva, S.; Aloi, M.; Latorre, G.; Viola, F.; Cucchiara, S. Prospective Evaluation of the Achievement of Mucosal Healing with Anti-TNF-α Therapy in a Paediatric Crohn’s Disease Cohort. J. Crohn’s Colitis 2016, 10, 5–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yarur, A.J.; Jain, A.; Sussman, D.A.; Barkin, J.S.; Quintero, M.A.; Princen, F.; Kirkland, R.; Deshpande, A.R.; Singh, S.; Abreu, M.T. The association of tissue anti-TNF drug levels with serological and endoscopic disease activity in inflammatory bowel disease: The ATLAS study. Gut 2016, 65, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Vande Casteele, N.; Ferrante, M.; Van Assche, G.; Ballet, V.; Compernolle, G.; Van Steen, K.; Simoens, S.; Rutgeerts, P.; Gils, A.; Vermeire, S. Trough Concentrations of Infliximab Guide Dosing for Patients with Inflammatory Bowel Disease. Gastroenterology 2015, 148, 1320–1329.e3. [Google Scholar] [CrossRef]
- Mitrev, N.; Vande Casteele, N.; Seow, C.H.; Andrews, J.M.; Connor, S.J.; Moore, G.T.; Barclay, M.; Begun, J.; Bryant, R.; Chan, W.; et al. Review article: Consensus statements on therapeutic drug monitoring of anti-tumour necrosis factor therapy in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2017, 46, 1037–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltrán, B.; Iborra, M.; Sáez-González, E.; Marqués-Miñana, M.R.; Moret, I.; Cerrillo, E.; Tortosa, L.; Bastida, G.; Hinojosa, J.; Poveda-Andrés, J.L.; et al. Fecal Calprotectin Pretreatment and Induction Infliximab Levels for Prediction of Primary Nonresponse to Infliximab Therapy in Crohn’s Disease. Dig. Dis. 2019, 37, 108–115. [Google Scholar] [CrossRef]
- Yanai, H.; Lichtenstein, L.; Assa, A.; Mazor, Y.; Weiss, B.; Levine, A.; Ron, Y.; Kopylov, U.; Bujanover, Y.; Rosenbach, Y.; et al. Levels of drug and antidrug antibodies are associated with outcome of interventions after loss of response to infliximab or adalimumab. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2015, 13, 522–530.e2. [Google Scholar] [CrossRef] [PubMed]
- Courbette, O.; Aupiais, C.; Viala, J.; Hugot, J.-P.; Roblin, X.; Candon, S.; Louveau, B.; Chatenoud, L.; Martinez-Vinson, C. Trough Levels of Infliximab at W6 Are Predictive of Remission at W14 in Pediatric Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 310–317. [Google Scholar] [CrossRef]
- Nanda, K.S.; Cheifetz, A.S.; Moss, A.C. Impact of antibodies to infliximab on clinical outcomes and serum infliximab levels in patients with inflammatory bowel disease (IBD): A meta-analysis. Am. J. Gastroenterol. 2013, 108, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pallagi-Kunstár, É.; Farkas, K.; Szepes, Z.; Nagy, F.; Szűcs, M.; Kui, R.; Gyulai, R.; Bálint, A.; Wittmann, T.; Molnár, T. Utility of serum TNF-α, infliximab trough level, and antibody titers in inflammatory bowel disease. World J. Gastroenterol. 2014, 20, 5031–5035. [Google Scholar] [CrossRef] [PubMed]
- Cohen, R.Z.; Schoen, B.T.; Kugathasan, S.; Sauer, C.G. Management of Anti-drug Antibodies to Biologic Medications in Children with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2019, 69, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Naviglio, S.; Lacorte, D.; Lucafò, M.; Cifù, A.; Favretto, D.; Cuzzoni, E.; Silvestri, T.; Pozzi Mucelli, M.; Radillo, O.; Decorti, G.; et al. Causes of Treatment Failure in Children with Inflammatory Bowel Disease Treated with Infliximab. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Ohem, J.; Hradsky, O.; Zarubova, K.; Copova, I.; Bukovska, P.; Prusa, R.; Malickova, K.; Bronsky, J. Evaluation of Infliximab Therapy in Children with Crohn’s Disease Using Trough Levels Predictors. Dig. Dis. 2018, 36, 40–48. [Google Scholar] [CrossRef]
- Rolandsdotter, H.; Marits, P.; Sundin, U.; Wikström, A.-C.; Fagerberg, U.; Finkel, Y.; Eberhardson, M. Serum-Infliximab Trough Levels in 45 Children with Inflammatory Bowel Disease on Maintenance Treatment. Int. J. Mol. Sci. 2017, 18, 575. [Google Scholar] [CrossRef]
- Steenholdt, C.; Brynskov, J.; Thomsen, O.Ø.; Munck, L.K.; Fallingborg, J.; Christensen, L.A.; Pedersen, G.; Kjeldsen, J.; Jacobsen, B.A.; Oxholm, A.S.; et al. Individualised therapy is more cost-effective than dose intensification in patients with Crohn’s disease who lose response to anti-TNF treatment: A randomised, controlled trial. Gut 2014, 63, 919–927. [Google Scholar] [CrossRef]
- Afif, W.; Loftus, E.V.J.; Faubion, W.A.; Kane, S.V.; Bruining, D.H.; Hanson, K.A.; Sandborn, W.J. Clinical utility of measuring infliximab and human anti-chimeric antibody concentrations in patients with inflammatory bowel disease. Am. J. Gastroenterol. 2010, 105, 1133–1139. [Google Scholar] [CrossRef] [PubMed]
- Overkleeft, R.; Tommel, J.; Evers, A.W.M.; den Dunnen, J.T.; Roos, M.; Hoefmans, M.-J.; Schrader, W.E.; Swen, J.J.; Numans, M.E.; Houwink, E.J.F. Using Personal Genomic Data within Primary Care: A Bioinformatics Approach to Pharmacogenomics. Genes 2020, 11, 1443. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.Y.; Kang, B.; Lee, J.H.; Choe, Y.H. Clinical Use of Measuring Trough Levels and Antibodies against Infliximab in Patients with Pediatric Inflammatory Bowel Disease. Gut Liver 2017, 11, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Carman, N.; Mack, D.R.; Benchimol, E.I. Therapeutic Drug Monitoring in Pediatric Inflammatory Bowel Disease. Curr. Gastroenterol. Rep. 2018, 20, 18. [Google Scholar] [CrossRef] [PubMed]
- Pinto Pais, I.; Espinheira, M.C.; Trindade, E.; Amil Dias, J. Optimizing Antitumor Necrosis Factor Treatment in Pediatric Inflammatory Bowel Disease with Therapeutic Drug Monitoring. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 12–18. [Google Scholar] [CrossRef]
- Deora, V.; Kozak, J.; El-Kalla, M.; Huynh, H.Q.; El-Matary, W. Therapeutic drug monitoring was helpful in guiding the decision-making process for children receiving infliximab for inflammatory bowel disease. Acta Paediatr. 2017, 106, 1863–1867. [Google Scholar] [CrossRef] [PubMed]
- Jongsma, M.M.E.; Winter, D.A.; Huynh, H.Q.; Norsa, L.; Hussey, S.; Kolho, K.-L.; Bronsky, J.; Assa, A.; Cohen, S.; Lev-Tzion, R.; et al. Infliximab in young paediatric IBD patients: It is all about the dosing. Eur. J. Pediatr. 2020, 179, 1935–1944. [Google Scholar] [CrossRef]
- Papamichael, K.; Cheifetz, A.S.; Melmed, G.Y.; Irving, P.M.; Vande Casteele, N.; Kozuch, P.L.; Raffals, L.E.; Baidoo, L.; Bressler, B.; Devlin, S.M.; et al. Appropriate Therapeutic Drug Monitoring of Biologic Agents for Patients with Inflammatory Bowel Diseases. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2019, 17, 1655–1668.e3. [Google Scholar] [CrossRef] [Green Version]
- Papamichael, K.; Vajravelu, R.K.; Vaughn, B.P.; Osterman, M.T.; Cheifetz, A.S. Proactive Infliximab Monitoring Following Reactive Testing is Associated with Better Clinical Outcomes Than Reactive Testing Alone in Patients with Inflammatory Bowel Disease. J. Crohn’s Colitis 2018, 12, 804–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, O.B.; Donnell, S.O.; Stempak, J.M.; Steinhart, A.H.; Silverberg, M.S. Therapeutic Drug Monitoring to Guide Infliximab Dose Adjustment is Associated with Better Endoscopic Outcomes than Clinical Decision Making Alone in Active Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 1202–1209. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, S.R.; Bernardo, S.; Simões, C.; Gonçalves, A.R.; Valente, A.; Baldaia, C.; Moura Santos, P.; Correia, L.A.; Tato Marinho, R. Proactive Infliximab Drug Monitoring Is Superior to Conventional Management in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Lyles, J.L.; Mulgund, A.A.; Bauman, L.E.; Su, W.; Fei, L.; Chona, D.L.; Sharma, P.; Etter, R.K.; Hellmann, J.; Denson, L.A.; et al. Effect of a Practice-wide Anti-TNF Proactive Therapeutic Drug Monitoring Program on Outcomes in Pediatric Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021, 27, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Assa, A.; Matar, M.; Turner, D.; Broide, E.; Weiss, B.; Ledder, O.; Guz-Mark, A.; Rinawi, F.; Cohen, S.; Topf-Olivestone, C.; et al. Proactive Monitoring of Adalimumab Trough Concentration Associated with Increased Clinical Remission in Children with Crohn’s Disease Compared with Reactive Monitoring. Gastroenterology 2019, 157, 985–996.e2. [Google Scholar] [CrossRef] [PubMed]
- Van Hoeve, K.; Dreesen, E.; Hoffman, I.; Van Assche, G.; Ferrante, M.; Gils, A.; Vermeire, S. Adequate Infliximab Exposure During Induction Predicts Remission in Paediatric Patients with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2019, 68, 847–853. [Google Scholar] [CrossRef]
- Ostrowski, J.; Paziewska, A.; Lazowska, I.; Ambrozkiewicz, F.; Goryca, K.; Kulecka, M.; Rawa, T.; Karczmarski, J.; Dabrowska, M.; Zeber-Lubecka, N.; et al. Genetic architecture differences between pediatric and adult-onset inflammatory bowel diseases in the Polish population. Sci. Rep. 2016, 6, 39831. [Google Scholar] [CrossRef] [Green Version]
- Katsanos, K.H.; Papadakis, K.A. Pharmacogenetics of inflammatory bowel disease. Pharmacogenomics 2014, 15, 2049–2062. [Google Scholar] [CrossRef] [PubMed]
- Bank, P.C.; Swen, J.J.; Guchelaar, H.-J. Pharmacogenetic biomarkers for predicting drug response. Expert Rev. Mol. Diagn. 2014, 14, 723–735. [Google Scholar] [CrossRef] [PubMed]
- López-Hernández, R.; Valdés, M.; Campillo, J.A.; Martínez-García, P.; Salama, H.; Bolarin, J.M.; Martínez, H.; Moya-Quiles, M.R.; Minguela, A.; Sánchez-Torres, A.; et al. Pro-and anti-inflammatory cytokine gene single-nucleotide polymorphisms in inflammatory bowel disease. Int. J. Immunogenet. 2015, 42, 38–45. [Google Scholar] [CrossRef]
- Bek, S.; Nielsen, J.V.; Bojesen, A.B.; Franke, A.; Bank, S.; Vogel, U.; Andersen, V. Systematic review: Genetic biomarkers associated with anti-TNF treatment response in inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2016, 44, 554–567. [Google Scholar] [CrossRef]
- Prieto-Perez, R.; Almoguera, B.; Cabaleiro, T.; Hakonarson, H.; Abad-Santos, F. Association between Genetic Polymorphisms and Response to Anti-TNFs in Patients with Inflammatory Bowel Disease. Int. J. Mol. Sci. 2016, 17, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rufini, S.; Ciccacci, C.; Novelli, G.; Borgiani, P. Pharmacogenetics of inflammatory bowel disease: A focus on Crohn’s disease. Pharmacogenomics 2017, 18, 1095–1114. [Google Scholar] [CrossRef] [PubMed]
- Bank, S.; Julsgaard, M.; Abed, O.K.; Burisch, J.; Broder Brodersen, J.; Pedersen, N.K.; Gouliaev, A.; Ajan, R.; Nytoft Rasmussen, D.; Honore Grauslund, C.; et al. Polymorphisms in the NFkB, TNF-alpha, IL-1beta, and IL-18 pathways are associated with response to anti-TNF therapy in Danish patients with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2019, 49, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto-Furusho, J.K. Pharmacogenetics in inflammatory bowel disease: Understanding treatment response and personalizing therapeutic strategies. Pharmgenom. Pers. Med. 2017, 10, 197–204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacruz-Guzmán, D.; Torres-Moreno, D.; Pedrero, F.; Romero-Cara, P.; García-Tercero, I.; Trujillo-Santos, J.; Conesa-Zamora, P. Influence of polymorphisms and TNF and IL1β serum concentration on the infliximab response in Crohn’s disease and ulcerative colitis. Eur. J. Clin. Pharmacol. 2013, 69, 431–438. [Google Scholar] [CrossRef] [PubMed]
- Dezelak, M.; Repnik, K.; Koder, S.; Ferkolj, I.; Potocnik, U. A Prospective Pharmacogenomic Study of Crohn’s Disease Patients during Routine Therapy with Anti-TNF-alpha Drug Adalimumab: Contribution of ATG5, NFKB1, and CRP Genes to Pharmacodynamic Variability. OMICS 2016, 20, 296–309. [Google Scholar] [CrossRef]
- Bank, S.; Andersen, P.S.; Burisch, J.; Pedersen, N.; Roug, S.; Galsgaard, J.; Turino, S.Y.; Brodersen, J.B.; Rashid, S.; Rasmussen, B.K.; et al. Associations between functional polymorphisms in the NFkappaB signaling pathway and response to anti-TNF treatment in Danish patients with inflammatory bowel disease. Pharmacogenom. J. 2014, 14, 526–534. [Google Scholar] [CrossRef] [Green Version]
- Sazonovs, A.; Kennedy, N.A.; Moutsianas, L.; Heap, G.A.; Rice, D.L.; Reppell, M.; Bewshea, C.M.; Chanchlani, N.; Walker, G.J.; Perry, M.H.; et al. HLA-DQA1*05 Carriage Associated with Development of Anti-Drug Antibodies to Infliximab and Adalimumab in Patients with Crohn’s Disease. Gastroenterology 2020, 158, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Dubinsky, M.C.; Mei, L.; Friedman, M.; Dhere, T.; Haritunians, T.; Hakonarson, H.; Kim, C.; Glessner, J.; Targan, S.R.; McGovern, D.P.; et al. Genome wide association (GWA) predictors of anti-TNFalpha therapeutic responsiveness in pediatric inflammatory bowel disease. Inflamm. Bowel Dis. 2010, 16, 1357–1366. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Martín, S.; Raposo-Gutiérrez, I.; Navas-López, V.M.; Gallego-Fernández, C.; Moreno-álvarez, A.; Solar-Boga, A.; Muñoz-Codoceo, R.; Magallares, L.; Martínez-Ojinaga, E.; Fobelo, M.J.; et al. Gene signatures of early response to anti-TNF drugs in pediatric inflammatory bowel disease. Int. J. Mol. Sci. 2020, 21, 3364. [Google Scholar] [CrossRef]
- Salvador-Martín, S.; Pujol-Muncunill, G.; Bossacoma, F.; Navas-López, V.M.; Gallego-Fernández, C.; Segarra, O.; Clemente, S.; Muñoz-Codoceo, R.; Viada, J.; Magallares, L.; et al. Pharmacogenetics of trough serum anti-TNF levels in paediatric inflammatory bowel disease. Br. J. Clin. Pharmacol. 2021, 87, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Curci, D.; Lucafò, M.; Cifù, A.; Fabris, M.; Bramuzzo, M.; Martelossi, S.; Franca, R.; Decorti, G.; Stocco, G. Pharmacogenetic variants of infliximab response in young patients with inflammatory bowel disease. Clin. Transl. Sci. 2021, 1–9. [Google Scholar] [CrossRef]
- Kugathasan, S.; Baldassano, R.N.; Bradfield, J.P.; Sleiman, P.M.A.; Imielinski, M.; Guthery, S.L.; Cucchiara, S.; Kim, C.E.; Frackelton, E.C.; Annaiah, K.; et al. Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease. Nat. Genet. 2008, 40, 1211–1215. [Google Scholar] [CrossRef] [Green Version]
- Arijs, I.; Li, K.; Toedter, G.; Quintens, R.; Van Lommel, L.; Van Steen, K.; Leemans, P.; De Hertogh, G.; Lemaire, K.; Ferrante, M.; et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut 2009, 58, 1612–1619. [Google Scholar] [CrossRef]
- Arijs, I.; Quintens, R.; Van Lommel, L.; Van Steen, K.; De Hertogh, G.; Lemaire, K.; Schraenen, A.; Perrier, C.; Van Assche, G.; Vermeire, S.; et al. Predictive value of epithelial gene expression profiles for response to infliximab in Crohn’s disease. Inflamm. Bowel Dis. 2010, 16, 2090–2098. [Google Scholar] [CrossRef] [PubMed]
- Toedter, G.; Li, K.; Marano, C.; Ma, K.; Sague, S.; Huang, C.C.; Song, X.-Y.; Rutgeerts, P.; Baribaud, F. Gene Expression Profiling and Response Signatures Associated with Differential Responses to Infliximab Treatment in Ulcerative Colitis. Am. J. Gastroenterol. 2011, 106, 1272–1280. [Google Scholar] [CrossRef]
- Verstockt, S.; Verstockt, B.; Machiels, K.; Vancamelbeke, M.; Ferrante, M.; Cleynen, I.; De Hertogh, G.; Vermeire, S. Oncostatin M Is a Biomarker of Diagnosis, Worse Disease Prognosis, and Therapeutic Nonresponse in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2021, 27, 1564–1575. [Google Scholar] [CrossRef] [PubMed]
- Gaujoux, R.; Starosvetsky, E.; Maimon, N.; Vallania, F.; Bar-Yoseph, H.; Pressman, S.; Weisshof, R.; Goren, I.; Rabinowitz, K.; Waterman, M.; et al. Cell-centred meta-Analysis reveals baseline predictors of anti-TNFα non-response in biopsy and blood of patients with IBD. Gut 2019, 68, 604–614. [Google Scholar] [CrossRef] [PubMed]
- Salvador-Martín, S.; Kaczmarczyk, B.; Álvarez, R.; Navas-López, V.M.; Gallego-Fernández, C.; Moreno-Álvarez, A.; Solar-Boga, A.; Sánchez, C.; Tolin, M.; Velasco, M.; et al. Whole Transcription Profile of Responders to Anti-TNF Drugs in Pediatric Inflammatory Bowel Disease. Pharmaceutics 2021, 13, 77. [Google Scholar] [CrossRef]
- Li, X.; Lee, E.J.; Gawel, D.R.; Lilja, S.; Schäfer, S.; Zhang, H.; Benson, M. Meta-Analysis of Expression Profiling Data Indicates Need for Combinatorial Biomarkers in Pediatric Ulcerative Colitis. J. Immunol. Res. 2020, 2020, 8279619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrowski, J.; Dabrowska, M.; Lazowska, I.; Paziewska, A.; Balabas, A.; Kluska, A.; Kulecka, M.; Karczmarski, J.; Ambrozkiewicz, F.; Piatkowska, M.; et al. Redefining the Practical Utility of Blood Transcriptome Biomarkers in Inflammatory Bowel Diseases. J. Crohn’s Colitis 2019, 13, 626–633. [Google Scholar] [CrossRef]
- Soroosh, A.; Koutsioumpa, M.; Pothoulakis, C.; Iliopoulos, D. Functional role and therapeutic targeting of microRNAs in inflammatory bowel disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2018, 314, G256–G262. [Google Scholar] [CrossRef] [PubMed]
- Heier, C.R.; Fiorillo, A.A.; Chaisson, E.; Gordish-Dressman, H.; Hathout, Y.; Damsker, J.M.; Hoffman, E.P.; Conklin, L.S. Identification of Pathway-Specific Serum Biomarkers of Response to Glucocorticoid and Infliximab Treatment in Children with Inflammatory Bowel Disease. Clin. Transl. Gastroenterol. 2016, 7, e192. [Google Scholar] [CrossRef]
- Batra, S.K.; Heier, C.R.; Diaz-Calderon, L.; Tully, C.B.; Fiorillo, A.A.; van den Anker, J.; Conklin, L.S. Serum miRNAs Are Pharmacodynamic Biomarkers Associated with Therapeutic Response in Pediatric Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2020, 26, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.-J.; Peng, K.-Y.; Tang, Z.-F.; Wang, Y.-H.; Xue, A.-J.; Huang, Y. MicroRNA-15a-cell division cycle 42 signaling pathway in pathogenesis of pediatric inflammatory bowel disease. World J. Gastroenterol. 2018, 24, 5234–5245. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Feng, Q.; Shen, J. Development and Validation of an Interleukin-6 Nomogram to Predict Primary Non-Response to Infliximab in Crohn’s Disease Patients: From Bedside to Bioinformatics. SSRN Electron. J. 2020, 12, 1–9. [Google Scholar] [CrossRef]
- Kugathasan, S.; Denson, L.A.; Walters, T.D.; Kim, M.-O.; Marigorta, U.M.; Schirmer, M.; Mondal, K.; Liu, C.; Griffiths, A.; Noe, J.D.; et al. Prediction of complicated disease course for children newly diagnosed with Crohn’s disease: A multicentre inception cohort study. Lancet 2017, 389, 1710–1718. [Google Scholar] [CrossRef] [Green Version]
- Maul, J.; Loddenkemper, C.; Mundt, P.; Berg, E.; Giese, T.; Stallmach, A.; Zeitz, M.; Duchmann, R. Peripheral and intestinal regulatory CD4+ CD25(high) T cells in inflammatory bowel disease. Gastroenterology 2005, 128, 1868–1878. [Google Scholar] [CrossRef]
- Boschetti, G.; Nancey, S.; Sardi, F.; Roblin, X.; Flourié, B.; Kaiserlian, D. Therapy with anti-TNFα antibody enhances number and function of Foxp3 (+) regulatory T cells in inflammatory bowel diseases. Inflamm. Bowel Dis. 2011, 17, 160–170. [Google Scholar] [CrossRef]
- Li, Z.; Vermeire, S.; Bullens, D.; Ferrante, M.; Van Steen, K.; Noman, M.; Rutgeerts, P.; Ceuppens, J.L.; Van Assche, G. Restoration of Foxp3+ Regulatory T-cell Subsets and Foxp3- Type 1 Regulatory-like T Cells in Inflammatory Bowel Diseases During Anti-Tumor Necrosis Factor Therapy. Inflamm. Bowel Dis. 2015, 21, 2418–2428. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Arijs, I.; De Hertogh, G.; Vermeire, S.; Noman, M.; Bullens, D.; Coorevits, L.; Sagaert, X.; Schuit, F.; Rutgeerts, P.; et al. Reciprocal changes of Foxp3 expression in blood and intestinal mucosa in IBD patients responding to infliximab. Inflamm. Bowel Dis. 2010, 16, 1299–1310. [Google Scholar] [CrossRef] [PubMed]
- Ricciardelli, I.; Lindley, K.J.; Londei, M.; Quaratino, S. Anti tumour necrosis-alpha therapy increases the number of FOXP3 regulatory T cells in children affected by Crohn’s disease. Immunology 2008, 125, 178–183. [Google Scholar] [CrossRef]
- Marteau, P.; Lepage, P.; Mangin, I.; Suau, A.; Doré, J.; Pochart, P.; Seksik, P. Review article: Gut flora and inflammatory bowel disease. Aliment. Pharmacol. Ther. 2004, 20 (Suppl. S4), 18–23. [Google Scholar] [CrossRef]
- Macpherson, A.; Khoo, U.Y.; Forgacs, I.; Philpott-Howard, J.; Bjarnason, I. Mucosal antibodies in inflammatory bowel disease are directed against intestinal bacteria. Gut 1996, 38, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Conte, M.P.; Schippa, S.; Zamboni, I.; Penta, M.; Chiarini, F.; Seganti, L.; Osborn, J.; Falconieri, P.; Borrelli, O.; Cucchiara, S. Gut-associated bacterial microbiota in paediatric patients with inflammatory bowel disease. Gut 2006, 55, 1760–1767. [Google Scholar] [CrossRef] [Green Version]
- Schwiertz, A.; Jacobi, M.; Frick, J.-S.; Richter, M.; Rusch, K.; Köhler, H. Microbiota in pediatric inflammatory bowel disease. J. Pediatr. 2010, 157, 240–244.e1. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, X.; Ghozlane, A.; Hu, H.; Li, X.; Xiao, Y.; Li, D.; Yu, G.; Zhang, T. Characteristics of Faecal Microbiota in Paediatric Crohn’s Disease and Their Dynamic Changes During Infliximab Therapy. J. Crohn’s Colitis 2018, 12, 337–346. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, X.; Zhang, X.; Xiao, F.; Hu, H.; Li, X.; Dong, F.; Sun, M.; Xiao, Y.; Ge, T.; et al. Microbial and metabolic features associated with outcome of infliximab therapy in pediatric Crohn’s disease. Gut Microbes 2021, 13, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Hizarcioglu-Gulsen, H.; Kaplan, J.L.; Moran, C.J.; Israel, E.J.; Lee, H.; Winter, H. The Impact of Vitamin D on Response to Anti-tumor Necrosis Factor-α Therapy in Children with Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2021, 72, e125–e131. [Google Scholar] [CrossRef] [PubMed]
Gen | RS ID | Effect | Treatment | Patient (Age) | Reference |
---|---|---|---|---|---|
ATG16L1 | rs2241880 | PNR | IFX | CD+UC (<21) | [98] |
IRF-AS1 | rs2188962 | PNR | IFX | CD+UC (<21) | [98] |
CDKAL1 | rs6908425 | PNR | IFX | CD+UC (<21) | [98] |
None | rs762421 | PNR | IFX | CD+UC (<21) | [98] |
None | rs2395185 | PNR | IFX | CD+UC (<21) | [98] |
BRWD1 | rs2836878 | PNR | IFX | CD+UC (<21) | [98] |
TACR1 | rs975664 | PNR | IFX | CD+UC (<21) | [98] |
TAFA4 | rs4855535 | PNR | IFX | CD+UC (<21) | [98] |
None | rs4796606 | PNR | IFX | CD+UC (<21) | [98] |
PHACTR3 | rs6100556 | PNR | IFX | CD+UC (<21) | [98] |
CNBD1 | rs2943177 | PNR | IFX | CD+UC (<21) | [98] |
COL22A1 | rs11991611 | PNR | IFX | CD+UC (<21) | [98] |
DOCK1 | rs3740543 | PNR | IFX | CD+UC (<21) | [98] |
LRRC7 | rs7521532 | PNR | IFX | CD+UC (<21) | [98] |
CLSTN2 | rs4605505 | PNR | IFX | CD+UC (<21) | [98] |
TNFRSF21 | rs2103867 | PNR | IFX | CD+UC (<21) | [98] |
PHACTR1 | rs10485363 | PNR | IFX | CD+UC (<21) | [98] |
HAPLN2 | rs3795727 | PNR | IFX | CD+UC (<21) | [98] |
PHACTR1 | rs6906890 | PNR | IFX | CD+UC (<21) | [98] |
NLRP13 | rs302827 | PNR | IFX | CD+UC (<21) | [98] |
ETV6 | rs2723829 | PNR | IFX | CD+UC (<21) | [98] |
LRP1B | rs1372256 | PNR | IFX | CD+UC (<21) | [98] |
DCHS2 | rs13138970 | PNR | IFX | CD+UC (<21) | [98] |
KIAA1755 | rs1205434 | PNR | IFX | CD+UC (<21) | [98] |
TACR1 | rs7588326 | PNR | IFX | CD+UC (<21) | [98] |
TACR1 | rs3771823 | PNR | IFX | CD+UC (<21) | [98] |
ATXN1 | rs12527937 | PNR | IFX | CD+UC (<21) | [98] |
KCNQ5 | rs3757105 | PNR | IFX | CD+UC (<21) | [98] |
CNTN1 | rs278917 | PNR | IFX | CD+UC (<21) | [98] |
HAPLN2 | rs12567958 | PNR | IFX | CD+UC (<21) | [98] |
CNBD1 | rs1880473 | PNR | IFX | CD+UC (<21) | [98] |
LINC00290 | rs7689941 | PNR | IFX | CD+UC (<21) | [98] |
GPC3 | rs1264379 | PNR | IFX | CD+UC (<21) | [98] |
TPST2 | rs3088103 | PNR | IFX | CD+UC (<21) | [98] |
TRERF1 | rs4711716 | PNR | IFX | CD+UC (<21) | [98] |
MGAM | rs10464448 | PNR | IFX | CD+UC (<21) | [98] |
EEPD1 | rs2540678 | PNR | IFX | CD+UC (<21) | [98] |
LINC00290 | rs7659755 | PNR | IFX | CD+UC (<21) | [98] |
None | rs770389 | PNR | IFX | CD+UC (<21) | [98] |
CNTN1 | rs7309734 | PNR | IFX | CD+UC (<21) | [98] |
CPA6 | rs10808755 | PNR | IFX | CD+UC (<21) | [98] |
RBM26 | rs1155848 | PNR | IFX | CD+UC (<21) | [98] |
None | rs1592749 | PNR | IFX | CD+UC (<21) | [98] |
None | rs765132 | PNR | IFX | CD+UC (<21) | [98] |
None | rs4707930 | PNR | IFX | CD+UC (<21) | [98] |
None | rs7905482 | PNR | IFX | CD+UC (<21) | [98] |
None | rs7059861 | PNR | IFX | CD+UC (<21) | [98] |
None | rs5975453 | PNR | IFX | CD+UC (<21) | [98] |
None | rs4077511 | PNR | IFX | CD+UC (<21) | [98] |
None | rs2825673 | PNR | IFX | CD+UC (<21) | [98] |
None | rs7003556 | PNR | IFX | CD+UC (<21) | [98] |
None | rs1243519 | PNR | IFX | CD+UC (<21) | [98] |
None | rs2044111 | PNR | IFX | CD+UC (<21) | [98] |
DGKB | rs17168564 | PNR | IFX | CD+UC (<21) | [98] |
LOC105379171 | rs7726515 | PNR | IFX | CD+UC (<21) | [98] |
TSPAN18 | rs835780 | PNR | IFX | CD+UC (<21) | [98] |
TSPAN18 | rs835791 | PNR | IFX | CD+UC (<21) | [98] |
TSPAN18 | rs7124825 | PNR | IFX | CD+UC (<21) | [98] |
None | rs9556658 | PNR | IFX | CD+UC (<21) | [98] |
None | rs1555901 | PNR | IFX | CD+UC (<21) | [98] |
None | rs4465121 | PNR | IFX | CD+UC (<21) | [98] |
None | rs10269232 | PNR | IFX | CD+UC (<21) | [98] |
DGS2-AS1 | rs1667216 | PNR | IFX | CD+UC (<21) | [98] |
None | rs9404502 | PNR | IFX | CD+UC (<21) | [98] |
None | rs5977968 | PNR | IFX | CD+UC (<21) | [98] |
None | rs12937472 | PNR | IFX | CD+UC (<21) | [98] |
None | rs4301261 | PNR | IFX | CD+UC (<21) | [98] |
None | rs6529954 | PNR | IFX | CD+UC (<21) | [98] |
None | rs12559781 | PNR | IFX | CD+UC (<21) | [98] |
None | rs2825699 | PNR | IFX | CD+UC (<21) | [98] |
DCDC2C | rs11903032 | PNR | IFX | CD+UC (<21) | [98] |
TLR4 | rs5030728 | SubT-IFX | IFX | CD+UC (<18) | [100] |
LY96 | rs11465996 | LTR | IFX, ADL | UC (<18) | [100] |
SubT-IFX | IFX | CD+UC (<18) | [100] | ||
TLR2 | rs1816702 | SupT-IFX | IFX | CD+UC (<18) | [100] |
AB-ADL | ADL | CD+UC (<18) | [100] | ||
TNFRSF1B | rs3397 | LTR | IFX, ADL | CD (<18) | [100] |
SubT-ADL | ADL | CD+UC (<18) | [100] | ||
CD14/TMCO6 | rs2569190 | AB-IFX | IFX | CD+UC (<18) | [100] |
AB-ADL | ADL | CD+UC (<18) | [100] | ||
Sup-IFX | IFX | CD+UC (<18) | [100] | ||
IL10/IL19 | rs1800872 | LTR | IFX, ADL | CD (<18) | [100] |
IL17A | rs2275913 | LTR | IFX, ADL | CD (<18) | [100] |
rs10499563 | LTR | IFX, ADL | CD (<18) | [100] | |
HLA-DQA1*05 | Higher immunogenicity | [97] | |||
FCGR3A | rs396991 | RCR, Higher immunogenicity, Lower IFX levels | IFX | CD+UC (7–18) | [101] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvador-Martín, S.; Melgarejo-Ortuño, A.; López-Fernández, L.A. Biomarkers for Optimization and Personalization of Anti-TNFs in Pediatric Inflammatory Bowel Disease. Pharmaceutics 2021, 13, 1786. https://doi.org/10.3390/pharmaceutics13111786
Salvador-Martín S, Melgarejo-Ortuño A, López-Fernández LA. Biomarkers for Optimization and Personalization of Anti-TNFs in Pediatric Inflammatory Bowel Disease. Pharmaceutics. 2021; 13(11):1786. https://doi.org/10.3390/pharmaceutics13111786
Chicago/Turabian StyleSalvador-Martín, Sara, Alejandra Melgarejo-Ortuño, and Luis A. López-Fernández. 2021. "Biomarkers for Optimization and Personalization of Anti-TNFs in Pediatric Inflammatory Bowel Disease" Pharmaceutics 13, no. 11: 1786. https://doi.org/10.3390/pharmaceutics13111786
APA StyleSalvador-Martín, S., Melgarejo-Ortuño, A., & López-Fernández, L. A. (2021). Biomarkers for Optimization and Personalization of Anti-TNFs in Pediatric Inflammatory Bowel Disease. Pharmaceutics, 13(11), 1786. https://doi.org/10.3390/pharmaceutics13111786