Role of Photobiomodulation Therapy in Neurological Primary Burning Mouth Syndrome. A Systematic Review and Meta-Analysis of Human Randomised Controlled Clinical Trials
Abstract
:Highlights
- Neurological primary burning mouth syndrome (npBMS) has significant functional and psychological impacts on patient’s quality of life.
- Despite the positive results of the included studies in this review favouring photobiomodulation therapy in npBMS, high RoB and heterogeneity.
- The high RoB and meta-analytical heterogeneity in the eligible studies warrant the necessity to perform well-designed and robust RCTs, taking into consideration the drawbacks and the gaps of these studies and utilise our proposed suggested recommendations to bridge the gaps.
1. Introduction
- To investigate the core of the inconsistencies among the available data and extrapolate the reasons.
- To evaluate the sensitivity of the results’ methods of assessment and obtain vigorous standardised methodology, taking into consideration the appropriate diagnostic criteria.
- To attempt to propose a preliminary empirical consensus of PBM dosimetry and treatment protocols.
- To postulate extraoral and intraoral treatment strategies for BMS for future clinical RCTs.
2. Materials and Methods
2.1. Review Protocol and PROSPERO Registration
2.2. Population (P), Intervention (I), Comparison (C) and Outcomes (O): PICO
- P:
- Subjects diagnosed with neurological primary BMS according to any criteria.
- I:
- Utilisation of PBMT; laser-PBM or light-emitted diode (LED)-PBM, as a mono-therapy or combined.
- C:
- Placebo (Sham PBM) or pharmacotherapy (topical or systematic), or cognitive approach or physiotherapy.
- O:
- Evaluation of patient’s self-reporting outcomes (pain intensity including burning sensation, functional problems, anxiety/depression, QoL), immunohistochemistry and salivary profiles.
2.3. Focused Questions of Review Search
- Does PBM with laser or LED or combined therapies have superior effects compared to placebo or any primary BMS standard care, in reducing neuropathic pain intensity, improving patients’ functionality, psychological status and QoL?
- Does combined laser-PBM therapy of red or NIR wavelengths prove synergistic effects compared to placebo?
- Do the diagnostic criteria of primary neurological BMS play a role in optimising the clinical outcome of patients with BMS?
- Is it possible to propose clinical guidance and recommendations of PBMT (LED and laser) for BMS management?
2.4. Search Strategy
2.5. Relevant Free Keywords and MeSH Terms
2.6. Eligibility Criteria
2.6.1. Inclusion Criteria
- Subjects of both genders aged ≥18-year-old diagnosed with neurological primary burning mouth syndrome (npBMS), according to any orofacial neuropathic pain diagnostic criteria.
- Randomised clinical trials (RCTs) with no period restriction, published in any language dealt with the evaluation of the effectiveness of PBMT in the treatment of primary neurological BMS symptoms, compared to placebo (PBM sham) or any standard care treatment.
- Symptoms’ duration without intraoral lesions ≥3 months.
- Subjects with no physiological or systematic conditions, contributing into the pain.
- RCT’s comparing the efficacy of PBMT to any other standard treatment modality.
- All in vivo human RCTs’ designs.
- No wavelengths restrictions that are within the optical window regardless of the light source, whether laser or LED.
- No restrictions on the reported laser and LED parameters.
- Studies reporting at least one of the following parameters, as an outcome variable: Pain, burning sensation, functionality problems, QoL, anxiety/depression, salivary flow profile, immunohistochemistry biomarkers.
- RCT studies with the longest follow up of at least 1 month after treatment.
- Search engine period from 1 January 2010–28 February 2021.
2.6.2. Exclusion Criteria
- In vitro and in vivo animal studies, case reports, letter to the editor and/or editorials, literature review, systematic review/or meta-analysis, books and book chapters, pilot study and indexes and abstracts or university work assignment with insufficient data (letters, personal opinions, conference abstracts).
- Studies with subjects who were on antidepressant, anxiolytic, or anticonvulsant drugs <3 months.
- Subjects who underwent chemo- and/or radiotherapy.
- Studies utilised PBMT and medication, as a primary intervention.
- Hyposalivation related to Sjogren syndrome (unstimulated saliva production ≤ 0.1 mL/min) or any predisposing factors not related to BMS.
- Subjects with secondary burning mouth syndrome.
- Pregnant and lactating women.
- Intraoral mucosal lesions.
- Subject with the following neuropathic orofacial pain: trigeminal neuralgia, glossopharyngeal neuralgia, oral Iatrogenic pain, primary burning mouth syndrome, temporomandibular joint dysfunction syndrome, migraine, odonatological and head and neck origins.
- Systematic diseases/or on medications induce neuropathic pain.
- BMS patient has been treated previously phototherapy.
- Patients unable to follow the indications for administration of oral topical medications
- Subjects with pain related to bone conditions.
- Subjects with any of the following: neurological disorders metabolic disorders, autoimmune disorders, diabetic mellitus.
- Subjects with parafunctional habits or intra-oral trauma or local nerve damage.
- Studies used PBM-acupuncture with or without medications, as a primary intervention.
2.7. Types of Outcome Measure
2.7.1. Primary Outcome
2.7.2. Secondary Outcome
- Functionality problems: dysgeusia (taste), sleepiness.
- QoL/overall treatment improvement.
- Anxiety/depression.
- Immunohistochemistry profile.
- Salivary flow profile.
- Any reported adverse effect.
2.8. Qualitative Analysis
- Bias arising from the randomization process;
- Bias due to deviations from intended interventions;
- Bias due to missing outcome data;
- Bias in measurement of the outcome;
- Bias in selection of the reported result.
2.9. Statistical Analysis of Data
3. Results
3.1. Study Selection
3.2. Studies Utilised IASP Diagnostic Criteria Revised 2013
3.2.1. Characteristics of the Study Populations
3.2.2. Study Characteristics
3.2.3. Documentation of Reported PBM Irradiation Parameters
3.2.4. Assessment Methods
3.3. Studies Utilised IASP Diagnostic Criteria 2016
3.3.1. Characteristics of the Study Populations
3.3.2. Study Characteristics
3.3.3. Documentation of Reported PBM Irradiation Parameters
3.3.4. Assessment Methods
3.4. Studies Utilised ICHD-3-Diagnostic Criteria, 2nd Edition (2013)
3.4.1. Characteristics of the Study Populations
3.4.2. Study Characteristics
3.4.3. Documentation of Reported PBM Irradiation Parameters
3.4.4. Assessment Methods
3.5. Studies Utilised ICHD-3-Diagnostic Criteria, 3rd Edition, 2018
3.5.1. Characteristics of the Study Populations
3.5.2. Study Characteristics
3.5.3. Documentation of Reported PBM Irradiation Parameters
3.5.4. Assessment Methods
3.6. Studies Utilised Unspecified Criteria
3.6.1. Characteristics of the Study Populations
3.6.2. Study Characteristics
3.6.3. Documentation of Reported PBM Irradiation Parameters
3.6.4. Assessment Methods
3.7. Qualitative Assessment
3.8. Impact Factor of the Published Papers
3.9. Quantitative Assessment
Outcome Variables
4. Discussion
4.1. Role of RoB Assessment
4.2. Role of Meta-Analysis Outcome
4.3. Methodology Quality
4.3.1. Subjects Characteristics
4.3.2. Evaluation of Areas of BMS Presented Symptoms
4.3.3. Diagnostic Criteria
4.3.4. Evaluation of Outcome Measures Assessment
Assessment of Outcome Measures | Primary Outcomes | Secondary Outcomes | |||
---|---|---|---|---|---|
Pain Reduction | Functional Improvement | Anxiety/Depression and QoL | Over All Treatment Satisfaction | ||
Patient-reported outcomes (PROMs/IMPACT) | Qualitative (Subjective) | VAS, NPRS, SSI IMMEC, PPI | PSFS 12-indicies: Functional Problems Questionnaire | BAI, PAD, HRQL, OHIP-14 | |
Quantitative (Objective) | BPI, MPQ | Functional problems assessment | BDI, HADS, Euro Qol-5D 5L, GDS, SF-36, SCL-90-R | PGI-I | |
Trigeminal somatosensory assessment | Combined qualitative and quantitative | CITAS (taste), QST/QualST | |||
Immuno-histochemistry | Quantitative | Spectrophotometric method: IL-8, IL-1β, IL-6, IL-2, TNF-α TNF-α (pg/ml), NGF, TRPV1, CB1, oxidative stress markers. ELISA (UWS) Sialometry (UWS pH) LC-MS-MS: Opiorphin, | |||
Salivary analysis profile | Quantitative | Salivary flow rate: CC4, IgA, IgG, IgM, lysosomes, a1AT, CRP, MIP4, PEDF, SAP, Calcitonin level [Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission] Unstimulated salivary flow rates (SFRs) | |||
Microcirculation assessment | Quantitative | Videocapillaroscopy evaluating the capillary bed: parametric data (Capillary loop length, diameter, density and tortuosity) and non-parametric data (Presence of capillaries with particular morphology) | |||
MRI | Quantitative | Alterations in gray matter volume (GMV) using structural MRI and cerebral blood flow (CBF), using and arterial spin labeling (ASL) perfusion MRI |
4.3.5. Assessment of the Number and Allocations of the Trigger Points of the Affected Areas
4.4. Assessment of Reported PBM Parameters and Treatment Protocol
Device Information | Essential Reported Parameters | Desirable Reported Parameters | |
---|---|---|---|
Irradiation Parameters | Treatment Parameters | Energy per Pulse (J) | |
Manufacturer | Wavelength (nm) | Beam spot size at target (cm2) | Polarisation |
Model identifier | Spectral bandwidth (nm) | Irradiance at target (mW/cm2) | Aperture diameter (cm) |
Emitters Type (e.g., nGaAlP LED, GaAlAs LASER, KTP LASER) | Operating mode (CW, pulsed, super pulsed) | Exposure duration (sec) | Irradiance at aperture (mW/cm2) |
Number of emitters | Frequency (Hz) | Radiant exposure (J/cm2) | Beam diverange (°) |
Spatial distribution of emitters. (e.g., 4 emitters spaced 2 cm apart in a square pattern). | Pulse width (second) | Radiant energy (J) | Beam shape |
Beam delivery system (e.g., fibreoptic, free air/scanned, hand-held probe). | Duty cycle (%) | Number of points irradiated | Scanning technique |
Beam profile | Area irradiated (cm2) | Speed of movement | |
Application technique | |||
Number and frequency of treatment sessions & total radiant energy (J) |
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders. Cephalalgia Int. J. Headache 2018, 38, 1–211. [Google Scholar] [CrossRef]
- Woda, A.; Navez, M.L.; Picard, P.; Gremeau, C.; Pichard-Leandri, E. A possible therapeutic solution for stomatodynia (burning mouth syndrome). J. Orofac. Pain 1998, 12, 272–278. [Google Scholar] [PubMed]
- Moisset, X.; Calbacho, V.; Torres, P.; Gremeau-Richard, C.; Dallel, R. Co-occurrence of Pain Symptoms and Somatosensory Sensitivity in Burning Mouth Syndrome: A Systematic Review. PLoS ONE 2016, 11, e0163449. [Google Scholar] [CrossRef] [PubMed]
- Headache Classification Committee of the International Headache Society (IHS). The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 2013, 33, 629–808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merskey, H.; Bogduk, N. Classification of Chronic Pain; International Association for the Study of Pain Press: Seattle, WA, USA, 1994; pp. 209–214. [Google Scholar]
- Granot, M.; Nagler, R.M. Association between regional idiopathic neuropathy and salivary involvement as the possible mechanism for oral sensory complaints. J. Pain 2005, 6, 581–587. [Google Scholar] [CrossRef]
- Braud, A.; Boucher, Y. The relationship between the clinical features of idiopathic burning mouth syndrome and self-perceived quality of life. J. Oral Sci. 2016, 58, 475–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinding, C.; Gransjøen, A.M.; Schlumberger, G.; Grushka, M.; Frasnelli, J.; Singh, P.B. Grey matter changes of the pain matrix in patients with burning mouth syndrome. Eur. J. Neurosci. 2016, 43, 997–1005. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Jornet, P.L.; Camacho-Alonso, F.; Lucero-Berdugo, M. Quality of life in patients with burning mouth syndrome. J. Oral Pathol. Med. 2008, 37, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Aruoma, O.I.; Neergheen, V.S.; Bahorun, T.; Jen, L.-S. Free radicals, antioxidants and diabetes: Embryopathy, retinopathy, neuropathy, nephropathy and cardio-vascular complications. Neuroembryol. Aging 2007, 4, 117–137. [Google Scholar] [CrossRef]
- Hovatta, I.; Juhila, J.; Donner, J. Oxidative stress in anxiety and comorbid disorders. Neurosci. Res. 2010, 68, 261–275. [Google Scholar] [CrossRef]
- Tatullo, M.; Marrelli, M.; Scacco, S.; Lorusso, M.; Doria, S.; Sabatini, R. Relationship between oxidative stress and “burning mouth syndrome” in female patients: A scientific hypothesis. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 1218–1221. [Google Scholar] [PubMed]
- Han, J.Y.; Kim, J.S.; Son, J.H. Mitochondrial homeostasis molecules: Regulation by a trio of recessive Parkinson’s disease genes. Exp. Neurobiol. 2014, 23, 345–351. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.K.Y.; Rone, M.B.; Lee, S.; Antel, J.P.; Zhang, J. Mitochondrial and bioenergetic dysfunction in trauma-induced painful peripheral neuropathy. Mol. Pain 2015, 11, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, T.K.Y.; Shi, X.Q.; Johnson, J.M.; Rone, M.B.; Antel, J.P.; David, S. Peripheral nerve injury induces persistent vascular dysfunction and endoneurial hypoxia, contributing to the genesis of neuropathic pain. J. Neurosci. 2015, 35, 3346–3359. [Google Scholar] [CrossRef] [Green Version]
- Siau, C.; Bennett, G.J. Dysregulation of cellular calcium homeostasis in chemotherapy-evoked painful peripheral neuropathy. Anesth. Analg. 2006, 102, 1485–1490. [Google Scholar] [CrossRef] [PubMed]
- Brand, M.D.; Nicholls, D.G. Assessing mitochondrial dysfunction in cells. Biochem. J. 2011, 435, 297–312. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Wang, Y.; Wang, Z. Assessment of trigeminal somatosensory evoked potentials in burning mouth syndrome. Chin. J. Dent. Res. 2000, 3, 40–46. [Google Scholar]
- Lauria, G.; Majorana, A.; Borgna, M.; Lombardi, R.; Penza, P.; Padovani, A. Trigeminal small-fiber sensory neuropathy causes burning mouth syndrome. Pain 2005, 115, 332–337. [Google Scholar] [CrossRef]
- Jääskeläinen, S.K. Pathophysiology of primary burning mouth syndrome. Clin. Neurophysiol. 2012, 123, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Penza, P.; Majorana, A.; Lombardi, R.; Camozzi, F.; Bonadeo, S.; Sapelli, P. “Burning tongue” and “burning tip”: The diagnostic challenge of the burning mouth syndrome. Clin. J. Pain 2010, 26, 528–532. [Google Scholar] [CrossRef] [PubMed]
- Pezet, S.; McMahon, S.B. Neurotrophins: Mediators and modulators of pain. Annu. Rev. Neurosci. 2006, 29, 507–538. [Google Scholar] [CrossRef] [PubMed]
- Woda, A.; Pionchon, P. A unified concept of idiopathic orofacial pain: Pathophysiologic features. J. Orofac. Pain. 2000, 14, 196–212. [Google Scholar]
- Forssell, H.; Jääskeläinen, S.; List, T.; Svensson, P.; Baad-Hansen, L. An update on pathophysiological mechanisms related to idiopathic orofacial pain conditions with implications for management. J. Oral Rehabil. 2015, 42, 300–322. [Google Scholar] [CrossRef]
- Sikora, M.; Verzak, Z.; Matijevic, M.; Vcev, A.; Siber, S.; Music, L. Anxiety and depression scores in patients with burning mouth syndrome. Psychiatr. Danub. 2018, 30, 466–470. [Google Scholar] [CrossRef]
- Valenca, M.M.; de Oliveira, D.A.; Martins, H.A. Alice in wonderland syndrome, burning mouth syndrome, cold stimulus headache, and HaNDL: Narrative review. Headache 2015, 55, 1233–1248. [Google Scholar] [CrossRef] [PubMed]
- Eliav, E.; Kamran, B.; Schaham, R.; Czerninski, R.; Gracely, R.H.; Benoliel, R. Evidence of chorda tympani dysfunction in patients with burning mouth syndrome. J. Am. Dent. Assoc. 2007, 138, 628–633. [Google Scholar] [CrossRef]
- Zakrzewska, J.; Buchanan, J.A. Burning mouth syndrome. BMJ Clin. Evid. 2016, 2016, 1301. [Google Scholar]
- Zakrzewska, J.M.; Forssell, H.; Glenny, A.M. Interventions for the treatment of burning mouth syndrome. Cochrane Database Syst. Rev. 2005, 1, CD002779. [Google Scholar] [CrossRef]
- Sun, A.; Wu, K.M.; Wang, Y.P.; Lin, H.P.; Chen, H.M.; Chiang, C.P. Burning mouth syndrome: A review and update. J. Oral Pathol. Med. 2013, 42, 649–655. [Google Scholar] [CrossRef] [PubMed]
- Petruzzi, M.; Lauritano, D.; De Benedittis, M.; Baldoni, M.; Serpico, R. Systemic capsaicin for burning mouth syndrome: Short-term results of a pilot study. J. Oral Pathol. Med. 2004, 33, 111–114. [Google Scholar] [CrossRef]
- Noble, M.; Treadwell, J.R.; Tregear, S.J.; Coates, V.H.; Wiffen, P.J.; Akafomo, C. Long-term opioid management for chronic noncancer pain. Cochrane Database Syst. Rev. 2010, 2010, CD006605. [Google Scholar] [CrossRef]
- Sommer, C.; Welsch, P.; Klose, P.; Schaefert, R.; Petzke, F.; Häuser, W. Opioids in chronic neuropathic pain. A systematic review and meta-analysis of efficacy, tolerability and safety in randomized placebo-controlled studies of at least 4 weeks duration. Schmerz 2015, 29, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.F.; Kim, Y.; Yoo, T.; Han, P.; Inman, J.C. Burning mouth syndrome: A systematic review of treatments. J. Oral Dis. 2018, 24, 325–334. [Google Scholar] [CrossRef]
- de Moraes, M.; do Amaral-Bezerra, B.A.; da Rocha-Neto, P.C.; de Oliveira Soares, A.C.; Pinto, L.P.; de Lisboa Lopes Costa, A. Randomized trials for the treatment of burning mouth syndrome: An evidence-based review of the literature. J. Oral Pathol. Med. 2012, 41, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Dai, T.; Sharma, S.K.; Huang, Y.Y.; Carroll, J.D.; Hamblin, M.R. The nuts and bolts of low-level laser (light) therapy. Ann. Biomed. Eng. 2012, 40, 516–533. [Google Scholar] [CrossRef] [Green Version]
- Wong-Riley, M.T.; Liang, H.L.; Eells, J.T.; Chance, B.; Henry, M.M.; Buchmann, E.; Kane, M.; Whelan, H.T. Photobiomodulation directly benefits primary neurons functionally inactivated by toxins: Role of cytochrome c oxidase. J. Biol. Chem. 2005, 280, 4761–4771. [Google Scholar] [CrossRef] [Green Version]
- Karu, T.; Pyatibrat, L.; Kalendo, G. Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro. J. Photochem. Photobiol. B 1995, 27, 219–223. [Google Scholar] [CrossRef]
- Chen, A.C.; Arany, P.R.; Huang, Y.Y.; Tomkinson, E.M.; Sharma, S.K.; Kharkwal, G.B.; Saleem, T.; Mooney, D.; Yull, F.E.; Blackwell, T.S.; et al. Low-level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS ONE 2011, 6, e22453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karu, T.I.; Pyatibrat, L.V.; Afanasyeva, N.I. Cellular effects of low power laser therapy can be mediated by nitric oxide. Lasers Surg. Med. 2005, 36, 307–314. [Google Scholar] [CrossRef]
- Sharma, S.K.; Kharkwal, G.B.; Sajo, M.; Huang, Y.Y.; De Taboada, L.; McCarthy, T.; Hamblin, M.R. Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg. Med. 2011, 43, 851–859. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.Y.; Chen, A.C.; Carroll, J.D.; Hamblin, M.R. Biphasic dose response in low level light therapy. Dose Response 2009, 7, 358–383. [Google Scholar] [CrossRef]
- Hanna, R.; Agas, D.; Benedicenti, S.; Ferrando, S.; Laus, F.; Cuteri, V. A Comparative Study Between the Effectiveness of 980 nm Photobiomodulation Delivered by Hand-Piece with Gaussian vs. Flat-Top Profiles on Osteoblasts Maturation. Front. Endocrinol. 2019, 10, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, R.; Armati, P.; Laakso, E.L.; Bjordal, J.M.; Baxter, G.D. Inhibitory effects of laser irradiation on peripheral mammalian nerves and relevance to analgesic effects: A systematic review. Photomed. Laser Surg. 2011, 29, 356–381. [Google Scholar] [CrossRef]
- Zupin, L.; Ottaviani, G.; Rupel, K.; Biasotto, M.; Zacchigna, S.; Crovella, S.; Celsi, F. Analgesic effect of Photobiomodulation Therapy: An in vitro and in vivo study. J. Biophotonics 2019, 12, e201900043. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.; Dalvi, S.; Bensadoun, R.J.; Benedicenti, S. Role of Photobiomodulation Therapy in Modulating Oxidative Stress in Temporomandibular Disorders. A Systematic Review and Meta-Analysis of Human Randomised Controlled Trials. Antioxidants 2021, 10, 1028. [Google Scholar] [CrossRef] [PubMed]
- Hanna, R.; Dalvi, S.; Benedicenti, S.; Amaroli, A.; Sălăgean, T.; Pop, I.D.; Todea, D.; Bordea, I.R. Photobiomodulation Therapy in Oral Mucositis and Potentially Malignant Oral Lesions: A Therapy Towards the Future. Cancers 2020, 12, 1949. [Google Scholar] [CrossRef]
- Yang, H.W.; Huang, Y.F. Treatment of burning mouth syndrome with a low-level energy diode laser. Photomed. Laser Surg. 2011, 29, 123–125. [Google Scholar] [CrossRef]
- Pandeshwar, P.; Roa, M.D.; Das, R.; Shastry, S.P.; Kaul, R.; Srinivasreddy, M.B. Photobiomodulation in oral medicine: A review. J. Investig. Clin. Dent. 2016, 7, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Cekić-Arambasin, A.; Durdević-Matić, A.; Mravak-Stipetić, M.; Bilić, A. Efikasnost mekog lasera u lijecenju oralnih simptoma [Use of soft laser in the treatment of oral symptoms]. Acta Stomatol. Croat. 1990, 24, 281–288. [Google Scholar]
- Hansen, H.J.; Thorøe, U. Low power laser biostimulation of chronic oro-facial pain. A double-blind placebo controlled cross-over study in 40 patients. Pain 1990, 43, 169–179. [Google Scholar] [CrossRef]
- Matos, A.L.; Silva, P.U.; Paranhos, L.R.; Santana, I.T.; Matos, F.R. Efficacy of the laser at low intensity on primary burning oral syndrome: A systematic review. Med. Oral Patol. Oral Cir. Bucal 2021, 26, e216–e225. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, L.; Zhao, W.; Yan, Z. Effectiveness of photobiomodulation in the treatment of primary burning mouth syndrome-a systematic review and meta-analysis. Lasers Med. Sci. 2021, 36, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Jiang, W.W. Low-level laser treatment of burning mouth syndrome: A systematic review and meta-analysis. Front. Oral Maxillofac. Med. 2019, 1, 10. [Google Scholar] [CrossRef]
- Al-Maweri, S.A.; Javed, F.; Kalakonda, B.; AlAizari, N.A.; Al-Soneidar, W.; Al-Akwa, A. Efficacy of low-level laser therapy in the treatment of burning mouth syndrome: A systematic review. Photodiagnosis Photodyn. Ther. 2017, 17, 188–193. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [Google Scholar] [CrossRef] [Green Version]
- Higgins, J.P.T.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0; The Cochrane Collaboration: London, UK, 2011; Available online: http://www.cochrane-handbook.org (accessed on 7 September 2021).
- McHugh, M.L. Inter-rate reliability: The kappa statistic. Biochem. Med. 2012, 22, 276–282. [Google Scholar] [CrossRef]
- Sterne, J.A.C.; Savovic, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altman, D.G.; Schulz, K.F.; Moher, D.; Egger, M.; Davidoff, F.; Elbourne, D.; Gøtzsche, P.C.; Lang, T. CONSORT GROUP (Consolidated Standards of Reporting Trials). The revised CONSORT statement for reporting randomized trials: Explanation and elaboration. Ann. Intern. Med. 2001, 134, 663–694. [Google Scholar] [CrossRef]
- The Cochrane Collaboration. Review Manager (RevMan) [Computer Program]; Version 5.4.1; The Cochrane Collaboration: London, UK, 2020. [Google Scholar]
- Lau, J.; Ioannidis, J.P.; Schmid, C.H. Quantitative synthesis in systematic reviews. Ann. Intern. Med. 1997, 127, 820–826. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Thompson, S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Chu, H. Quantifying publication bias in meta-analysis. Biometrics 2018, 74, 785–794. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Xu, P.; Zhang, Q.Q.; Jiang, W.W. Nd:YAG photobiomodulation treatment in burning mouth syndrome: A pilot study. Laser Dent. Sci. 2021, 5, 53–60. [Google Scholar] [CrossRef]
- Romeo, U.; Del Vecchio, A.; Capocci, M.; Maggiore, C.; Ripari, M. The low-level laser therapy in the management of neurological burning mouth syndrome. A pilot study. Ann. Stomatol. 2010, 1, 14–18. [Google Scholar]
- Yang, J.G.; Sun, P.; Liu, Z.X. Efficacy of Nd:YAG laser and mecobalamin in the treatment of burning mouth syndrome. Gen. J. Stomatol. 2018, 5, 1–28. [Google Scholar]
- Kato, I.T.; Pellegrini, V.D.; Prates, R.A.; Riberio, M.S.; Wetter, N.U.; Sugaya, N.N. Low-level laser therapy in burning mouth syndrome patients: A pilot study. Photomed. Laser Surg. 2010, 28, 835–839. [Google Scholar] [CrossRef]
- dos Santos-Lde, F.; Carvalho-Ade, A.; Leão, J.C.; Cruz Perez, D.E.; Castro, J.F. Effect of low-level laser therapy in the treatment of burning mouth syndrome: A case series. Photomed. Laser Surg. 2011, 29, 793–796. [Google Scholar] [CrossRef] [PubMed]
- dos Santos-Lde, F.; de-Andrade, S.; Nogueira, G.; Leão, J.C.; de Freitas, P.M. Phototherapy on the treatment of burning mouth syndrome: A prospective analysis of 20 cases. Photochem. Photobiol. 2015, 91, 1231–1236. [Google Scholar] [CrossRef] [PubMed]
- Barbosa, N.G.; Gonzaga, A.K.G.; de Sena-Fernandes, L.L.; da Fonseca, A.G.; Queiroz, S.I.M.; Lemos, T.M.A.M.; da Silveira, É.J.D.; de Medeiros, A.M.C. Evaluation of laser therapy and alpha-lipoic acid for the treatment of burning mouth syndrome: A randomized clinical trial. Lasers Med. Sci. 2018, 33, 1255–1262. [Google Scholar] [CrossRef]
- Cui, D.; Zhang, Y. Efficacy of low-level laser therapy in the treatment of burning mouth syndrome. Chin. J. Pract. Stomatol. 2017, 10, 158–162. [Google Scholar]
- Brailo, V.; Bosnjak, A.; Boras, V.V.; Jurisic, A.K.; Pelivan, S.; Kraljevic-Simunkovic, S. Laser acupuncture in the treatment of burning mouth syndrome: A pilot study. Acupunct. Med. 2013, 31, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Bardellini, E.; Amadori, F.; Conti, G.; Majorana, A. Efficacy of the photobiomodulation therapy in the treatment of the burning mouth syndrome. Med. Oral Patol. Oral Cir. Bucal 2019, 24, e787–e791. [Google Scholar] [CrossRef]
- Valenzuela, S.; Lòpez-Jornet, P. Effects of low-level laser therapy on burning mouth syndrome. J. Oral Rehabil. 2017, 44, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Arbabi-Kalati, F.; Bakhshani, N.M.; Rasti, M. Evaluation of the efficacy of low-level laser in improving the symptoms of burning mouth syndrome. J. Clin. Exp. Dent. 2015, 7, e524–e527. [Google Scholar] [CrossRef] [PubMed]
- Arduino, P.G.; Cafaro, A.; Garrone, M.; Gambino, A.; Cabras, M.; Romagnoli, E.; Broccoletti, R. A randomized pilot study to assess the safety and the value of low-level laser therapy versus clonazepam in patients with burning mouth syndrome. Lasers Med. Sci. 2016, 31, 811–816. [Google Scholar] [CrossRef] [PubMed]
- Sugaya, N.N.; Silva, É.F.; Kato, I.T.; Prates, R.; Gallo, C.B.; Pellegrini, V.D. Low Intensity laser therapy in patients with burning mouth syndrome: A randomized, placebo- controlled study. Braz. Oral Res. 2016, 10, e108. [Google Scholar] [CrossRef] [PubMed]
- Spanemberg, J.C.; López-López, J.; de Figueiredo, M.A.; Cherubini, K.; Salum, F.G. Efficacy of low-level laser therapy for the treatment of burning mouth syndrome: A randomized, controlled trial. J. Biomed. Opt. 2015, 20, 098001. [Google Scholar] [CrossRef] [PubMed]
- Škrinjar, I.; Lončar-Brzak, B.; Vidranski, V.; Vučićević-Boras, V.; Rogulj, A.A.; Pavelić, B. Salivary Cortisol Levels and Burning Symptoms in Patients with Burning Mouth Syndrome before and after Low Level Laser Therapy: A double blind controlled randomized clinical trial. Acta Stomatol. Croat. 2020, 54, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Pezelj-Ribaric, S.; Kqiku, L.; Brumini, G.; Urek, M.M.; Antonić, R.; Kuiš, D.; Glažar, I.; Städtler, P. Proinflammatory cytokine levels in saliva in patients with burning mouth syndrome before and after treatment with low-level laser therapy. Lasers Med. Sci. 2013, 28, 297–301. [Google Scholar] [CrossRef]
- Sikora, M.; Včev, A.; Siber, S.; Vučićević Boras, V.; Rotim, Ž.; Matijević, M. The Efficacy of Low-Level Laser Therapy in Burning Mouth Syndrome—A Pilot Study. Acta Clin. Croat. 2018, 57, 312–315. [Google Scholar] [CrossRef]
- Spanemberg, J.C.; Segura-Egea, J.J.; Rodríguez-de Rivera-Campillo, E.; Jané-Salas, E.; Salum, F.G.; López-López, J. Low-level laser therapy in patients with Burning Mouth Syndrome: A double-blind, randomized, controlled clinical trial. J. Clin. Exp. Dent. 2019, 1, e162–e169. [Google Scholar] [CrossRef]
- de Pedro, M.; López-Pintor, R.M.; Casañas, E.; Hernández, G. Effects of photobiomodulation with low-level laser therapy in burning mouth syndrome: A randomized clinical trial. Oral Dis. 2020, 26, 1764–1776. [Google Scholar] [CrossRef]
- Scardina, G.A.; Casella, S.; Bilello, G.; Messina, P. Photobiomodulation Therapy in the Management of Burning Mouth Syndrome: Morphological Variations in the Capillary Bed. Dent. J. 2020, 8, 99. [Google Scholar] [CrossRef] [PubMed]
- International Association for the Study of Pain (IASP). Classification of Chronic Pain, 2nd ed. (revised); IASP: Washington, DC, USA, 2013; Available online: https://www.iasp-pain.org (accessed on 7 September 2021).
- International Association for the Study of Pain (IASP). IASP Orofacial Pain Fact Sheet. Burning Mouth Syndrome; IASP: Washington, DC, USA, 2016; Available online: https://www.iasp-pain.org (accessed on 7 September 2021).
- Higgins, J.P.T.; Eldridge, S.; Li, T. Chapter 23: Including variants on randomized trials. In Cochrane Handbook for Systematic Reviews of Interventions Version 6.0 (Updated July 2019); Higgins, J.P.T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M.J., Welch, V.A., Eds.; John Wiley & Sons: Cochrane, AB, Canada, 2019; Available online: www.training.cochrane.org/handbook (accessed on 7 September 2021).
- Sedgwick, P. Meta-analyses: How to read a funnel plot. BMJ 2013, 346, f1342. [Google Scholar] [CrossRef] [Green Version]
- Amaroli, A.; Benedicenti, S.; Bianco, B.; Bosco, A.; Clemente Vargas, M.R.; Hanna, R.; Ramakrishnan, P.K.; Raffetto, M.; Ravera, S. Electromagnetic Dosimetry for Isolated Mitochondria Exposed to Near-Infrared Continuous-Wave Illumination in Photobiomodulation Experiments. J. Bioelectromagn. 2021, 42, 384–397. [Google Scholar] [CrossRef] [PubMed]
- Klasser, G.D.; Epstein, J.B.; Villines, D. Diagnostic dilemma: The enigma of an oral burning sensation. J. Can. Dent. Assoc. 2011, 77, b143. [Google Scholar]
- The Orofacial Pain Classification Committee. International classification of orofacial pain, 1st edition (ICOP). Cephalalgia 2020, 40, 129–221. [Google Scholar] [CrossRef] [Green Version]
- Salarić, I.; Sabalić, M.; Alajbeg, I. Opiorphin in burning mouth syndrome patients: A case-control study. Clin. Oral Investig. 2017, 21, 2363–2370. [Google Scholar] [CrossRef]
- Currie, C.C.; Ohrbach, R.; De Leeuw, R.; Forssell, H.; Imamura, Y.; Jääskeläinen, S.K.; Koutris, M.; Nasri-Heir, C.; Huann, T.; Renton, T.; et al. Developing a research diagnostic criteria for burning mouth syndrome: Results from an international Delphi process. J. Oral Rehabil. 2021, 48, 308–331. [Google Scholar] [CrossRef] [PubMed]
- Chmieliauskaite, M.; Stelson, E.A.; Epstein, J.B.; Klasser, G.D.; Farag, A.; Carey, B.; Albuquerque, R.; Mejia, L.; Ariyawardana, A.; Nasri-Heir, C.; et al. Consensus agreement to rename burning mouth syndrome and improve International Classification of Diseases-11 disease criteria: An international Delphi study. Pain 2021, 162, 2548–2557. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Jornet, P.; Felipe, C.C.; Pardo-Marin, L.; Ceron, J.J.; Pons-Fuster, E.; Tvarijonaviciute, A. Salivary Biomarkers and Their Correlation with Pain and Stress in Patients with Burning Mouth Syndrome. J. Clin. Med. 2020, 9, 929. [Google Scholar] [CrossRef] [Green Version]
- Löfgren, C.D.; Wickström, C.; Sonesson, M.; Lagunas, P.T.; Christersson, C. A systematic review of methods to diagnose oral dryness and salivary gland function. BMC Oral Health 2012, 12, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, Y.C.; Hong, I.K.; Na, S.Y.; Eun, Y.G. Evaluation of salivary function in patients with burning mouth syndrome. Oral Dis. 2015, 21, 308–313. [Google Scholar] [CrossRef]
- Tóthová, L.; Kamodyová, N.; Červenka, T.; Celec, P. Salivary markers of oxidative stress in oral diseases. Front. Cell Infect. Microbiol. 2015, 20, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siviero, M.; Teixeira, M.J.; Siqueira, J.T.; Siqueira, S.R. Central mechanisms in burning mouth syndrome involving the olfactory nerve: A preliminary study. Clinics 2011, 66, 509–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pereira, J.V.; Normando, A.G.C.; Rodrigues-Fernandes, C.I.; Rivera, C.; Santos-Silva, A.R.; Lopes, M.A. The impact on quality of life in patients with burning mouth syndrome: A systematic review and meta-analysis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2021, 131, 186–194. [Google Scholar] [CrossRef]
- Nasri-Heir, C.; Gomes, J.; Heir, G.M.; Ananthan, S.; Benoliel, R.; Teich, S.; Eliav, E. The role of sensory input of the chorda tympani nerve and the number of fungiform papillae in burning mouth syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Braud, A.; Descroix, V.; Ungeheuer, M.N.; Rougeot, C.; Boucher, Y. Taste function assessed by electrogustometry in burning mouth syndrome: A case–control study. Oral Dis. 2017, 23, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Kano, T.; Kanda, K. Development and validation of a chemotherapy-induced taste alteration scale. Oncol. Nurs. Forum 2013, 40, 79–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forssell, H.; Jääskeläinen, S.; Tenovuo, O.; Hinkka, S. Sensory dysfunction in burning mouth syndrome. Pain 2002, 99, 41–47. [Google Scholar] [CrossRef]
- Yang, G.; Su, S.; Jie, H.; Baad-Hanse, L.; Wang, K.; Yan, S.; Liu, H.; Xie, Q.-F.; Svensson, P. Somatosensory Profiling of Patients with Burning Mouth Syndrome and Correlations with Psychologic Factors. J. Oral Facial Pain Headache 2019, 33, 278–286. [Google Scholar] [CrossRef]
- Guidance on the Routine Collection of Patient Reported Outcome Measures (PROMS) UK Department of Health. Available online: https://www.gov.uk/government/publications/patient-reported-outcome-measures-proms-in-england-a-methodology-for-identifying-potential-outliers--2 (accessed on 7 September 2021).
- Weldring, T.; Smith, S.M. Patient-Reported Outcomes (PROs) and Patient-Reported Outcome Measures (PROMs). Health Serv. Insights 2013, 6, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Farag, A.M.; Albuquerque, R.; Ariyawardana, A.; Chmieliauskaite, M.; Forssell, H.; Nasri-Heir, C.; Klasser, G.D.; Sardella, A.; Mignogna, M.D.; Ingram, M. World Workshop in Oral Medicine VII: Reporting of IMMPACT-recommended outcome domains in randomized controlled trials of burning mouth syndrome: A systematic review. Oral Dis. 2019, 25, 122–140. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Jahng, G.H.; Ryu, C.W.; Byun, J.Y. Change in gray matter volume and cerebral blood flow in patients with burning mouth syndrome. J. Oral Pathol. Med. 2019, 48, 335–342. [Google Scholar] [CrossRef]
- Kikut-Ligaj, D.; Trzcielińska-Lorych, J. How taste works: Cells, receptors and gustatory perception. Cell Mol. Biol. Lett. 2015, 20, 699–716. [Google Scholar] [CrossRef] [PubMed]
- Walega, D.R.; Smith, C.; Epstein, J.B. Bilateral stellate ganglion blockade for recalcitrant oral pain from Burning Mouth Syndrome: A case report. J. Oral Facial Pain Headache 2014, 28, 171–175. [Google Scholar] [CrossRef]
- Nakase, M.; Okumura, K.; Tamura, T.; Kamei, T.; Kada, K.; Nakamura, S.; Inui, M.; Tagawa, T. Effects of near-infrared irradiation to stellate ganglion in glossodynia. Oral Dis. 2004, 10, 217–220. [Google Scholar] [CrossRef] [PubMed]
- Osikowicz, M.; Mika, J.; Przewlocka, B. The glutamatergic system as a target for neuropathic pain relief. Exp. Physiol. 2013, 98, 372–384. [Google Scholar] [CrossRef] [PubMed]
- Golovynska, I.; Golovynskyi, S.; Stepanov, Y.V.; Garmanchuk, L.V.; Stepanova, L.I.; Qu, J.; Ohulchanskyy, T.Y. Red and near-infrared light induces intracellular Ca2+ flux via the activation of glutamate N-methyl-D-aspartate receptors. J. Cell Physiol. 2019, 234, 15989–16002. [Google Scholar] [CrossRef]
- Huang, Y.; Sharma, S.; Carroll, J.; Hamblin, M. Biphasic dose response in low level light therapy- an update. Dose Response 2011, 9, 602–618. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Arany, P.R. Dosimetry for photobiomodulation therapy: Response to Sommers et al. Ann. Transl. Med. 2016, 4, 208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadis, M.; Zainal, S.A.; Holder, M.J.; Carroll, J.D.; Cooper, P.R.; Milward, M.R.; Palin, W.M. The dark art of light measurement: Accurate radiometry for low-level light therapy. Lasers Med. Sci. 2016, 31, 789–809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amaroli, A.; Agas, A.; Laus, F.; Cuteri, V.; Hanna, R.; Sabbieti, M.G.; Benedicenti, S. The effect of photobiomodulation of 808nm Diode Laser therapy at higher fluence on the in-vitro Osteogenic Differentiation of Bone Marrow Stromal Cells. Front. Physiol. 2018, 9, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, P.A.; Carroll, J.D. How to report low-level laser therapy (LLLT)/photomedicine dose and beam parameters in clinical and laboratory studies. Photomed. Laser Surg. 2011, 29, 785–787. [Google Scholar] [CrossRef] [PubMed]
Assessment of Outcome Measures | Primary Outcomes | Secondary Outcomes | |||
---|---|---|---|---|---|
Pain/Burning Sensation Reduction | Functional Improvement | Anxiety/Depression and QoL | Over All Treatment Satisfaction | ||
Patient-reported outcomes | Qualitative (Subjective) | VAS, NSP, PPI | BAI, PAD, HRQL, OHIP-14 (all versions) | ||
Quantitative (Objective) | MPQ | HADS, SCL-90-R, Euro Qol-5D 5L, GDS, SF-36 | PGI-I | ||
Salivary analysis profile | Quantitative | Sialometry (UWS pH), TNF-α and IL-6, ELISA (Unstimulated saliva) | |||
Microcirculation assessment | Quantitative | Videocapillaroscopy evaluating the capillary bed: parametric data (capillary loop length, diameter, density and tortuosity) and non-parametric data (Presence of capillaries with particular morphology) | |||
Immuno-histochemistry analysis | Quantitative | Il-8, IL-1β, IL-6, IL-2, TNF-α |
Study, Year, Origin and Citation | Journal Name/ Impact Factor (IF) | Study Design | Presented Symptoms and Duration | Diagnosis | Affected Area (s) | Functionality Problem (s) | Sample Size (n) | Gender Male (M), Female (F) | Age (yrs) (Mean ± SD) | Intervention Groups and Subject, No. Allocation | Evaluation Period | Assessed Parameter (s) | Evaluation Methods | Outcome and Conclusion |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bardellini et al., 2019 (Italy) [74] | Med Oral Patol Oral Cir Bucal (IF: 1.71) | RCT/DB | Pain Burning sensation, 6/12 | IASP- 2016 | TT, LT, DT, UL, LL, BM | Functional limitation, physical pain, psychological and social disabilities | 85 (F) | F: 42 (G1) F: 43 (G2) | G1: 59 ± 9.51 G2: 60.86 ± 10.02 | G1 (LLLT): 43 G2 (Placebo): 42 | At baseline, mid-treatment (5th Session), End-treatment, 1/12 after treatment | Pain, Functionality limitation, Stress/ anxiety, Physical activity, | VAS Italian- OHIP | On VAS: in G1, a significant reduction in pain (p = 0.0008) and improvement in QoL-OH (p = 0.0002). VAS: at 5th session, a reduction in pain but no statistically significant differences between G1 and G2 (p = 0.6232). At end-treatment: statistically significant reduction in symptoms in G1 (p = 0.0008) and kept at 1/12 follow-up (p = 0.0005). On OHIP: G1 9.00 ± 4.20 vs. G2 −4.87 ± 3.75 |
Valenzuela et al., 2017 (Spain) [75] | J Oral Rehabil (IF: 2.4) | RCT/ Prospective/partially blinded/single centre | Oral burning/Pain, ≥6/12 | IHS-2013 | NI | Pain, Oral burning sensation. Reduction in saliva flow | 44 | M: 3 F: 41 | 65.5 | G1 (LLLT): 16 (4 J) G2 (LLLT): 16 (6 J) G3 placebo/ sham laser: 12 | At baseline, 2/52 and 4/52 | Pain, oral health, salivary flow, anxiety/ depression, over all treatment satisfaction | VAS, OHIP-14 (Spanish version), Sialometry HADS, PGI-I | VAS and OHIP-14 scores reduced significantly over time of treatment in all groups. At 2/52 and 4/52: VAS and OHIP-14 for G1 and G2 significantly lower than in G3. No significant differences between G1 and G2. Xerostomia severity and HAD: no significant differences between groups. PGI-I: no significant differences G1 and G2. Overall VAS scores improvement from baseline to end-LLLT were: G1: 15.7%, G2: 15.6%, G3: 7.3% |
Arbabi-Kalati et al., 2015 [76] | J Clin Exp Dent. (IF: 1.73) | RCT/SB | Pain, burning sensation, 4/12 | IASP- 2016 | 10 areas of oral mucosa BM, T, FM, SP, HP | Taste disturbance Pain intensity | 20 | M: 0 F: 20 | G1: 47.2 G2: 46.6 | G1 (LLLT): 10 G2 (Placebo Sham): 10 | At baseline and after treatment Follow-up: NI | Pain, QoL | VAS, Persian- OHIP | Statistically significant improvement in burning sensation in G1 (p = 0.004), compared to G2. QoL: statistically significant in G1 (p = 0.01). VAS: G1: −4.4 ± 3.0 G2: −0.2 ± 1.5. OHIP: G1: −15.0 ± 11.4 vs. G2: 0.3 ± 11.5 |
Arduino et al., 2016 (Italy) [77] | Lasers Med. Sci. (IF: 1.94) | RCT/comparative Double or single blind: NI, | Pain, burning sensation 6/12 | IASP- 2016 | Oral mucosa | Functional limitation, physical pain, psychological and social disabilities | 33 Caucasian | M: 8 F: 25 | G1: 68.5 G2: 65.4 | G1 (LLLT): 18 G2 [Clonazepam (2 mg) lozenge]: 15 | At 3/52, 8/52 and 12/52 | Pain, QoL, PH saliva, anxiety/ depression | VAS, MPQ, PPI, OHIP-14, HADS, GDS, UWS pH | G1 was superior to G2, in improving pain intensity in all parameters but statistically significant only at 8/52 (p = 0.026) VAS: G1: −2.78 ± 4.08 vs. G2: −1.15 ± 1.80. MPQ: G1: −10.05 ± 4.80 vs. G2: −11.00 ± 4.80. OHIP: G1: −11.06 ± 32.10 vs. G2: 4.40 ± 43.00. No adverse effects in G1 but 32% of dizziness, fever, headache and lack apatite in G2 |
Sugaya et al., 2016 (Brazil) [78] | Braz Oral Res. (IF: 1.6) | RCT/SB | Burning sensation, dysgeusia, Duration: NI | IASP- 2013 | Tongue, UL, LL, BM, MR SP; HP, LG | Xerostomia & dysgeusia | 30 allocated Analysed only 23 | M: 2 F: 21 (7 lost to follow-up) | 59.7 (29–87) | Allocated: LG (LLLT): 15 CG (Placebo): 15, but analysed: LG: 13 CG: 10 | At baseline, 15 mins after irradiation, At 14/7 1/12, 2/12 and 3/12 | Pain | VAS, global perception chart pain index | A significant improvement of symptoms in LG over CG in two measurements only. Positive effect in emotional profile in LG and CG. CR: LG 6/13 vs. CG 4/10 |
Spanemberg et al., 2015 (Spain) [79] | J Biomed Opt. (IF: 3.17) | RCT/DB | Burning sensation, Pain, 6/12 | IASP- 2016 | TT, DT, LT (bilateral), UL, LL, HP, SP | NI | 78 | M: 11 F: 67 | G1: 63.6 ± 9.61 G2: 60.5 ± 6.42 G3: 63.2 ± 6.91 G4: 61.5 ± 8.76 | Three groups of LLLT vs. placebo G1: [LLLT IR (IR1W) ]: 20 G2: [LLLT-IR (IR3W)]: 20 G3: (LLLT red: 19. G4 (Placebo, Sham): 19 | Baseline, end-treatment & 8/52 after treatment | Pain, QoL | VAS, VNS, OHIP-14 | Significant improvement in symptoms and QoL (p < 0.01) in G1 compared to G4. On VS and VNS: G1 and G2 differed significantly compared to G4, but no significant difference between G3 and G4. OHIP-14: significant difference between G2 and G4. G1 and G3 didn’t differ significantly to G4 |
Skrinjar et al., 2020 (Croatia) [80] | Act Stomatol Croat. (IF: 0.75) | RCT/DB | Burning sensation, ≥3 months | IASP- 2016 | Both sites: tongue, lip or HP | Xerostomia, intraoral disability | 23 | M: 3 F: 20 | LLLT: 61 Placebo: 62 | G1 (LLLT): 12 G2 (Placebo): 11 | At baseline, end-treatment | Burning sensation, Salivary cortisol level | VAS, Unstimulated saliva (ELISA) | VAS scores and salivary cortisol levels were significantly lower in G1 and G2. LLLT was not better than placebo. No adverse effects reported for both groups |
Pezelj-Ribarić et al., 2013 (Croatia) [81] | Lasers Med Sci. (IF: 1.94) | RCT/ unspecified | Burning sensation, pain Duration un-specified | IASP-2013 | NI | NI | 40 | M: 13 F: 27 | G1: 60.2 G2: 61.1 | G1 (LLLT): 12 G2 (Placebo): 9 | NI | Pain, UWS | VAS, TNF-α & IL-6 levels | On VAS: no significant differences in pain reduction between G1 and G2. In G1: no reduction of symptoms. VAS scores: G1: −4.2 vs. G2: −3. Decrease in TNF-α and IL-6 |
Sikora et al., 2018 (Croatia) [82] | Acta Clin Croat. (IF: 0.53) | RCT/SB | Burning mouth symptoms duration: NI | IASP-2016 | NI | NI | 44 | M: 1 F: 43 | Range 56–83 Mean age: 67.56 | LLLT and Placebo but no data available | At baseline and after each treatment session | Pain, QoL | VAS, OHIP-CRO- 14 | OHIP-CRO14: No significant differences between the groups prior and after LLLT (p > 0.05%). Neither of therapy protocols improved QoL scores. VAS score: significant decreases in both groups (p < 0.05%) and (p < 0.01%). |
Spanemberg et al., 2019 (Spain) [83] | J Oral Medicine and Pathology (IF: 2.5) | RCT/DB | Pain/ burning, anxiety/ depression, 3/12 | ICHD -2013 | TT, LT, DT, BM, LM, HP, SP; G, AM | Intraoral & psychological disabilities | 21 | M: 1 F: 20 | LG: 66.3 ± 7.52 CG: 66.4 ± 6.31 | LG: 12 CG (sham): 9 | At baseline, 8th session, 2/12 after treatment | Pain/ burning, dry mouth, dysphagia | VAS, HANDS | Initial VAS score mean was 8.9 in LG and 8.3 in CG (p > 0.05%). At end-treatment, VAS score was 5.5 in LG and 5.8 in CG. At 2/12, VAS score was 4.7 in LG and 5.1 in CG. Marginal significant improvement in dry mouth and dysphagia (p = 0.0538) |
De Pedro et al., 2020 (Spain) [84] | Oral Diseases (IF: 2.6) | RCT/SB | Pain/burning, depression/ anxiety, lack of sleep >3/12 | ICHD-3-2018 | VM, L, BM, HP, LT, DT, SM | Intraoral disability, mental & psychological disabilities, lack of sleep | 20 | M: 2 for each group F: 8 for each group | LG: 66.30 ± 15.19 CG = 67.60 ± 10.68 | LG: 10 CG (sham): 10 | At baseline, 10th session 1/12 and 4/12 after treatment | Pain, sleepiness QoL, anxiety/ depression | VAS, SF-36, Psychometric SCL 90-R, MPQ, OHIP-14 | On VAS: LG showed an improvement in pain at end-treatment and increased at 1/12 follow-up and continued to improve at 4/12 in (90%) (p = 0.013). In GC, 20% improvement at end-treatment and worsened in 40% at 1/12 and kept worsening in 40% at 4/12 follow-up. On McGill and OHIP-14: scores decreased in LG at end-treatment and maintaiend over the follow-up period, indicating a positive impact on psychological state. On mental health score: significant decrease in anxiety in LG at end treatment and at 4/12 follow-up. Statistical significant improvement in SF-36 scores in LG at 1/12 follow-up. |
Scardina et al., 2020 (Italy) [85] | Dent J (Basel) (IF: NI) | RCT/DB | IO pain and burning sensation, >3/12 | Unspecified criteria but specified burning sensation without specifying symptoms’ duration | ULM, DT, BM, LLM | Pain | 40 | Only F | 62.06 ± 3.1 | G1: LLLT: 20 G2: Placebo: 20 | At baseline, after each treatment session (8 sessions) and 60 days after treatment | Pain, Capillary bed: Length, diameter, density, morphology tortuosity | VAS, NRS, Video-capillaroscopy evaluation | G1: a lasting improvement in symptoms. No statistical significant difference in COB in G2 (p > 0.05). Reduction in diameter of the following areas in G1: BM: 3μ, LL: 3μ, DT: 2μ. An increase in capillary length in all irradiated areas (p < 0.05). PBMT induced reduction in capillary diameter (long time period), reflected an improvement in clinical profile. |
Study, Year, Origin And Citation | Light Source: Laser/LED (Symptoms’ Duration) | Emission Mode CW/ Gated/ Pulsed | Energy (J /Point ) | Power Output (W/Mw) | Frequency & Pulse Width (PW) | Power Meter | Route of Irradiation (EO/IO) & no. of Trigger Points (TP) | Scanning Technique/Beam Profile | Contact (C)/ Non-Contact (NC) | Tip-Tissue Distance | Spot Size/ Fibre Tip Diameter | Fluence (Dose) (J/cm2) | Power Density (W/cm2) | Exposure Time/ Point Min/s | Frequency, Time Interval Between Sessions | Treatment Duration |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bardellini et al., 2019 [74] | 660–970 nm (NI) | Pulsed/50% | NI | 3200 mW | 1–20,000 Hz PW:NI | NI | IO, TP(NI) | NI | NI | NI | 1 cm2 | NI | NI | 3 mins and 51 s | Once a week | 10/52 |
Valenzuela et al., 2017 [75] | GaAIAs laser 815 nm (NI) | CW | G1: 4J/point G2: 6J/point | 1 W | N/A | NI | IO TP: 10 | NI | C | NI | 0.03 cm2 | G1: 133.3 G2: 200 | NI | G1: 4 s/point. G2: 6 s/ point | G1: Once a week G2: six times a week | G1: 4/52 G2: 4/52 |
Arbabi-Kalati et al., 2015 [76] | Diode laser 630 nm (NI) | NI | 1 J | 30 mW | N/A | NI | Total 10 TP (TP/site): T:2, FM:2, SP:1 and HP:1 | NI | NI | NI | NI | 1J/cm2/ area | NI | 10 s | Twice a week | 4/52 |
Arduino et al., 2016 [77] | Diode laser, 980 nm (NI) | CW | NI | 300 mW | N/A | NI | NI | Spot/Gaussian | NC | 2 mm | 0.28 cm2 probe diameter: 0.6 cm | 10 | 1 | 10 s/point | Twice a week (total 10 sessions) | 5/52 |
Sugaya et al., 2016 [78] | IR-diode laser 790 nm (31.7 months) | CW | 6 J/point | 120 mW (0.12 W) | N/A | NI | 24 sites for Laser G (T, LL, UL, BM, MR, P; LG). 17 sites for CG (T, LL, UL, BM, MR, P, LG) | NI | C | NI | 0.03 cm2 | 6 | 4 | 50 s/point | Twice a week | 2/52 |
Spanemberg et al., 2015 [79] | G1 and2: IR-laser 830 nm, G3: Red-laser 635 nm (6 months) | CW | G1 and G2: 5 J/point G3: 2 J/point | G1 and G2: 100 mW G3: 35 mW | N/A | Y | IO: AT: 3, LT: 4 DT: 10, BM: 8, LAM: 5, HP: 8, SP: 3, G and ARM: 3 each | NI | NI | NI | NI | G1 and G2: 176 G3: 72 | G1 and G2: 3.57 G3: 1.25 | G1 and G2: 50 s G3: 58 s | G1: 1 session/ week; G2: 3 session/ week; G3: 3 sessions/ week; CG: 3 sessions/ week | G1:10/52 G2: 9/52 G3: 9/52 G4: 9/52 |
Skrinjar et al., 2018 [80] | Ga-Al-As LED 685 nm (NI) | pulsed | NI | 30 mW | 5.20 Hz PW: NI | NI | 3 reported burning sites (NI on number and location) | NI | NC | 0.5 cm | 3 cm2 | 2 (Total 60) | 0.003 | 381 s/point | Daily for 10 days excluding weekend | 10/7 |
Pezelj-Ribarić et al., 2013 [81] | 685 nm | CW | NI | 30 mW | NI | Y | Tongue mucosa, Number and allocation of TP: NI | NI | C | NI | 2 mm, 1 cm2 surface area | 3 | NI | 100 s/point | NI | NI |
Sikora et al., 2018 [82] | GaAlAs laser 830 nm (NI) | Gated: 800 ms on/1 ms off, 80% duty cycle | NI | 100 mW (average) | N/A | NI | NI | Slow circular movement/Gaussian | NC | 5 mm | 1 cm2 | 12 | NI | 5 mins/ session | Once per day (excluding weekend) (10 sessions) | 14/7 |
Spanemberg et al., 2019 [83] | GaAIAs IR: laser 808 nm ± 5 nm (NI) | CW | 3 J/point | 200 mW | N/A | Y | Total: 41 (Bilateral) TP per site: TT: 3, LT: 4, DT: 10, BM: 8, LAM: 5, HP: 8, SP: 3, G or AM: 3 | NI | NI | NI | 0.088 cm2 | NI | 1.97 | 15 s /point | Twice a week (total eight sessions) | 4/52 |
de Pedro et al., 2020 [84] | Diode laser 810 nm (NI) | CW | 6 J/point | 0.6 W | N/A | NI | IO: 56 points VM: 3 (4 sites), LM: 4, bilateral BM: 6/site, HP: 6, bilateral LT: 4/site, DT: 6, S: 4 bilateral | NI | NC | 2 mm | 0.5 cm2/300μ | 12 | 1.2 | 10 s/ point | Twice a week (10 sessions in total) | 5/52 |
Scardina et al., 2020 [85] | Diode LED 805 nm (NI) | NI | 1200 J (total) | Total: 4 W | NI | NI | IO points: 4 areas BM, LAM, DT, LLM No. of TP unspecified) | Scanning/Gaussian | NI | 4 cm Spacer used | NI | 50 | 166.7 mW/cm2 | 300 s /area | Twice a week (eight sessions in total) | 4/52 |
Missing data (%) | 0% (90.90%) | 27.27% | 45.45% | 0% | 27.27% | 81.81% | 36.36% | 81.81% | 54.5% | 72.72% | 36.36% | 27.27% | 45.45% | 18.18% | 18.18% | 18.18% |
Study, Year, Origin and Citation | Primary Outcomes | Secondary Outcomes | ||||
---|---|---|---|---|---|---|
Pain/Burning Sensation Reduction | Functional Improvement | Anxiety/Depression and QoL | Overall Treatment Satisfaction | |||
Qualitative (Subjective) VAS, NSP, PPI (SS, NSS, NI) | Quantitative (Objective) MPQ (SS, NSS, NI) | Quantitative (Objective) Salivary analysis Profile Microcirculation Assessment Immuno-Histochemistry Analysis (SS, NSS, NI) | Qualitative (Subjective) BAI, PAD, HRQL, OHIP (SS, NSS, NI) | Quantitative (Objective) HADS, SCL-90-R, Euro Qol-5D 5L, GDS, SF-36 (SS, NSS, NI) | Quantitative (Objective) PGI-I (SS, NSS, NI) | |
Bardellini et al., 2019 (Italy) [74] | SS | NI | NI | SS | NI | NI |
Valenzuela et al., 2017 (Spain) [75] | SS | NI | NSS | SS | NSS | NSS |
Arbabi-Kalati et al., 2015 [76] | SS | NI | NI | SS | NI | NI |
Arduino et al., 2016 (Italy) [77] | SS | SS | SS | NI | SS | NI |
Sugaya et al., 2016 (Brazil) [78] | SS | NI | NI | NI | NI | SS |
Spanemberg et al., 2015 (Spain) [79] | SS | NI | NI | SS | NI | NI |
Skrinjar et al., 2020 (Croatia) [80] | NSS | NI | NSS | NI | NI | NI |
Pezelj-Ribarić et al., 2013 (Croatia) [81] | NSS | NI | NSS | NI | NI | NI |
Sikora et al., 2018 (Croatia) [82] | NSS | NI | NI | NSS | NI | NI |
Spanemberg et al., 2019 (Spain) [83] | SS | NI | NI | NI | SS | NI |
De Pedro et al., 2020 (Spain) [84] | SS | SS | NI | SS | SS | NI |
Scardina et al., 2020 (Italy) [85] | NSS | NI | NSS | NI | NI | NI |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanna, R.; Dalvi, S.; Bensadoun, R.J.; Raber-Durlacher, J.E.; Benedicenti, S. Role of Photobiomodulation Therapy in Neurological Primary Burning Mouth Syndrome. A Systematic Review and Meta-Analysis of Human Randomised Controlled Clinical Trials. Pharmaceutics 2021, 13, 1838. https://doi.org/10.3390/pharmaceutics13111838
Hanna R, Dalvi S, Bensadoun RJ, Raber-Durlacher JE, Benedicenti S. Role of Photobiomodulation Therapy in Neurological Primary Burning Mouth Syndrome. A Systematic Review and Meta-Analysis of Human Randomised Controlled Clinical Trials. Pharmaceutics. 2021; 13(11):1838. https://doi.org/10.3390/pharmaceutics13111838
Chicago/Turabian StyleHanna, Reem, Snehal Dalvi, Rene Jean Bensadoun, Judith E. Raber-Durlacher, and Stefano Benedicenti. 2021. "Role of Photobiomodulation Therapy in Neurological Primary Burning Mouth Syndrome. A Systematic Review and Meta-Analysis of Human Randomised Controlled Clinical Trials" Pharmaceutics 13, no. 11: 1838. https://doi.org/10.3390/pharmaceutics13111838
APA StyleHanna, R., Dalvi, S., Bensadoun, R. J., Raber-Durlacher, J. E., & Benedicenti, S. (2021). Role of Photobiomodulation Therapy in Neurological Primary Burning Mouth Syndrome. A Systematic Review and Meta-Analysis of Human Randomised Controlled Clinical Trials. Pharmaceutics, 13(11), 1838. https://doi.org/10.3390/pharmaceutics13111838