Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of 177Lu-Labeled pAuNS (177Lu-DTPA-pAuNS)
2.2. Cell Lines
2.3. Human HNSCC Tumor-Bearing Animal Model
2.4. Analysis of Biodistribution of 177Lu-DTPA and 177Lu-DTPA-pAuNS
2.5. MicroSPECT Imaging of 177Lu-DTPA-pAuNS in Tumor-Bearing Mice
2.6. Evaluation of Therapeutic Efficacy of 177Lu-DTPA-pAuNS in Tumor-Bearing Mice
2.7. Evaluation of Therapeutic Efficacy of pAuNS-Mediated Optothermal Therapy
2.8. Dosimetric Evaluation of 177Lu-DTPA-pAuNS Absorbed Radiation Dose In Vivo
2.9. Hematoxylin and Eosin (H&E) Staining
2.10. Statistical Analysis
3. Results
3.1. Design of 177Lu Conjugated pAuNS for the Treatment of HNSCC In Vivo
3.2. Analysis of 177Lu-DTPA-pAuNS Biodistribution in an Orthotopic HNSCC Tumor Model
3.3. MicroSPECT/CT for Evaluation of Intratumoral Injection in HNSCC Tumor
3.4. Evaluation of Therapeutic Efficacy of 177Lu-DTPA-pAuNS and 177Lu-DTPA in Tumor-Bearing Mice
3.5. Increase of Survival Rate of HNSCC Tumor-Bearing Mice by 177Lu-DTPA-pAuNS
3.6. Estimation of Dosimetry in Human Organs by the Treatment of 177Lu-DTPA-pAuNS
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pulte, D.; Brenner, H. Changes in survival in head and neck cancers in the late 20th and early 21st century: A period analysis. Oncologist 2010, 15, 994–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, J.H.; Wu, C.C.; Yuan, K.S.; Wu, A.T.H.; Wu, S.Y. Locoregionally recurrent head and neck squamous cell carcinoma: Incidence, survival, prognostic factors, and treatment outcomes. Oncotarget 2017, 8, 55600–55612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garavello, W.; Ciardo, A.; Spreafico, R.; Gaini, R.M. Risk factors for distant metastases in head and neck squamous cell carcinoma. Arch. Otolaryngol. Head Neck Surg. 2006, 132, 762–766. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, W.H.; Lan, H.Y.; Huang, C.H.; Tai, S.K.; Tzeng, C.H.; Kao, S.Y.; Wu, K.J.; Hung, M.C.; Yang, M.H. RAC1 activation mediates Twist1-induced cancer cell migration. Nat. Cell Biol. 2012, 14, 366–374. [Google Scholar] [CrossRef]
- Jimenez, L.; Jayakar, S.K.; Ow, T.J.; Segall, J.E. Mechanisms of Invasion in Head and Neck Cancer. Arch. Pathol. Lab. Med. 2015, 139, 1334–1348. [Google Scholar] [CrossRef] [Green Version]
- van der Heijden, M.; Essers, P.B.M.; Verhagen, C.V.M.; Willems, S.M.; Sanders, J.; de Roest, R.H.; Vossen, D.M.; Leemans, C.R.; Verheij, M.; Brakenhoff, R.H.; et al. Epithelial-to-mesenchymal transition is a prognostic marker for patient outcome in advanced stage HNSCC patients treated with chemoradiotherapy. Radiother. Oncol. 2020, 147, 186–194. [Google Scholar] [CrossRef]
- Chang, C.Y.; Chen, C.C.; Lin, L.T.; Chang, C.H.; Chen, L.C.; Wang, H.E.; Lee, T.W.; Lee, Y.J. PEGylated liposome-encapsulated rhenium-188 radiopharmaceutical inhibits proliferation and epithelial-mesenchymal transition of human head and neck cancer cells in vivo with repeated therapy. Cell Death Discov. 2018, 4, 100. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Zhao, G.; Qi, J.; Sun, P.; Liu, C.; Qu, P.; Chan, K.K.L. Neoadjuvant brachytherapy and chemotherapy followed by radical surgery for stage IB2 and IIA cervical cancer: A retrospective comparison with chemoirradiation. Mol. Clin. Oncol. 2018, 8, 617–622. [Google Scholar] [CrossRef]
- Sgouros, G.; Bodei, L.; McDevitt, M.R.; Nedrow, J.R. Radiopharmaceutical therapy in cancer: Clinical advances and challenges. Nat. Rev. Drug Discov. 2020, 19, 589–608. [Google Scholar] [CrossRef]
- Ritter, M.; Teudt, I.U.; Meyer, J.E.; Schroder, U.; Kovacs, G.; Wollenberg, B. Second-line treatment of recurrent HNSCC: Tumor debulking in combination with high-dose-rate brachytherapy and a simultaneous cetuximab-paclitaxel protocol. Radiat Oncol. 2016, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- Bhalavat, R.; Pareek, V.; Chandra, M.; Nellore, L.; George, K.; Borade, D.; Kalariya, K.; Moosa, Z.; Srivastava, A.; Reddy, N.; et al. High-dose-rate interstitial brachytherapy in recurrent head and neck cancer: An effective salvage option. J. Contemp. Brachyther. 2018, 10, 425–430. [Google Scholar] [CrossRef]
- Herrero Alvarez, N.; Bauer, D.; Hernandez-Gil, J.; Lewis, J.S. Recent Advances in Radiometals for Combined Imaging and Therapy in Cancer. ChemMedChem 2021, 16, 2909–2941. [Google Scholar] [CrossRef]
- Kumar, A.; Ballal, S.; Yadav, M.P.; ArunRaj, S.T.; Haresh, K.P.; Gupta, S.; Damle, N.A.; Garg, A.; Tripathi, M.; Bal, C. 177Lu-/68Ga-PSMA Theranostics in Recurrent Glioblastoma Multiforme: Proof of Concept. Clin. Nucl. Med. 2020, 45, e512–e513. [Google Scholar] [CrossRef]
- Das, T.; Banerjee, S. Theranostic Applications of Lutetium-177 in Radionuclide Therapy. Curr. Radiopharm. 2016, 9, 94–101. [Google Scholar] [CrossRef]
- Dash, A.; Pillai, M.R.; Knapp, F.F., Jr. Production of (177)Lu for Targeted Radionuclide Therapy: Available Options. Nucl. Med. Mol. Imaging 2015, 49, 85–107. [Google Scholar] [CrossRef] [Green Version]
- Muller, C.; van der Meulen, N.P.; Benesova, M.; Schibli, R. Therapeutic Radiometals Beyond (177)Lu and (90)Y: Production and Application of Promising alpha-Particle, beta(-)-Particle, and Auger Electron Emitters. J. Nucl. Med. 2017, 58, 91S–96S. [Google Scholar] [CrossRef] [Green Version]
- Khoury, C.G.; Vo-Dinh, T. Gold Nanostars For Surface-Enhanced Raman Scattering: Synthesis, Characterization and Optimization. J. Phys. Chem. C Nanomater. Interfaces 2008, 2008, 18849–18859. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Conde, J.; Bao, C.; Chen, Y.; Curtin, J.; Cui, D. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Biomaterials 2016, 106, 87–97. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Kou, X.; Yang, Z.; Ni, W.; Wang, J. Shape- and size-dependent refractive index sensitivity of gold nanoparticles. Langmuir 2008, 24, 5233–5237. [Google Scholar] [CrossRef]
- Hao, F.; Nehl, C.L.; Hafner, J.H.; Nordlander, P. Plasmon resonances of a gold nanostar. Nano Lett. 2007, 7, 729–732. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Zarei, M.; Hashemi, S.A.; Ramakrishna, S.; Chiang, W.H.; Lai, C.W.; Gholami, A. Gold nanostars-diagnosis, bioimaging and biomedical applications. Drug Metab. Rev. 2020, 52, 299–318. [Google Scholar] [CrossRef]
- Liu, Y.; Yuan, H.; Fales, A.M.; Register, J.K.; Vo-Dinh, T. Multifunctional gold nanostars for molecular imaging and cancer therapy. Front. Chem 2015, 3, 51. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.; Song, H.M.; Cai, X.; Yao, J.; Wei, A.; Wang, L.V. In vivo photoacoustic mapping of lymphatic systems with plasmon-resonant nanostars. J. Mater. Chem. 2011, 21, 2841–2844. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Wan, Y.; Wang, J.; Lin, J.; Li, Z.; Huang, P. STING-activating drug delivery systems: Design strategies and biomedical applications. Chin. Chem. Lett. 2021, 32, 1615–1625. [Google Scholar] [CrossRef]
- Gherman, A.M.M.; Boca, S.; Vulpoi, A.; Cristea, M.V.; Farcau, C.; Tosa, V. Plasmonic photothermal heating of gold nanostars in a real-size container: Multiscale modelling and experimental study. Nanotechnology 2020, 31, 125701. [Google Scholar] [CrossRef]
- Chen, C.C.; Chang, D.Y.; Li, J.J.; Chan, H.W.; Chen, J.T.; Chang, C.H.; Liu, R.S.; Chang, C.A.; Chen, C.L.; Wang, H.E. Investigation of biodistribution and tissue penetration of PEGylated gold nanostars and their application for photothermal cancer treatment in tumor-bearing mice. J. Mater. Chem B 2020, 8, 65–77. [Google Scholar] [CrossRef]
- Hernandez-Montoto, A.; Gorbe, M.; Llopis-Lorente, A.; Terres, J.M.; Montes, R.; Cao-Milan, R.; Diaz de Grenu, B.; Alfonso, M.; Orzaez, M.; Marcos, M.D.; et al. A NIR light-triggered drug delivery system using core-shell gold nanostars-mesoporous silica nanoparticles based on multiphoton absorption photo-dissociation of 2-nitrobenzyl PEG. Chem. Commun. 2019, 55, 9039–9042. [Google Scholar] [CrossRef]
- Yook, S.; Cai, Z.; Lu, Y.; Winnik, M.A.; Pignol, J.P.; Reilly, R.M. Intratumorally Injected 177Lu-Labeled Gold Nanoparticles: Gold Nanoseed Brachytherapy with Application for Neoadjuvant Treatment of Locally Advanced Breast Cancer. J. Nucl. Med. 2016, 57, 936–942. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.L.; Jiang, J.; Buchholz, T.A.; Xu, Y.; Hoffman, K.E.; Giordano, S.H.; Hunt, K.K.; Smith, B.D. Benefit of adjuvant brachytherapy versus external beam radiation for early breast cancer: Impact of patient stratification on breast preservation. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Huang, X.; Lai, J.; Ma, L.; Chen, T. Substituent-regulated highly X-ray sensitive Os(VI) nitrido complex for low-toxicity radiotherapy. Chin. Chem. Lett. 2021, 32, 158–161. [Google Scholar] [CrossRef]
- Ma, H.; Wu, Y.; Zhang, W.; Zhang, H.; Miao, Z.; Zhuang, C. Radiosensitization of human pancreatic cancer by piperlongumine analogues. Chin. Chem. Lett. 2021, 32, 1197–1201. [Google Scholar] [CrossRef]
- Lee, N.; Hoffman, R.; Phillips, T.L.; Xia, P.; Quivey, J.M.; Weinberg, V.; Hsu, I.C. Managing nasopharyngeal carcinoma with intracavitary brachytherapy: One institution’s 45-year experience. Brachytherapy 2002, 1, 74–82. [Google Scholar] [CrossRef]
- Yamazaki, H.; Yoshida, K.; Yoshioka, Y.; Shimizutani, K.; Furukawa, S.; Koizumi, M.; Ogawa, K. High dose rate brachytherapy for oral cancer. J. Radiat Res. 2013, 54, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almeida, J.P.; Chen, A.L.; Foster, A.; Drezek, R. In vivo biodistribution of nanoparticles. Nanomedicine 2011, 6, 815–835. [Google Scholar] [CrossRef]
- Long, W.; Wang, J.; Xu, F.; Wu, H.; Mu, X.; Wang, J.; Sun, Y.; Zhang, X.-D. Catalytic PtPd bimetal nanocrystals with high-index facets for radiation injury repair. Chin. Chem. Lett. 2020, 31, 269–274. [Google Scholar] [CrossRef]
- Begg, A.C. Predicting recurrence after radiotherapy in head and neck cancer. Semin. Radiat. Oncol. 2012, 22, 108–118. [Google Scholar] [CrossRef]
- Lin, L.T.; Chang, C.Y.; Chang, C.H.; Wang, H.E.; Chiou, S.H.; Liu, R.S.; Lee, T.W.; Lee, Y.J. Involvement of let-7 microRNA for the therapeutic effects of Rhenium-188-embedded liposomal nanoparticles on orthotopic human head and neck cancer model. Oncotarget 2016, 7, 65782–65796. [Google Scholar] [CrossRef] [Green Version]
- Lin, B.Z.; Wan, S.Y.; Lin, M.Y.; Chang, C.H.; Chen, T.W.; Yang, M.H.; Lee, Y.J. Involvement of Differentially Expressed microRNAs in the PEGylated Liposome Encapsulated (188)Rhenium-Mediated Suppression of Orthotopic Hypopharyngeal Tumor. Molecules 2020, 25, 3609. [Google Scholar] [CrossRef]
Organ b | 4 h | 24 h | 48 h | 72 h |
---|---|---|---|---|
Blood | 5.43 ± 3.78 | 0.16 ± 0.03 | 0.21 ± 0.07 | 0.15 ± 0.02 |
Heart | 1.14 ± 0.65 | 0.27 ± 0.13 | 0.23 ± 0.05 | 0.17 ± 0.09 |
Lung | 2.59 ± 0.95 | 0.81 ± 0.44 | 0.62 ± 0.33 | 0.54 ± 0.27 |
Liver | 8.91 ± 4.50 | 17.68 ± 6.47 | 10.43 ± 4.01 | 7.85 ± 5.02 |
Stomach | 0.59 ± 0.10 | 0.36 ± 0.07 | 0.39 ± 0.10 | 0.31 ± 0.02 |
Small int. | 0.81 ± 0.25 | 0.61 ± 0.29 | 0.74 ± 0.38 | 0.24 ± 0.03 |
Large int. | 0.51 ± 0.17 | 0.20 ± 0.06 | 0.25 ± 0.09 | 0.15 ± 0.07 |
Spleen | 5.99 ± 1.34 | 8.49 ± 2.74 | 4.85 ± 2.77 | 2.53 ± 2.11 |
Pancreas | 0.65 ± 0.25 | 0.12 ± 0.05 | 0.13 ± 0.04 | 0.14 ± 0.03 |
Kidney | 8.97 ± 1.79 | 7.04 ± 2.07 | 4.31 ± 0.79 | 4.23 ± 1.56 |
Bone | 0.65 ± 0.09 | 0.88 ± 0.06 | 1.74 ± 0.41 | 2.20 ± 0.89 |
Muscle | 0.28 ± 0.14 | 0.07 ± 0.10 | 0.10 ± 0.05 | 0.04 ± 0.05 |
Tumor | 125.09 ± 27.26 | 120.08 ± 51.32 | 35.62 ± 6.85 | 61.44 ± 14.81 |
BM | 2.12 ± 1.35 | 0.55 ± 1.01 | 2.15 ± 0.86 | 0.00 ± 0.00 |
Brain | 0.16 ± 0.08 | 0.02 ± 0.03 | 0.02 ± 0.01 | 0.03 ± 0.04 |
Urine | 183.23 ± 81.08 | 11.41 ± 10.71 | 2.04 ± 1.10 | 2.49 ± 2.87 |
T/M | 377.17 ± 154.53 | 1667.36 ± 1827.93 | 354.16 ± 152.19 | 1499.10 ± 279.39 |
T/B | 23.02 ± 41.25 | 747.62 ± 879.15 | 169.42 ± 71.88 | 416.33 ± 110.57 |
Target Organ b | Absorbed Dose (mSv/MBq) |
---|---|
Adrenals | 4.92 × 10−3 |
Brain | 2.34 × 10−3 |
Breasts | 1.50 × 10−3 |
Gallbladder Wall | 7.43 × 10−3 |
LLI Wall | 5.06 × 10−3 |
Small Intestine | 5.62 × 10−3 |
Stomach Wall | 7.17 × 10−3 |
ULI Wall | 2.52 × 10−3 |
Heart Wall | 2.22 × 10−2 |
Kidneys | 1.35 × 10−1 |
Liver | 3.29 × 10−1 |
Lungs | 2.61 × 10−2 |
Muscle | 3.53 × 10−3 |
Ovaries | 1.48 × 10−3 |
Pancreas | 1.18 × 10−2 |
Red Marrow | 2.13 × 10−3 |
Skin | 1.25 × 10−3 |
Spleen | 1.38 × 10−1 |
Testes | 9.93 × 10−4 |
Thymus | 1.64 × 10−3 |
Thyroid | 1.22 × 10−3 |
Urinary Bladder Wall | 1.14 × 10−3 |
Uterus | 1.38 × 10−3 |
Tumor (0.5 g) c | 3.55 × 100 |
Total Body | 1.69 × 10−2 |
Effective Dose | 2.51 × 10−2 |
Target Organ b | Absorbed Dose (mSv/MBq) |
---|---|
Adrenals | 9.06 × 10−2 |
Brain | 3.86 × 10−3 |
Breasts | 7.09 × 10−2 |
Gallbladder Wall | 1.08 × 10−1 |
LLI Wall | 7.77 × 10−2 |
Small Intestine | 8.76 × 10−2 |
Stomach Wall | 8.14 × 10−2 |
ULI Wall | 8.02 × 10−2 |
Heart Wall | 2.14 × 10−2 |
Kidneys | 1.60 × 10−1 |
Liver | 1.97 × 100 |
Lungs | 6.37 × 10−2 |
Muscle | 1.14 × 10−2 |
Ovaries | 7.40 × 10−2 |
Pancreas | 5.01 × 10−2 |
Red Marrow | 5.71 × 10−2 |
Skin | 6.83 × 10−2 |
Spleen | 1.37 × 100 |
Testes | 6.95 × 10−2 |
Thymus | 7.19 × 10−2 |
Thyroid | 7.03 × 10−2 |
Urinary Bladder Wall | 7.23 × 10−2 |
Uterus | 7.43 × 10−2 |
Tumor (0.5 g) c | 3.82 × 10−2 |
Total Body | 1.31 × 10−1 |
Effective Dose | 1.71 × 10−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, M.-Y.; Hsieh, H.-H.; Chen, J.-C.; Chen, C.-L.; Sheu, N.-C.; Huang, W.-S.; Ho, S.-Y.; Chen, T.-W.; Lee, Y.-J.; Wu, C.-Y. Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model. Pharmaceutics 2021, 13, 1903. https://doi.org/10.3390/pharmaceutics13111903
Lin M-Y, Hsieh H-H, Chen J-C, Chen C-L, Sheu N-C, Huang W-S, Ho S-Y, Chen T-W, Lee Y-J, Wu C-Y. Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model. Pharmaceutics. 2021; 13(11):1903. https://doi.org/10.3390/pharmaceutics13111903
Chicago/Turabian StyleLin, Min-Ying, Hsin-Hua Hsieh, Jyh-Cheng Chen, Chuan-Lin Chen, Nin-Chu Sheu, Wen-Sheng Huang, Shinn-Ying Ho, Ting-Wen Chen, Yi-Jang Lee, and Chun-Yi Wu. 2021. "Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model" Pharmaceutics 13, no. 11: 1903. https://doi.org/10.3390/pharmaceutics13111903
APA StyleLin, M. -Y., Hsieh, H. -H., Chen, J. -C., Chen, C. -L., Sheu, N. -C., Huang, W. -S., Ho, S. -Y., Chen, T. -W., Lee, Y. -J., & Wu, C. -Y. (2021). Brachytherapy Approach Using 177Lu Conjugated Gold Nanostars and Evaluation of Biodistribution, Tumor Retention, Dosimetry and Therapeutic Efficacy in Head and Neck Tumor Model. Pharmaceutics, 13(11), 1903. https://doi.org/10.3390/pharmaceutics13111903