Thermo-Analytical and Compatibility Study with Mechanistic Explanation of Degradation Kinetics of Ambroxol Hydrochloride Tablets under Non-Isothermal Conditions
Abstract
:1. Introduction
1.1. Theoretical Basis for Data Analysis
A Kinetic Analysis—Theoretical Approach
1.2. A Chemometrics Analysis—Theoretical Background
2. Materials and Methods
2.1. Materials
2.2. Sample Preparations
2.3. Thermo-Analytical (TA) Measurements
2.4. TG-MS Measurements
2.5. Chemometrics Analysis
3. Results
3.1. Thermal Stability Features of Ambroxol Hydrochloride and Flavamed® Tablets
Compatibility Study Results
4. Discussion
4.1. The Mechanism of Decomposition and Kinetic Analysis of AMB and FT
4.2. Kinetics of Ambroxol Hydrochloride and Flavamed® Tablets
4.2.1. Kinetics of the Evaporation Phase
4.2.2. Kinetics of the Ambroxol Hydrochloride Pure and in the Mixture
Compatibility Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Allen, L.V., Jr.; Popovich, N.G.; Ansel, H.C. Ansel’s Pharmaceutical Dosage Forms and Drug Delivery Systems, 8th ed.; Lippincott Williams & Wilkins: New York, NY, USA, 2005; pp. 45–65. [Google Scholar]
- Gennaro, A.R. Remington’s the Pharmaceutical Sciences and Practice of Pharmacy, 20th ed.; Lippincott Williams & Wilkins: New York, NY, USA, 2004; pp. 25–36. [Google Scholar]
- Fitzpatrick, S.; McCabe, J.F.; Petts, C.R.; Booth, S.W. Effect of moisture on polyvinylpyrrolidone in accelerated stability testing. Int. J. Pharm. 2002, 246, 143–151. [Google Scholar] [CrossRef]
- Yoshioka, S.; Stella, V.J. Stability of Drugs and Dosage Forms; Kluwer Academic Publisher: Norwell, MA, USA, 2002. [Google Scholar]
- De Souza, N.A.B.; De Souza, F.S.; Basílio, I.D., Jr.; Medeiros, A.C.D.; Oliveira, E.J.; Santos, A.F.O.; Macwdo, R.O.; Macêdo, R.O. Thermal stability of metronidazole drug and tablets. J. Therm. Anal. Calorim. 2003, 72, 535–538. [Google Scholar] [CrossRef]
- Yoshida, M.I.; Gomes, E.C.L.; Soares, C.D.V.; Cunha, A.F.; De Oliveira, M.A. Thermal analysis applied to verapamil hydrochloride characterization in pharmaceutical formulations. Molecules 2010, 15, 2439–2452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamsipur, M.; Pourmortazavi, S.M.; Beigi, A.A.M.; Heydari, R.; Khatibi, M. Thermal Stability and Decomposition Ki-netic Studies of Acyclovir and Zidovudine Drug Compounds. AAPS Pharm. Sci. Tech. 2013, 14, 287–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sovizi, M.R.; Hosseini, S.G. Studies on the thermal behavior and decomposition kinetic of drugs cetirizine and simvastatin. J. Therm. Anal. Calorim. 2012, 111, 2143–2148. [Google Scholar] [CrossRef]
- Beyers, H.; Malan, S.F.; Van Der Watt, J.G.; De Villiers, M.M. Structure-Solubility relationship and thermal decomposition of furosemide. Drug Dev. Ind. Pharm. 2000, 26, 1077–1083. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; You, J.; Wang, X. Thermal decomposition mechanism and kinetics of gemcitabine. J. Anal. Appl. Pyrolysis 2018, 130, 118–126. [Google Scholar] [CrossRef]
- Joshi, V.; Morris, K.R.; Byrn, S.R.; Carvajal, M.T. Evaluation of the use of Ea (activation energy) as a quantitative indicator of physical stability of indomethacin solvates: Methanolate and tertiary butyl alcohol solvate. Cryst. Growth Des. 2009, 9, 3359–3366. [Google Scholar] [CrossRef]
- Calvino, B.B.; Lisuzzo, L.; Cavallaro, G.; Lazzara, G.; Milioto, S. Non-isothermal thermogravimetry as an accelerated tool for the shelf-life prediction of paracetamol formulations. Thermochim. Acta 2021, 700, 178940. [Google Scholar] [CrossRef]
- Jelić, D. Thermal stability of amorhous solid dispersion. Molecules 2021, 26, 238. [Google Scholar] [CrossRef]
- Bharate, S.S.; Bharateand, S.P.; Bajaj, A.N. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: A comprehensive review. J. Exc. Food Chem. 2010, 1, 3. [Google Scholar]
- Duda-Seiman, C.; Vlase, T.; Vlase, G.; Duda-Seiman, D.; Albu, P.; Doca, N. Thermal analysis study of amlodipine as pure compound and in binary mixture. J. Therm. Anal. Calorim. 2011, 105, 677–683. [Google Scholar] [CrossRef]
- Health Ministers of the United Kingdom. Ambroxol hydrochloride (Ph. Eur monograph 1489). In British Pharmacopoeia; Stationary Office: London, UK, 2010; pp. 118–119. [Google Scholar]
- Budavari, S. The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals, 13th ed.; Merck Research Laboratories Division of Merck and Co., Inc.: Whitehouse Station, NJ, USA, 2001; pp. 67–68. [Google Scholar]
- European Medicines Agency (EMA). Pharmacovigilance Risk Assessment Committee (PRAC). Revised Assessment Report: Ambroxol and Bromhexine Containing Medicinal Products. 2015. Available online: https://www.ema.europa.eu/en/medicines/human/referrals/ambroxol-bromhexine-containing-medicines (accessed on 21 April 2021).
- Kardos, P.; Beeh, K.-M.; Sent, U.; Mueck, T.; Gräter, H.; Michel, M.C. Characterization of differential patient profiles and therapeutic responses of pharmacy customers for four ambroxol formulations. BMC Pharmacol. Toxicol. 2018, 19, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Available online: https://patents.google.com/patent/CN103860461B/en (accessed on 20 September 2021).
- Pobudkowska, A.; Śliwińska, A.; Nosol, K. Physicochemical Properties and Solubility of Hydrochloride Mucolytic Agents. J. Solut. Chem. 2021, 50, 652–666. [Google Scholar] [CrossRef]
- Caira, M.R.; Foppoli, A.; Sangalli, M.E.; Zema, L.; Giordano, F. Thermal and structural properties of ambroxol polymorphs. J. Therm. Anal. Calorim. 2004, 77, 653–662. [Google Scholar] [CrossRef]
- Mo, J.; Yuan, L.P. Compatibility and thermal stability studies between omeprazole and ambroxol hydrochloride. Int. Res. J. Pharm. 2017, 8, 56–61. [Google Scholar] [CrossRef]
- Yu, F.; Li, C.; Liu, M.; Shen, T.; Liu, C. Aerosol inhalation of ambroxol hydrochloride combined with terbutaline can promote recovery of children with severe pneumonia. Am. J. Transl. Res. 2021, 13, 5019–5026. [Google Scholar] [PubMed]
- Hu, M.; Zhu, Z.; Wu, Y.; Meng, Q.; Luo, J.; Wang, H. Exploring the potential of hydrophilic matrix combined with insoluble film coating: Preparation and evaluation of ambroxol hydrochloride extended release tablets. AAPS PharmSciTech 2020, 21, 93. [Google Scholar] [CrossRef]
- Li, J.; Wu, Y. Lubricants in Pharmaceutical Solid Dosage Forms. Lubricants 2014, 2, 21–43. [Google Scholar] [CrossRef]
- Mustarichie, R.; Gozali, D.; Priambodo, D. Dissolution profile of ambroxol HCl tablet with additional variations of Lupridess® and lactose using the direct press method. Int. J. App. Pharm. 2020, 12, 62–66. [Google Scholar] [CrossRef]
- Poole, P.; Sathananthan, K.; Fortescue, R. Mucolytic agents versus placebo for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst. Rev. 2019, 5, CD001287. [Google Scholar] [CrossRef] [PubMed]
- Kinetics Software KINETICS. 2015. Available online: Geoisochem.com/software/kinetics2015/ (accessed on 21 April 2021).
- Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to phenolic plastic. J. Polym. Sci. Part. C 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Burnham, A.K.; Braun, R.L. Global kinetic analysis of complex reactions. Energy Fuels 1999, 13, 1–22. [Google Scholar] [CrossRef]
- Crickmore, P.J. Power law models as descriptors of the kinetics of complex systems: Temperature effects. Can. J. Chem. Eng. 1989, 67, 392–396. [Google Scholar] [CrossRef]
- Burnham, A.K.; Braun, R.L.; Coburn, T.T.; Sandvik, E.I.; Curry, D.J.; Schmidt, B.J.; Noble, R.A. An appropriate the kinetic model for well-preserved algal kerogens. Energy Fuels 1996, 10, 49–59. [Google Scholar] [CrossRef]
- Prout, E.G.; Tompkins, F.C. Thermal decomposition of KMnO4. Trans. Faraday Soc. 1994, 40, 488–496. [Google Scholar] [CrossRef]
- Ralston, P.; Depuy, G.; Graham, J.H. Graphical enhancement to support PCA-based process monitoring and fault diagnosis. ISA Trans. 2004, 43, 639–653. [Google Scholar] [CrossRef]
- Bro, R.; Smilde, A.K. Principal component analysis. Anal. Methods 2014, 6, 2812–2831. [Google Scholar] [CrossRef] [Green Version]
- Wise, B.M.; Gallagher, N.B.; Bro, R.; Shaver, J.M.; Windig, W.; Koch, R.S. PLS_Toolbox 8.0; Eigenvector Research, Inc.: Wenatchee, WA, USA, 2006. [Google Scholar]
- Rao, V.; Latha, P.; Ashokan, V.P.; Shridhar, M.H. Thermal Degradation of Poly(N-vinylpyrrolidone)-Poly(vinyl alcohol) Blends. Polym. J. 1999, 31, 887–889. [Google Scholar] [CrossRef] [Green Version]
- Stanisz, B.; Regulska, K.; Kania, J.; Garbacki, P. Effect of pharmaceutical excipients on the stability of angioten-sin-converting enzyme inhibitors in their solid dosage formulations. Drug Dev. Ind. Pharm. 2013, 39, 51–61. [Google Scholar] [CrossRef]
- Liu, X.; Yu, L.; Xie, F.; Li, M.; Chen, L.; Li, X. Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch/Stärke 2010, 62, 139–146. [Google Scholar] [CrossRef]
- Gandhi, L.R. Stress degradation studies and development of stability indicating assay method for simultaneous estimation of ambroxol hydrochloride and salbutamol sulphate in bulk and its formulation. Asian J. Pharm. Res. Dev. 2018, 6, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Sumithra, M.; Yuvanesh, P.; Mistry, A. Application of HPTLC for simultaneous estimation of ambroxol hydrochloride and roxithromycin in pharmaceutical dosage. Res. J. Pharm. Tech. 2016, 9, 794–800. [Google Scholar] [CrossRef]
- Validation of Analytical Procedures: Text & Methodology, Q2 (R), ICH Harmonized Tripartite Guidelines. 2005. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 20 September 2021).
- Cavatur, R.; Vemuri, N.M.; Chrzan, Z. Use of isothermal microcalorimetry in pharmaceutical preformulation studies. Part III. Evaluation of excipient compatibility of a new chemical entity. J. Therm. Anal. Calorim. 2004, 78, 63–72. [Google Scholar]
- Koivistoa, M.; Jalonenb, H.; Lehtoa, V.P. Effect of temperature and humidity on vegetable grade magnesium stearate. Powder Technol. 2004, 147, 79–85. [Google Scholar] [CrossRef]
- Rajala, R.; Laine, E. The effect of moisture on the structure of magnesium stearate. Thermochim. Acta 1995, 248, 177–188. [Google Scholar] [CrossRef]
- Osman, Y.B.; Liavitskaya, T.; Vyazovkin, S. Polyvinylpyrrolidone affects thermal stability of drugs in solid dispersions. Int. J. Pharm. 2018, 551, 111–120. [Google Scholar] [CrossRef]
- Browne, E.; Zelalem, A.; Healy, A.M. Physicochemical properties of Poly-vinyl polymers and their influence on keto-profen amorphous solid dispersion performance: A polymer selection case study. Pharmaceutics 2020, 12, 433. [Google Scholar] [CrossRef] [PubMed]
- Jelić, D.; Liavitskaya, T.; Vyazovkin, S. Thermal stability of indomethacin increases with the amount of polyvinylpyr-rolidone in solid dispersion. Thermochim. Acta 2019, 676, 172–176. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. NIST Chemistry WebBook, NIST Standard Reference Database Number 69. Available online: http://webbook.nist.gov (accessed on 24 April 2021).
- Stein, S.E. “Mass Spectra” by NIST Mass Spec Data Center. Available online: https://webbook.nist.gov/chemistry/ (accessed on 24 April 2021).
- Materazzi, S. Mass scpectrometry coupled to thermogravimetry (TG-MS) for evolved gas characterization: A Review. App. Spectrosc. Rev. 1998, 33, 189–218. [Google Scholar] [CrossRef]
- Herrera, M.; Matuschek, G.; Kettrup, A. Thermal degradation studies of some aliphatic polyamides using hyphenated techniques (TG-MS, TG-FTIR). J. Therm. Anal. Calorim. 2000, 59, 385–394. [Google Scholar] [CrossRef]
- Chena, J.; Wangb, J.; Lib, R.; Lua, A.; Li, Y. Thermal and X-ray Diffraction Analysis of Lactose Polymorph. Procedia Eng. 2015, 102, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Yoon, T.; Mun, J.H.; Cho, B.J.; Kim, T.S. Penetration and lateral diffusion characteristics of polycrystalline grapheme barriers. Nanoscale 2014, 6, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Miura, K. A new a simple method to estimate f(E) and ko(E) in the distributed activation energy model from three sets of experimental data. Energy Fuels 1995, 9, 302–307. [Google Scholar] [CrossRef]
- Vand, V. A Theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum. Proc. Phys. Soc. 1943, A55, 222–246. [Google Scholar] [CrossRef]
- Hiremath, P.; Nuguru†a, K.; Agrahari, V. Handbook of Pharmaceutical Wet Granulation, Theory and Practice in a Quality by Design Paradigm; Academic Press: Cambridge, MA, USA, 2019; pp. 263–315. [Google Scholar]
- Szcześniak, L.; Rachocki, A.; Tritt-Goc, J. Glass transition temperature and thermal decomposition of cellulose powder. Cellulose 2008, 15, 445–451. [Google Scholar] [CrossRef]
- Xie, T.; Taylor, L.S. Effect of Temperature and moisture on the physical stability of binary and ternary amorphous solid dispersions of celecoxib. J. Pharm. Sci. 2017, 106, 100–110. [Google Scholar] [CrossRef] [Green Version]
- Genton, D.; Kesselring, U.W. Effect of Temperature and relative humidity on nitrazepam stability in solid state. J. Pharm. Sci. 1977, 66, 676–680. [Google Scholar] [CrossRef]
- Waterman, K.C.; Carella, A.J.; Gumkowski, M.J.; Lukulay, P.; Macdonald, B.C.; Roy, M.C.; Shamblin, S.L. Improved protocol and data analysis for accelerated shelf-life estimation of solid dosage forms. Pharm. Res. 2007, 24, 780–790. [Google Scholar] [CrossRef]
- Garbett, N.C.; Chaires, J.B. Thermodynamic Studies for Drug Design and Screening. Expert Opin. Drug Discov. 2012, 7, 299–314. [Google Scholar] [CrossRef]
- Tirkistani, F.A.A.; Hassan, R.M. Kinetics and mechanism of non-isothermal decomposition of some cross-linked met-al-alginate complexes especially trivalent metal—Alginate complexes. Orient. J. Chem. 2012, 28, 913–920. [Google Scholar] [CrossRef]
- Daharwal, S.J.; Jangade, R.K.; Thakur, V.D.; Sahu, B.P. Compatibility study of Ambroxol HCl drug-excipients by using IR spectroscopy. Asian J. Pharm. Anal. 2013, 3, 98–101. [Google Scholar]
- Yang, H.; Liao, X.; Peng, F.; Wang, W.; Liu, Y.; Yan, J.; Li, H. Monitoring of the manufacturing process for ambroxol hydrochloride tablet using NIR-chemometric methods: Compression effect on content uniformity model and relevant process parameters testing. Drug Dev. Ind. Pharm. 2015, 41, 1877–1887. [Google Scholar] [CrossRef]
- Smoliński, A.; Walczak, B.; Einax, J. Exploratory analysis of data sets with missing elements and outliers. Chemosphere 2002, 49, 233–245. [Google Scholar] [CrossRef]
- Stanimirova, I.; Walczak, B.; Massart, D.L.; Simeonov, V. A comparison between two robust PCA algorithms. Chemom. Intell. Lab. Syst. 2004, 71, 83–95. [Google Scholar] [CrossRef]
- Wesolowski, M.; Rojek, B. Thermogravimetric detection of incompatibilities between atenolol and excipients using multivariate techniques. J. Therm. Anal. Calorim. 2013, 113, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Statheropoulos, M.; Smaragdis, E.; Tzamtzisa, N.; Georgakopoulosb, C. Principal component analysis for resolving coeluting substances in gas chromatography-mass spectrometry doping control analysis. Anal. Chim. Acta 1996, 2670, 53–61. [Google Scholar] [CrossRef]
- Rojek, B.; Wesolowski, M. Fourier transform infrared spectroscopy supported by multivariate statistics in compatibility study of atenolol with excipients. Vib. Spectrosc. 2016, 86, 190–197. [Google Scholar] [CrossRef]
- Oremusová, J.; Šimon, P.; Valko, L.; Kovařík, P. Influence of metal stearates on thermal-stability of poly(vinyl chlo-ride). 1. Calcium stearate. Chem. Pap. 1989, 43, 721–731. [Google Scholar]
- Crowley, P.; Martini, L.G. Drug-excipinets interactions. Pharm. Techno. Eur. 2001, 13, 26–34. [Google Scholar]
- Moneghini, M.; Carcano, A.; Zingone, G.; Perissutti, B. Studies in dissolution enhancement of atenolol. Part I. Int. J. Pharm. 1998, 175, 177–183. [Google Scholar] [CrossRef]
m/z Fragment | Normalized Ion Current for Compounds | |
---|---|---|
Ambroxol Hydrochloride | Commercial Flavamed Tablet | |
1 | 1.5 × 10−8 | 3.5 × 10−9 |
14 | 2.5 × 10−9 | 2 × 10−9 |
15 | 5.5 × 10−11 | not available |
16 | 7.5 × 10−10 | 6 × 10−10 |
17 | 2.0 × 10−9 | 1 × 10−9 |
18 | 8.0 × 10−9 | 4 × 10−9 |
28 | 2.5 × 10−8 | not available |
29 | 2 × 10−10 | not available |
30 | 6 × 10−11 | not available |
36 | 3 × 10−9 | 2 × 10−9 |
38 | 5 × 10−10 | 3 × 10−10 |
II Stage of Pure AMB Decomposition | |||||
---|---|---|---|---|---|
Friedman model | |||||
A, 1/s | E, kJ/mol | n | RSS1 | RSS2 | |
1.794 × 1014 | 164.71 | 1 | 1.8128 | 0.3146 | |
n-th order | |||||
A, 1/s | E, kJ/mol | n | RSS1 | RSS2 | |
2.005 × 1013 | 155.845 | 0.666 | 3.0604 | 0.2029 | |
Nucleation and growth | |||||
A, 1/s | E, kJ/mol | n | m | RSS1 | RSS2 |
9.311 × 1013 | 161.74 | 0.881 | 0.0349 | 3.4053 | 0.2256 |
Discrete distribution model | |||||
A, 1/s | E, kJ/mol | RSS1 | RSS2 | ||
2.420 × 1015 | 175.803 (98.54%) | 4.6647 | 0.55329 | ||
III Stage of Pure AMB Decomposition | |||||
Friedman model | |||||
A, 1/s | E, kJ/mol | n | RSS1 | RSS2 | |
5.62 × 1018 | 202.559 | 1 | 4.0662 | 0.3155 | |
n-th order | |||||
A, 1/s | E, kJ/mol | n | RSS1 | RSS2 | |
4.553 × 1016 | 199.66 | 1.5735 | 3.9335 | 0.38758 | |
Nucleation and growth | |||||
A, 1/s | E, kJ/mol | n | m | RSS1 | RSS2 |
1.6148 × 1019 | 221.165 | 2.747 | 0.46121 | 9.4676 | 0.65075 |
Discrete distribution model | |||||
A, 1/s | E, kJ/mol | RSS1 | RSS2 | ||
1.2604 × 1017 | 209.29 (50.40%) | 200.9 < ΔE < 213.47 | 3.4465 | 0.36096 |
II stage of Flavamed® Decomposition | |||||
---|---|---|---|---|---|
Friedman model | |||||
A, 1/s | E, kJ/mol | n | RSS1 | RSS2 | |
5.446 × 1019 | 150.05 | 1 | 4.104 | 0.05809 | |
n-th order | |||||
A, 1/s | E, kJ/mol | n | RSS1 | RSS2 | |
2.8245 × 1013 | 143.38 | 1.2567 | 6.7365 | 0.16284 | |
Nucleation and growth | |||||
A, 1/s | E, kJ/mol | n | m | RSS1 | RSS2 |
1.6334 × 1014 | 148.79 | 1.735 | 0.136 | 9.1320 | 0.22973 |
Discrete distribution model | |||||
A, 1/s | E, kJ/mol | RSS1 | RSS2 | ||
1.1935 × 1014 | 150.68 (86.15%) | 142.31 (13.85) | 4.6074 | 0.11721 | |
III stage of Flavamed® decomposition | |||||
Friedman model | |||||
A, 1/s | E, kJ/mol | n | RSS1 | RSS2 | |
2.855 × 1017 | 207.51 | 1 | 2.1234 | 0.00135 | |
n-th order | |||||
A, 1/s | E, kJ/mol | n | RSS1 | RSS2 | |
2.0945 × 1016 | 207.93 | 2.0994 | 8.56969 | 0.20434 | |
Discrete distribution model | |||||
A, 1/s | E, kJ/mol | RSS1 | RSS2 | ||
1.2817 × 1017 | 209.29 (50.84%) | 192.54 < ΔE < 209.29 | 0.81406 | 0.00747 |
Temperature/°C | Shelf-Life of AMB | Shelf-Life of Flavamed Tablets |
---|---|---|
25 | 233,324 years | 1366 years |
40 | 12,089 years | 83.3 years |
70 | 66.7 years | 8.82 month |
250 | 15.62 s | 0.0155 s |
AMB II Stage | AMB III Stage | FT II Stage | FT III Stage | |
---|---|---|---|---|
ΔS#/J·mol−1·K−1 | 14.79 | 100.5 | 120.6 | 75.76 |
AMB/Lactose | AMB/PVP | AMB/Mg Stearate | |
---|---|---|---|
FTIR-PCA | ✓ | * | ✓ |
TG | ✓ | * | * |
DSC | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jelić, D.; Papović, S.; Vraneš, M.; Gadžurić, S.; Berto, S.; Alladio, E.; Gajić, D.; Janković, B. Thermo-Analytical and Compatibility Study with Mechanistic Explanation of Degradation Kinetics of Ambroxol Hydrochloride Tablets under Non-Isothermal Conditions. Pharmaceutics 2021, 13, 1910. https://doi.org/10.3390/pharmaceutics13111910
Jelić D, Papović S, Vraneš M, Gadžurić S, Berto S, Alladio E, Gajić D, Janković B. Thermo-Analytical and Compatibility Study with Mechanistic Explanation of Degradation Kinetics of Ambroxol Hydrochloride Tablets under Non-Isothermal Conditions. Pharmaceutics. 2021; 13(11):1910. https://doi.org/10.3390/pharmaceutics13111910
Chicago/Turabian StyleJelić, Dijana, Snežana Papović, Milan Vraneš, Slobodan Gadžurić, Silvia Berto, Eugenio Alladio, Dragana Gajić, and Bojan Janković. 2021. "Thermo-Analytical and Compatibility Study with Mechanistic Explanation of Degradation Kinetics of Ambroxol Hydrochloride Tablets under Non-Isothermal Conditions" Pharmaceutics 13, no. 11: 1910. https://doi.org/10.3390/pharmaceutics13111910
APA StyleJelić, D., Papović, S., Vraneš, M., Gadžurić, S., Berto, S., Alladio, E., Gajić, D., & Janković, B. (2021). Thermo-Analytical and Compatibility Study with Mechanistic Explanation of Degradation Kinetics of Ambroxol Hydrochloride Tablets under Non-Isothermal Conditions. Pharmaceutics, 13(11), 1910. https://doi.org/10.3390/pharmaceutics13111910