Bioactive Collagen Hydrolysate-Chitosan/Essential Oil Electrospun Nanofibers Designed for Medical Wound Dressings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Collagen Hydrolysate’s Characterization
2.2.2. Preparation of Electrospinning Solutions
2.2.3. Encapsulation of Lemon Balm and Dill Essential Oils
2.2.4. EO Loading Efficiency
2.2.5. Scanning Electron Microscopy (SEM)
2.2.6. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)
2.2.7. Antimicrobial Activity
2.2.8. In Vivo Biocompatibility
3. Results and Discussion
3.1. Physical-Chemical Characteristics of HCB and HCR Extracts
3.2. Efficiency of Essential Oils Encapsulation
3.3. Scanning Electron Microscopy (SEM) Analysis
3.4. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) Analysis
3.5. Antimicrobial Activity
3.6. In Vivo Biocompatibility Evaluation
3.6.1. Hematological Tests
3.6.2. Activity of Liver Enzymes
3.6.3. Immunological Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shabunin, A.S.; Yudin, V.E.; Dobrovolskaya, I.P.; Zinovyev, E.V.; Zubov, V.; Ivan'kova, E.M.; Morganti, P. Composite Wound Dressing Based on Chitin/Chitosan Nanofibers: Processing and Biomedical Applications. Cosmetics 2019, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Ranjith, R.; Balraj, S.; Ganesh, J.; Milton, M.C.J. Therapeutic agents loaded chitosan-based nanofibrous mats as potential wound dressings: A review. Mater. Today Chem. 2019, 12, 386–395. [Google Scholar] [CrossRef]
- Unnithan, A.R.; Sasikala, A.R.K.; Murugesan, P.; Gurusamy, M.; Wu, D.M.; Park, C.H.; Kim, C.S. Electrospun polyurethane-dextran nanofiber mats loaded with Estradiol for post-menopausal wound dressing. Int. J. Biol. Macromol. 2015, 77, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Hu, J.L.; Zhao, H.F. Design of bilayered nanofibrous mats for wound dressing using an electrospinning technique. Mater. Lett. 2015, 156, 46–49. [Google Scholar] [CrossRef]
- Paduraru, A.; Ghitulica, C.; Trusca, R.; Surdu, V.A.; Neacsu, I.A.; Holban, A.M.; Birca, A.C.; Iordache, F.; Vasile, B.S. Antimicrobial Wound Dressings as Potential Materials for Skin Tissue Regeneration. Materials 2019, 12, 1859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ficai, D.; Ardelean, I.L.; Holban, A.M.; Ditu, L.M.; Gudovan, D.; Sonmez, M.; Trusca, R.; Kaya, A.; Ficai, A.; Andronescu, E. Manufacturing nanostructured chitosan-based 2D sheets with prolonged antimicrobial activity. Rom. J. Morphol. Embryol. 2018, 59, 517–525. [Google Scholar]
- Lopez-Calderon, H.D.; Aviles-Arnaut, H.; Galan-Wong, L.J.; Almaguer-Cantu, V.; Laguna-Camacho, J.R.; Calderon-Ramon, C.; Escalante-Martinez, J.E.; Arevalo-Nino, K. Electrospun Polyvinylpyrrolidone-Gelatin and Cellulose Acetate Bi-Layer Scaffold Loaded with Gentamicin as Possible Wound Dressing. Polymers 2020, 12, 2311. [Google Scholar] [CrossRef]
- Qin, M.; Mou, X.J.; Dong, W.H.; Liu, J.X.; Liu, H.; Dai, Z.; Huang, X.W.; Wang, N.; Yan, X. In Situ Electrospinning Wound Healing Films Composed of Zein and Clove Essential Oil. Macromol. Mater. Eng. 2020, 305, 1900790. [Google Scholar] [CrossRef]
- Liakos, I.; Rizzello, L.; Hajiali, H.; Brunetti, V.; Carzino, R.; Pompa, P.P.; Athanassiou, A.; Mele, E. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J. Mater. Chem. B 2015, 3, 1583–1589. [Google Scholar] [CrossRef]
- Bolgen, N.; Demir, D.; Yalcin, M.S.; Ozdemir, S. Development of Hypericum perforatum oil incorporated antimicrobial and antioxidant chitosan cryogel as a wound dressing material. Int. J. Biol. Macromol. 2020, 161, 1581–1590. [Google Scholar] [CrossRef]
- Yildirim, N.; Kucuk, I. Preparing and characterization of St.John's Wort (Hypericum perforatum) incorporated wound dressing films based on chitosan and gelatin. J. Fac. Eng. Archit. Gazi Univ. 2020, 35, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Nesovic, K.; Jankovic, A.; Radetic, T.; Vukasinovic-Sekulic, M.; Kojic, V.; Zivkovic, L.; Peric-Grujic, A.; Rhee, K.Y.; Miskovic-Stankovic, V. Chitosan-based hydrogel wound dressings with electrochemically incorporated silver nanoparticles—In vitro study. Eur. Polym. J. 2019, 121, 109257. [Google Scholar] [CrossRef]
- Farzinfar, E.; Paydayesh, A. Investigation of polyvinyl alcohol nanocomposite hydrogels containing chitosan nanoparticles as wound dressing. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 628–638. [Google Scholar] [CrossRef]
- Vasile, B.S.; Birca, A.C.; Musat, M.C.; Holban, A.M. Wound Dressings Coated with Silver Nanoparticles and Essential Oils for The Management of Wound Infections. Materials 2020, 13, 1682. [Google Scholar] [CrossRef] [Green Version]
- Alven, S.; Aderibigbe, B.A. Hyaluronic Acid-Based Scaffolds as Potential Bioactive Wound Dressings. Polymers 2021, 13, 2102. [Google Scholar] [CrossRef] [PubMed]
- Mele, E. Electrospinning of Essential Oils. Polymers 2020, 12, 908. [Google Scholar] [CrossRef] [Green Version]
- Babavalian, H.; Latifi, A.M.; Shokrgozar, M.A.; Bonakdar, S.; Shakeri, F.; Tebyanian, H. Healing Effects of Synthetic Versus Commercial Alginate Hydrogel Dressings on Wounds. Trauma Mon. 2017, 22, 391–396. [Google Scholar] [CrossRef]
- Samadi, A.; Azandeh, S.; Orazizadeh, M.; Bayati, V.; Rafienia, M.; Karami, M.A. Fabrication and characterization of glycerol/chitosan/polyvinyl alcohol-based transparent hydrogel films loaded with silver nanoparticles for antibacterial wound dressing applications. Adv. Biomed. Res. 2021, 10, 4. [Google Scholar] [CrossRef]
- Santhanam, R.; Rameli, M.A.P.; Al Jeffri, A.; Ismail, W.I.W. Bovine Based Collagen Dressings in Wound Care Management. J. Pharm. Res. Int. 2020, 32, 48–63. [Google Scholar] [CrossRef]
- Claro, F.C.; Jordao, C.; de Viveiros, B.M.; Isaka, L.J.E.; Villanova, J.A.; Magalhaes, W.L.E. Low cost membrane of wood nanocellulose obtained by mechanical defibrillation for potential applications as wound dressing. Cellulose 2020, 27, 10765–10779. [Google Scholar] [CrossRef]
- Matei, E.; Gaidau, C.; Rapa, M.; Constantinescu, R.; Savin, S.; Berechet, M.D.; Predescu, A.M.; Berbecaru, A.C.; Coman, G.; Predescu, C. Sustainable Rabbit Skin Glue to Produce Bioactive Nanofibers for Nonactive Wound Dressings. Materials 2020, 13, 5388. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, F.; Suarato, G.; Grisoli, P.; Zych, A.; Bertorelli, R.; Athanassiou, A. Plant-based biocomposite films as potential antibacterial patches for skin wound healing. Eur. Polym. J. 2021, 150, 110414. [Google Scholar] [CrossRef]
- Rapa, M.; Gaidau, C.; Stefan, L.M.; Matei, E.; Niculescu, M.; Berechet, M.D.; Stanca, M.; Tablet, C.; Tudorache, M.; Gavrila, R.; et al. New Nanofibers Based on Protein By-Products with Bioactive Potential for Tissue Engineering. Materials 2020, 13, 3149. [Google Scholar] [CrossRef]
- Horbert, V.; Xin, L.; Foehr, P.; Brinkmann, O.; Bungartz, M.; Burgkart, R.H.; Graeve, T.; Kinne, R.W. In Vitro Analysis of Cartilage Regeneration Using a Collagen Type I Hydrogel (CaReS) in the Bovine Cartilage Punch Model. Cartilage 2019, 10, 346–363. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, Y.; Verbridge, S.S.; Agah, M. Bio-inspired microstructures in collagen type I hydrogel. J. Biomed. Mater. Res. Part A 2015, 103, 2193–2197. [Google Scholar] [CrossRef]
- Boyce, S.T. Fabrication, quality assurance, and assessment of cultured skin substitutes for treatment of skin wounds. Biochem. Eng. J. 2004, 20, 107–112. [Google Scholar] [CrossRef]
- Iejima, D.; Saito, T.; Uemura, T. A collagen-phosphophoryn sponge as a scaffold for bone tissue engineering. J. Biomater. Sci. -Polym. Ed. 2003, 14, 1097–1103. [Google Scholar] [CrossRef]
- Sumita, Y.; Honda, M.J.; Ohara, T.; Tsuchiya, S.; Sagara, H.; Kagami, H.; Ueda, M. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering. Biomaterials 2006, 27, 3238–3248. [Google Scholar] [CrossRef]
- Dash, M.; Chiellini, F.; Ottenbrite, R.M.; Chiellini, E. Chitosan-A versatile semi-synthetic polymer in biomedical applications. Prog. Polym. Sci. 2011, 36, 981–1014. [Google Scholar] [CrossRef]
- Shikhi-Abadi, P.G.; Irani, M. A review on the applications of electrospun chitosan nanofibers for the cancer treatment. Int. J. Biol. Macromol. 2021, 183, 790–810. [Google Scholar] [CrossRef] [PubMed]
- Qu, B.; Luo, Y.C. Chitosan-based hydrogel beads: Preparations, modifications and applications in food and agriculture sectors—A review. Int. J. Biol. Macromol. 2020, 152, 437–448. [Google Scholar] [CrossRef]
- Hua, Y.Y.; Ma, C.J.; Wei, T.T.; Zhang, L.F.; Shen, J. Collagen/Chitosan Complexes: Preparation, Antioxidant Activity, Tyrosinase Inhibition Activity, and Melanin Synthesis. Int. J. Mol. Sci. 2020, 21, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Luca, I.; Pedram, P.; Moeini, A.; Cerruti, P.; Peluso, G.; Di Salle, A.; Germann, N. Nanotechnology Development for Formulating Essential Oils in Wound Dressing Materials to Promote the Wound-Healing Process: A Review. Appl. Sci. 2021, 11, 1713. [Google Scholar] [CrossRef]
- Bai, M.Y.; Chen, M.C.; Yu, W.C.; Lin, J.Y. Foam dressing incorporating herbal extract: An all-natural dressing for potential use in wound healing. J. Bioact. Compat. Polym. 2017, 32, 293–308. [Google Scholar] [CrossRef]
- Gaspar-Pintiliescu, A.; Stanciuc, A.M.; Craciunescu, O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: A review. Int. J. Biol. Macromol. 2019, 138, 854–865. [Google Scholar] [CrossRef] [PubMed]
- Berechet, M.D.; Gaidau, C.; Miletic, A.; Pilic, B.; Rapa, M.; Stanca, M.; Ditu, L.M.; Constantinescu, R.; Lazea-Stoyanova, A. Bioactive Properties of Nanofibres Based on Concentrated Collagen Hydrolysate Loaded with Thyme and Oregano Essential Oils. Materials 2020, 13, 1618. [Google Scholar] [CrossRef] [Green Version]
- Aragon, J.; Costa, C.; Coelhoso, I.; Mendoza, G.; Aguiar-Ricardo, A.; Irusta, S. Electrospun asymmetric membranes for wound dressing applications. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 103, 109822. [Google Scholar] [CrossRef] [PubMed]
- Guleken, Z.; Depciuch, J.; Ege, H.; Ilbay, G.; Kalkandelen, C.; Ozbeyli, D.; Bulut, H.; Sener, G.; Tarhan, N.; Kuruca, S.E. Spectrochemical and biochemical assay comparison study of the healing effect of the Aloe vera and Hypericum perforatum loaded nanofiber dressings on diabetic wound. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2021, 254, 119639. [Google Scholar] [CrossRef] [PubMed]
- Naseri, M.; Mojab, F.; Khodadoost, M.; Kamalinejad, M.; Davati, A.; Choopani, R.; Hasheminejad, A.; Bararpoor, Z.; Shariatpanahi, S.; Emtiazy, M. The Study of Anti-Inflammatory Activity of Oil-Based Dill (Anethum graveolens L.) Extract Used Topically in Formalin-Induced Inflammation Male Rat Paw. Iran. J. Pharm. Res. 2012, 11, 1169–1174. [Google Scholar]
- Thielmann, J.; Muranyi, P.; Kazman, P. Screening essential oils for their antimicrobial activities against the foodborne pathogenic bacteria Escherichia coli and Staphylococcus aureus. Heliyon 2019, 5, e01860. [Google Scholar] [CrossRef] [Green Version]
- Kazemi, M. Chemical composition and antimicrobial, antioxidant activities and anti-inflammatory potential of Achillea millefolium L., Anethum graveolens L., and Carum copticum L. essential oils. J. Herb. Med. 2015, 5, 217–222. [Google Scholar] [CrossRef]
- Mimica-Dukic, N.; Bozin, B.; Sokovic, M.; Simin, N. Antimicrobial and antioxidant activities of Melissa officinalis L. (Lamiaceae) essential oil. J. Agric. Food Chem. 2004, 52, 2485–2489. [Google Scholar] [CrossRef] [PubMed]
- Berechet, M.D.; Chirila, C.; Simion, D.; Niculescu, O.; Stanca, M.; Alexe, C.A.; Chelaru, C.; Râpă, M.; Gurău, D.F. Antifungal activity of leather treated with anethum graveolens and melaleuca alternifolia essential oils against trichophyton interdigitale. Leather Foorwear J. 2020, 20, 133–144. [Google Scholar] [CrossRef]
- Bauer, A.W.; Perry, D.M.; Kirby, W.M.M. Single disc antibiotic sensitivity testing of Staphylococci. A.M.A. Arch. Intern. Med. 1959, 104, 208–216. [Google Scholar] [CrossRef]
- Rasband, W.S. ImageJ. 1997–2018. Available online: https://imagej.nih.gov/ij/ (accessed on 20 September 2021).
- Lindstrom, N.M.; Moore, D.M.; Zimmerman, K.; Smith, S.A. Hematologic Assessment in Pet Rats, Mice, Hamsters, and Gerbils Blood Sample Collection and Blood Cell Identification. Clin. Lab. Med. 2015, 35, 629. [Google Scholar] [CrossRef]
- Wolf, M.F.; Anderson, J.M. Practical approach to blood compatibility assessments: General considerations and standards. Biocompat. Perform. Med. Devices 2012, 50, 159–200. [Google Scholar]
- Zou, W.S.; Yang, Y.Q.; Gu, Y.; Zhu, P.F.; Zhang, M.J.; Cheng, Z.; Liu, X.Y.; Yu, Y.J.; Peng, X.H. Repeated Blood Collection from Tail Vein of Non-Anesthetized Rats with a Vacuum Blood Collection System. JoVE-J. Vis. Exp. 2017, 130, e55852. [Google Scholar] [CrossRef] [Green Version]
- Parasuraman, S.; Raveendran, R.; Kesavan, R. Blood Sample Collection in Small Laboratory Animals. J. Pharmacol. Pharmacother. 2010, 1, 87. [Google Scholar] [CrossRef] [Green Version]
- Tranquilli, W.J.; Thurmon, T.J.; Grimm, K.A. Lumb and Jones’ Veterinary Anesthesia and Analgesia; Blackwell: Hoboken, NJ, USA, 2007. [Google Scholar]
- Toft, M.F.; Petersen, M.H.; Dragsted, N.; Hansen, A.K. The impact of different blood sampling methods on laboratory rats under different types of anaesthesia. Lab. Anim. 2006, 40, 261–274. [Google Scholar] [CrossRef]
- Tartau, L.; Cazacu, A.; Melnig, V. Ketoprofen-liposomes formulation for clinical therapy. J. Mater. Sci. Mater. Med. 2012, 23, 2499–2507. [Google Scholar] [CrossRef]
- Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Used Animals for Scientific Purposes. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32010L0063 (accessed on 20 September 2021).
- AVMA Guidelines on Euthanasia. 2007. Available online: https://olaw.nih.gov/sites/default/files/Euthanasia2007.pdf (accessed on 21 September 2021).
- Das, S.; Singh, V.K.; Dwivedy, A.K.; Chaudhari, A.K.; Dubey, N.K. Anethum graveolens Essential Oil Encapsulation in Chitosan Nanomatrix: Investigations on In Vitro Release Behavior, Organoleptic Attributes, and Efficacy as Potential Delivery Vehicles Against Biodeterioration of Rice (Oryza sativa L.). Food Bioprocess Technol. 2021, 14, 831–853. [Google Scholar] [CrossRef]
- Fernandes, L.L.; Resende, C.X.; Tavares, D.S.; Soares, G.A.; Castro, L.O.; Granjeiro, J.M. Cytocompatibility of Chitosan and Collagen-Chitosan Scaffolds for Tissue Engineering. Polim. Cienc. E Tecnol. 2011, 21, 1–6. [Google Scholar] [CrossRef]
- Sadeghi-Avalshahr, A.R.; Nokhasteh, S.; Molavi, A.M.; Mohammad-Pour, N.; Sadeghi, M. Tailored PCL Scaffolds as Skin Substitutes Using Sacrificial PVP Fibers and Collagen/Chitosan Blends. Int. J. Mol. Sci. 2020, 21, 2311. [Google Scholar] [CrossRef] [Green Version]
- Muchova, J.; Hearnden, V.; Michlovska, L.; Vistejnova, L.; Zavadakova, A.; Smerkova, K.; Kociova, S.; Adam, V.; Kopel, P.; Vojtova, L. Mutual influence of selenium nanoparticles and FGF2-STAB(R) on biocompatible properties of collagen/chitosan 3D scaffolds: In vitro and ex ovo evaluation. J. Nanobiotechnology 2021, 19, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Antunes, J.C.; Tavares, T.D.; Teixeira, M.A.; Teixeira, M.O.; Homem, N.C.; Amorim, M.T.P.; Felgueiras, H.P. Eugenol-Containing Essential Oils Loaded onto Chitosan/Polyvinyl Alcohol Blended Films and Their Ability to Eradicate Staphylococcus aureus or Pseudomonas aeruginosa from Infected Microenvironments. Pharmaceutics 2021, 13, 195. [Google Scholar] [CrossRef] [PubMed]
EO Type | TPC (mg GAE/g Dry Substance) | DPPH (%) | ABTS (%) |
---|---|---|---|
Dill | 0.48 | 13.21 | 36.10 |
Lemon balm | 0.87 | 23.11 | 46.17 |
Code | HCB-CS | HCR-CS | Dill EO | Lemon balm EO |
---|---|---|---|---|
HCB-CS | X | |||
HCB-CS/D | X | X | ||
HCB-CS/L | X | X | ||
HCB-CS/D&L | X | X | X | |
HCR-CS | X | |||
HCR-CS/D | X | X | ||
HCR-CS/L | X | X | ||
HCR-CS/D&L | X | X | X |
Characteristics | Values ± SD | Methods | |
---|---|---|---|
HCB | HCR | ||
Volatile matters, % | 10.67 ± 0.35 | 9.10 ± 0.35 | SR EN ISO 4684:2006 |
Ash content, % | nd | 1.61 ± 0.20 | SR EN ISO 4047:2002 |
Total nitrogen, % | 16.74 ± 0.35 | 17.32 ± 0.35 | SR EN ISO 5397:1996 |
Protein, % | 94.06 ± 0.35 | 97.28 ± 0.35 | SR EN ISO 5397:1996 |
Aminic nitrogen, % | 0.65 ± 0.24 | 0.87 ± 0.24 | ICPI Method |
Molecular weight, Da | 22500 | 15000 ± 78 | Sorensen Method |
Conductivity (solution 10% in distilled water), μS/cm | 0.57 | 820 ± 0.15 | SR EN 2788:1997 |
pH (solution 10% in distilled water), pH units | 4.40 | 7.50 ± 0.11 | STAS 8619/3: 1990 |
Average particle size, nm | 926.7 | ||
Polydispersity | 0.510 | ||
Zeta potential | 5.53 |
Sample | S. aureus | E. coli | E. faecalis | S. typhimurium | C. albicans | C. glabrata | A. brasiliensis |
---|---|---|---|---|---|---|---|
D | 8.94 ± 0.04 | - | - | - | - | 16.34 ± 0.14 | - |
L | 9.04 ± 0.25 | 9.09 ± 0.12 | 8.42 ± 0.14 | - | - | 12.24 ± 0.35 | - |
D&L | 7.86 ± 0.45 | 8.12 ± 0.07 | 7.00 ± 0.31 | - | - | 8.06 ± 0.18 | - |
HCB-CS | 12.94 ± 0.31 | 17.21 ± 0.04 | - | 17.47 ± 0.11 | 18.29 ± 0.28 | 22.50 ± 0.34 | 23.64 ± 0.27 |
HCB-CS/D | 11.19 ± 0.18 | 19.09 ± 0.31 | 16.12 ± 0.08 | 15.33 ± 0.35 | 15.69 ± 0.07 | 26.53 ± 0.24 | 16.72 ± 0.47 |
HCB-CS/L | 17.39 ± 0.21 | 25.09 ± 0.11 | 26.70 ± 0.12 | 18.87 ± 0.54 | 17.41 ± 0.31 | 22.50 ± 0.54 | 15.62 ± 0.32 |
HCB-CS/D&L | 26.43 ± 0.05 | 22.79 ± 0.41 | 25.28 ± 0.51 | 13.19 ± 0.11 | 19.61 ± 0.23 | 30.35 ± 0.33 | 14.68 ± 0.22 |
HCR-CS | 20.67 ± 0.21 | - | 28.56 ± 0.23 | 29.88 ± 0.27 | 19.05 ± 0.17 | 16.03 ± 0.47 | 20.03 ± 0.08 |
HCR-CS/D | 21.40 ± 0.17 | 10.27 ± 0.12 | 26.79 ± 0.12 | 30.88 ± 0.13 | 19.60 ± 0.12 | 42.58 ± 0.57 | 16.14 ± 0.21 |
HCR-CS/L | 34.93 ± 0.07 | 9.46 ± 0.13 | 28.71 ± 0.24 | 27.54 ± 0.24 | 19.47 ± 0.05 | 51.12 ± 0.24 | 10.74 ± 0.26 |
HCR-CS/D&L | 35.46 ± 0.07 | 12.36 ± 0.21 | 24.72 ± 0.11 | 28.83 ± 0.17 | 18.84 ± 0.21 | 46.03 ± 0.07 | 11.78 ± 0.33 |
Sample | Period | Leukocyte Formula (%) | ||||
---|---|---|---|---|---|---|
PMN | Ly | E | M | B | ||
Control | 24 h | 28.3 ± 9.5 | 65.2 ± 19.1 | 0.1 ± 0.05 | 6.2 ± 1.3 | 0.2 ± 0.1 |
7 days | 28.6 ± 9.3 | 64.7 ± 18.7 | 0.1 ± 0.05 | 6.4 ± 1.1 | 0.2 ± 0.05 | |
HCB-CS | 24 h | 27.8 ± 9.7 | 65.6 ± 18.9 | 0.1 ± 0.05 | 6.3 ± 1.1 | 0.2 ± 0.1 |
7 days | 28.6 ± 9.5 | 64.6 ± 19.5 | 0.2 ± 0.05 | 6.4 ± 1.5 | 0.2 ± 0.1 | |
HCB-CS/D | 24 h | 27.6 ± 9.1 | 65.9 ± 19.3 | 0.2 ± 0.1 | 6.1 ± 1.3 | 0.2 ± 0.05 |
7 days | 28.5 ± 9.3 | 65.0 ± 17.9 | 0.1 ± 0.05 | 6.2 ± 1.1 | 0.2 ± 0.05 | |
HCB-CS/L | 24 h | 28.3 ± 9.7 | 65.2 ± 19.1 | 0.1 ± 0.05 | 6.2 ± 1.3 | 0.2 ± 0.05 |
7 days | 28.8 ± 8.9 | 64.5 ± 18.5 | 0.2 ± 0.05 | 6.3 ± 1.3 | 0.2 ± 0.1 | |
HCB-CS/D&L | 24 h | 28.4 ± 8.3 | 64.9 ± 19.7 | 0.2 ± 0.05 | 6.3 ± 1.1 | 0.2 ± 0.05 |
7 days | 28.7 ± 8.5 | 64.5 ± 19.3 | 0.2 ± 0.05 | 6.4 ± 1.5 | 0.2 ± 0.1 | |
HCR-CS | 24 h | 28.3 ± 9.1 | 65.1 ± 19.5 | 0.2 ± 0.1 | 6.2 ± 1.1 | 0.2 ± 0.05 |
7 days | 28.5 ± 8.3 | 64.8 ± 19.3 | 0.2 ± 0.05 | 6.3 ± 1.1 | 0.2 ± 0.05 | |
HCR-CS/D | 24 h | 28.6 ± 8.7 | 65.0 ± 19.1 | 0.1 ± 0.05 | 6.1 ± 1.3 | 0.2 ± 0.05 |
7 days | 28.5 ± 8.5 | 64.8 ± 18.7 | 0.1 ± 0.05 | 6.4 ± 1.5 | 0.2 ± 0.05 | |
HCR-CS/L | 24 h | 27.8 ± 9.3 | 65.7 ± 18.5 | 0.1 ± 0.05 | 6.2 ± 1.3 | 0.2 ± 0.05 |
7 days | 28.3 ± 8.9 | 65.1 ± 19.3 | 0.2 ± 0.05 | 6.2 ± 1.3 | 0.2 ± 0.1 | |
HCR-CS/D&L | 24 h | 27.6 ± 8.5 | 65.7 ± 19.5 | 0.2 ± 0.1 | 6.3 ± 1.1 | 0.2 ± 0.1 |
7 days | 28.7 ± 9.1 | 64.7 ± 19.1 | 0.1 ± 0.05 | 6.3 ± 1.3 | 0.2 ± 0.05 |
Sample | Period | TGP (U/mL) | TGO (U/mL) | LDH (U/L) |
---|---|---|---|---|
Control | 24 h | 40.4 ± 11.5 | 163.4 ± 34.7 | 330.73 ± 72.45 |
7 days | 41.9 ± 12.1 | 167.7 ± 35.5 | 332.67 ± 77.37 | |
HCB-CS | 24 h | 39.7 ± 12.3 | 164.5 ± 35.3 | 329.35 ± 69.73 |
7 days | 40.3 ± 11.3 | 168.3 ± 36.5 | 331.27 ± 74.65 | |
HCB-CS/D | 24 h | 38.5 ± 11.5 | 166.7 ± 40.1 | 331.83 ± 78.33 |
7 days | 39.7 ± 11.7 | 169.5 ± 38.3 | 330.55 ± 80.29 | |
HCB-CS/L | 24 h | 40.4 ± 11.3 | 165.3 ± 34.7 | 329.37 ± 76.55 |
7 days | 41.3 ± 12.1 | 170.3 ± 33.9 | 331.51 ± 75.17 | |
HCB-CS/D&L | 24 h | 40.6 ± 11.7 | 168.7 ± 39.5 | 330.33 ± 79.39 |
7 days | 42.2 ± 11.5 | 171.1 ± 35.7 | 333.67 ± 80.55 | |
HCR-CS | 24 h | 39.5 ± 12.1 | 165.7 ± 36.1 | 331.83 ± 79.67 |
7 days | 41.4 ± 11.7 | 164.3 ± 33.5 | 331.19 ± 75.29 | |
HCR-CS/D | 24 h | 40.1 ± 11.5 | 166.9 ± 35.7 | 330.17 ± 74.73 |
7 days | 40.8 ± 11.9 | 166.7 ± 37.3 | 331.45 ± 81.35 | |
HCR-CS/L | 24 h | 40.3 ± 11.3 | 165.9 ± 35.3 | 330.17 ± 77.65 |
7 days | 41.6 ± 11.7 | 165.7 ± 38.5 | 329.67 ± 79.83 | |
HCR-CS/D&L | 24 h | 39.9 ± 12.1 | 167.7 ± 36.3 | 331.55 ± 76.19 |
7 days | 42.1 ± 11.5 | 169.3 ± 35.7 | 332.43 ± 74.37 |
Sample | Test Period | Urea (mg/dL) | Creatinine (mg/dL) |
---|---|---|---|
Control | 24 h | 28.9 ± 5.5 | 0.8 ± 0.1 |
7 days | 29.1 ± 6.1 | 0.9 ± 0.05 | |
HCB-CS | 24 h | 28.5 ± 6.3 | 0.9 ± 0.05 |
7 days | 28.7 ± 5.7 | 0.9 ± 0.1 | |
HCB-CS/D | 24 h | 29.1 ± 7.1 | 0.9 ± 0.01 |
7 days | 30.3 ± 6.7 | 0.8 ± 0.05 | |
HCB-CS/L | 24 h | 29.3 ± 6.5 | 0.8 ± 0.05 |
7 days | 29.7 ± 6.1 | 0.8 ± 0.05 | |
HCB-CS/D&L | 24 h | 30.1 ± 5.9 | 0.9 ± 0.05 |
7 days | 30.5 ± 7.3 | 0.8 ± 0.01 | |
HCR-CS | 24 h | 30.9 ± 5.5 | 0.9 ± 0.05 |
7 days | 29.7 ± 5.7 | 1.0 ± 0.05 | |
HCR-CS/D | 24 h | 29.9 ± 5.3 | 0.8 ± 0.01 |
7 days | 30.3 ± 6.7 | 0.9 ± 0.05 | |
HCR-CS/L | 24 h | 29.7 ± 6.3 | 0.9 ± 0.05 |
7 days | 29.9 ± 5.9 | 0.9 ± 0.05 | |
HCR-CS/D&L | 24 h | 30.1 ± 5.7 | 0.8 ± 0.05 |
7 days | 30.5 ± 5.5 | 0.8 ± 0.01 |
Sample | Test Period | SOD (U/mg Protein) | GPx (µm/mg Protein) |
---|---|---|---|
Control | 24 h | 104.7 ± 18.7 | 12.7 ± 1.4 |
7 days | 103.6 ± 18.9 | 12.4 ± 2.1 | |
HCB-CS | 24 h | 104.4 ± 18.7 | 12.2 ± 1.3 |
7 days | 104.8 ± 19.3 | 12.2 ± 1.3 | |
HCB-CS/D | 24 h | 103.9 ± 18.5 | 12.4 ± 1.4 |
7 days | 105.3 ± 20.1 | 12.1 ± 1.4 | |
HCB-CS/L | 24 h | 104.3 ± 18.7 | 12.7 ± 1.4 |
7 days | 104.9 ± 19.5 | 12.4 ± 2.1 | |
HCB-CS/D&L | 24 h | 103.6 ± 19.3 | 12.2 ± 1.3 |
7 days | 104.7 ± 18.7 | 12.2 ± 1.3 | |
HCR-CS | 24 h | 105.2 ± 18.5 | 12.4 ± 1.4 |
7 days | 104.5 ± 18.3 | 12.1 ± 1.4 | |
HCR-CS/D | 24 h | 103.7 ± 18.7 | 12.7 ± 1.4 |
7 days | 105.1 ± 20.1 | 12.4 ± 2.1 | |
HCR-CS/L | 24 h | 104.3 ± 18.5 | 12.2± 1.3 |
7 days | 104.8 ± 19.5 | 12.2 ± 1.3 | |
HCR-CS/D&L | 24 h | 104.5 ± 18.3 | 12.4 ± 1.4 |
7 days | 105.0 ± 18.2 | 12.1 ± 1.4 |
Sample | Test Period | OC (colonies/mL) | PC (colonies/mL) | BC (colonies/mL) |
---|---|---|---|---|
Control | 7 days | 783.37 ± 64.73 | 521.63 ± 38.51 | 717.83 ± 60.19 |
HCB-CS | 7 days | 787.63 ± 70.47 | 519.37 ± 35.29 | 720.67 ± 48.45 |
HCB-CS/D | 7 days | 796.55 ± 61.33 | 518.43 ± 34.45 | 719.55 ± 55.27 |
HCB-CS/L | 7 days | 801.43 ± 67.17 | 524.51 ± 37.13 | 718.45 ± 58.67 |
HCB-CS/D&L | 7 days | 797.81 ± 66.67 | 522.55 ± 39.55 | 716.83 ± 51.53 |
HCR-CS | 7 days | 788.37 ± 59.45 | 520.17 ± 35.67 | 720.45 ± 49.45 |
HCR-CS/D | 7 days | 784.63 ± 65.51 | 521.29 ± 36.63 | 718.67 ± 52.17 |
HCR-CS/L | 7 days | 791.29 ± 68.29 | 528.45 ± 40.55 | 717.17 ± 54.33 |
HCR-CS/D&L | 7 days | 795.55 ± 70.55 | 523.67 ± 37.33 | 723.63 ± 57.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Râpă, M.; Gaidau, C.; Mititelu-Tartau, L.; Berechet, M.-D.; Berbecaru, A.C.; Rosca, I.; Chiriac, A.P.; Matei, E.; Predescu, A.-M.; Predescu, C. Bioactive Collagen Hydrolysate-Chitosan/Essential Oil Electrospun Nanofibers Designed for Medical Wound Dressings. Pharmaceutics 2021, 13, 1939. https://doi.org/10.3390/pharmaceutics13111939
Râpă M, Gaidau C, Mititelu-Tartau L, Berechet M-D, Berbecaru AC, Rosca I, Chiriac AP, Matei E, Predescu A-M, Predescu C. Bioactive Collagen Hydrolysate-Chitosan/Essential Oil Electrospun Nanofibers Designed for Medical Wound Dressings. Pharmaceutics. 2021; 13(11):1939. https://doi.org/10.3390/pharmaceutics13111939
Chicago/Turabian StyleRâpă, Maria, Carmen Gaidau, Liliana Mititelu-Tartau, Mariana-Daniela Berechet, Andrei Constantin Berbecaru, Irina Rosca, Aurica P. Chiriac, Ecaterina Matei, Andra-Mihaela Predescu, and Cristian Predescu. 2021. "Bioactive Collagen Hydrolysate-Chitosan/Essential Oil Electrospun Nanofibers Designed for Medical Wound Dressings" Pharmaceutics 13, no. 11: 1939. https://doi.org/10.3390/pharmaceutics13111939
APA StyleRâpă, M., Gaidau, C., Mititelu-Tartau, L., Berechet, M. -D., Berbecaru, A. C., Rosca, I., Chiriac, A. P., Matei, E., Predescu, A. -M., & Predescu, C. (2021). Bioactive Collagen Hydrolysate-Chitosan/Essential Oil Electrospun Nanofibers Designed for Medical Wound Dressings. Pharmaceutics, 13(11), 1939. https://doi.org/10.3390/pharmaceutics13111939