Clinical Relevance of Novel Polymorphisms in the Dihydropyrimidine Dehydrogenase (DPYD) Gene in Patients with Severe Fluoropyrimidine Toxicity: A Spanish Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Procedures and Population
2.2. Sequencing
2.3. Statistical Analysis
3. Results
Study Population
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dean, L. Fluorouracil Therapy and DPYD Genotype. In Medical Genetics Summaries; Pratt, V.M., McLeod, H.L., Rubinstein, W.S., Scott, S.A., Dean, L.C., Kattman, B.L., Malheiro, A.J., Eds.; National Center for Biotechnology Information: Bethesda, MD, USA, 2012. Available online: http://www.ncbi.nlm.nih.gov/books/NBK395610/ (accessed on 26 March 2020).
- Henricks, L.; Lunenburg, C.A.T.C.; de Man, F.; Meulendijks, D.; Frederix, G.W.J.; Kienhuis, E.; Creemers, G.-J.; Baars, A.; Dezentjé, V.O.; Imholz, A.L.T.; et al. DPYD genotype-guided dose individualisation of fluoropyrimidine therapy in patients with cancer: A prospective safety analysis. Lancet Oncol. 2018, 19, 1459–1467. [Google Scholar] [CrossRef]
- AEMPS. Ficha Tecnica Utefos 400 mg CAPSULAS Duras. 1978. Available online: https://cima.aemps.es/cima/dochtml/ft/54192/FT_54192.html (accessed on 4 March 2020).
- AEMPS. Ficha Tecnica Fluorouracilo Accord 50 mg/mL Solucion Inyectable o Para Perfusion EFG. 2010. Available online: https://cima.aemps.es/cima/dochtml/ft/71868 (accessed on 29 November 2020).
- AEMPS. Ficha Tecnica Capecitabina Aurovitas Spain 150 mg Comprimidos Recubiertos con Pelicula EFG. 2013. Available online: https://cima.aemps.es/cima/dochtml/ft/76946/FichaTecnica_76946.html#5-2-propiedades-farmacocin-ticas (accessed on 29 November 2020).
- Thorn, C.F.; Marsh, S.; Carrillo, M.W.; McLeod, H.L.; Klein, T.E.; Altman, R.B. PharmGKB summary. Pharmacogenet. Genom. 2011, 21, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Mattison, L.K.; Johnson, M.R.; Diasio, R.B. A comparative analysis of translated dihydropyrimidine dehydrogenase cDNA; conservation of functional domains and relevance to genetic polymorphisms. Pharmacogenetics 2002, 12, 133–144. [Google Scholar] [CrossRef]
- Boisdron-Celle, M.; Capitain, O.; Faroux, R.; Borg, C.; Metges, J.P.; Galais, M.P.; Kaassis, M.; Bennouna, J.; Bouhier-Leporrier, K.; Francois, E.; et al. Prevention of 5-fluorouracil-induced early severe toxicity by pre-therapeutic dihydropyrimidine dehydrogenase deficiency screening: Assessment of a multiparametric approach. Semin. Oncol. 2017, 44, 13–23. [Google Scholar] [CrossRef]
- Agencia Española del Medicamento y Productos Sanitarios (AEMPS). Fluorouracilo, Capecitabina, Tegafur y Flucitosina en Pacientes con Déficit de Dihidropirimidina Deshidrogenasa. Available online: https://www.aemps.gob.es/informa/notasinformativas/medicamentosusohumano-3/seguridad-1/2020-seguridad-1/fluorouracilo-capecitabina-tegafur-y-flucitosina-en-pacientes-con-deficit-de-dihidropirimidina-deshidrogenasa/?lang=en (accessed on 29 November 2020).
- Caudle, K.E.; Thorn, C.F.; Klein, T.E.; Swen, J.; McLeod, H.L.; Diasio, R.B.; Schwab, M. Clinical Pharmacogenetics Implementation Consortium Guidelines for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing. Clin. Pharmacol. Ther. 2013, 94, 640–645. [Google Scholar] [CrossRef] [Green Version]
- Amstutz, U.; Henricks, L.; Offer, S.M.; Barbarino, J.; Schellens, J.H.; Swen, J.; Klein, T.E.; McLeod, H.L.; Caudle, K.E.; Diasio, R.B.; et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for Dihydropyrimidine Dehydrogenase Genotype and Fluoropyrimidine Dosing: 2017 Update. Clin. Pharmacol. Ther. 2018, 103, 210–216. [Google Scholar] [CrossRef]
- Meulendijks, D.; Cats, A.; Beijnen, J.H.; Schellens, J.H. Improving safety of fluoropyrimidine chemotherapy by individualizing treatment based on dihydropyrimidine dehydrogenase activity—Ready for clinical practice? Cancer Treat. Rev. 2016, 50, 23–34. [Google Scholar] [CrossRef]
- García-González, X.; Cortejoso, L.; García, M.I.; Garcia-Alfonso, P.; Robles, L.; Grávalos, C.; Gonzalez-Haba, E.; Marta, P.; Sanjurjo, M.; Lopez-Fernandez, L.A. Variants in CDA and ABCB1 are predictors of capecitabine-related adverse reactions in colorectal cancer. Oncotarget 2015, 6, 6422–6430. [Google Scholar] [CrossRef] [Green Version]
- García-Alfonso, P.; Saiz-Rodríguez, M.; Mondéjar, R.; Salazar, J.; Páez, D.; Borobia, A.M.; Safont, M.J.; García-García, I.; Colomer, R.; García-González, X.; et al. Consensus of experts from the Spanish Pharmacogenetics and Pharmacogenomics Society and the Spanish Society of Medical Oncology for the genotyping of DPYD in cancer patients who are candidates for treatment with luoropyrimidines. Clin. Transl. Oncol. 2021, 1–12. [Google Scholar] [CrossRef]
- Shrestha, S.; Zhang, C.; Jerde, C.R.; Nie, Q.; Li, H.; Offer, S.M.; Diasio, R.B. Gene-Specific Variant Classifier (DPYD-Varifier) to Identify Deleterious Alleles of Dihydropyrimidine Dehydrogenase. Clin. Pharmacol. Ther. 2018, 104, 709–718. [Google Scholar] [CrossRef]
- Zubiaur, P.; Mejía-Abril, G.; Navares-Gómez, M.; Villapalos-García, G.; Soria-Chacartegui, P.; Saiz-Rodríguez, M.; Ochoa, D.; Abad-Santos, F. PriME-PGx: La Princesa University Hospital Multidisciplinary Initiative for the Implementation of Pharmacogenetics. J. Clin. Med. 2021, 10, 3772. [Google Scholar] [CrossRef]
- NIH National Cancer Institute. Common Terminology Criteria for Adverse Events (CTCAE) Version 5.0. 2017. Available online: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/docs/CTCAE_v5_Quick_Reference_5x7.pdf (accessed on 10 May 2021).
- Cortejoso, L.; García-González, X.; García, M.I.; García-Alfonso, P.; Sanjurjo, M.; López-Fernández, L.A. Cost–effectiveness of screening for DPYD polymorphisms to prevent neutropenia in cancer patients treated with fluoropyrimidines. Pharmacogenomics 2016, 17, 979–984. [Google Scholar] [CrossRef]
- Wong, W.; Yim, Y.M.; Kim, A.; Cloutier, M.; Gauthier-Loiselle, M.; Gagnon-Sanschagrin, P.; Guerin, A. Assessment of costs associated with adverse events in patients with cancer. PLoS ONE 2018, 13, e0196007. [Google Scholar] [CrossRef]
- Chua, W.; Kho, P.S.; Moore, M.M.; Charles, K.A.; Clarke, S.J. Clinical, laboratory and molecular factors predicting chemotherapy efficacy and toxicity in colorectal cancer. Crit. Rev. Oncol. 2011, 79, 224–250. [Google Scholar] [CrossRef]
- Dutch Pharmacogenetics Working Group. Pharmacogenetic Recommendations. Available online: https://www.knmp.nl/@@search (accessed on 29 November 2020).
- NIH SNP DataBase, rs367619008 Report. 2020. Available online: https://www.ncbi.nlm.nih.gov/snp/rs367619008#frequency_tab (accessed on 24 May 2021).
- Weidensee, S.; Goettig, P.; Bertone, M.; Haas, D.; Magdolen, V.; Kiechle, M.; Meindl, A.; Van Kuilenburg, A.B.; Gross, E. A mild phenotype of dihydropyrimidine dehydrogenase deficiency and developmental retardation associated with a missense mutation affecting cofactor binding. Clin. Biochem. 2011, 44, 722–724. [Google Scholar] [CrossRef]
- Kleibl, Z.; Fidlerova, J.; Kleiblova, P.; Kormunda, S.; Bilek, M.; Bouskova, K.; Sevcik, J.; Novotny, J. Influence of dihydropyrimidine dehydrogenase gene (DPYD) coding sequence variants on the development of fluoropyrimidine-related toxicity in patients with high-grade toxicity and patients with excellent tolerance of fluoropyrimidine-based chemotherapy. Neoplasma 2009, 56, 303–316. [Google Scholar] [CrossRef] [Green Version]
- García-González, X.; Kaczmarczyk, B.; Abarca-Zabalía, J.; Thomas, F.; García-Alfonso, P.; Robles, L.; Pachón, V.; Vaz, Á.; Salvador-Martín, S.; Sanjurjo-Sáez, M.; et al. New DPYD variants causing DPD deficiency in patients treated with fluoropyrimidine. Cancer Chemother. Pharmacol. 2020, 86, 45–54. [Google Scholar] [CrossRef]
- Rosmarin, D.; Palles, C.; Pagnamenta, A.; Kaur, K.; Pita, G.; Martin, M.; Domingo, E.; Jones, A.; Howarth, K.; Freeman-Mills, L.; et al. A candidate gene study of capecitabine-related toxicity in colorectal cancer identifies new toxicity variants atDPYDand a putative role forENOSF1rather thanTYMS. Gut 2014, 64, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Pinto, S.; Pita, G.; Martín, M.; Nunez-Torres, R.; Cuadrado, A.; Shahbazi, M.N.; Caronia, D.; Kojic, A.; Moreno, L.T.; de la Torre-Montero, J.; et al. Regulatory CDH4 genetic variants associate with risk to develop capecitabine-induced hand-foot syndrome. Clin. Pharmacol. Ther. 2020, 109, 462–470. [Google Scholar] [CrossRef]
- Gross, E.; Ullrich, T.; Seck, K.; Mueller, V.; de Wit, M.; von Schilling, C.; Meindl, A.; Schmitt, M.; Kiechle, M. Detailed analysis of five mutations in dihydropyrimidine dehydrogenase detected in cancer patients with 5-fluorouracil-related side effects. Hum. Mutat. 2003, 22, 498. [Google Scholar] [CrossRef]
- van Kuilenburg, A.B.; Meijer, J.; Maurer, D.; Dobritzsch, D.; Meinsma, R.; Los, M.; Knegt, L.C.; Zoetekouw, L.; Jansen, R.L.; Dezentjé, V.; et al. Severe fluoropyrimidine toxicity due to novel and rare DPYD missense mutations, deletion and genomic amplification affecting DPD activity and mRNA splicing. Biochim. Biophys. Acta Mol. Basis Dis. 2017, 1863, 721–730. [Google Scholar] [CrossRef]
- Sistonen, J.; Büchel, B.; Froehlich, T.K.; Kummer, D.; Fontana, S.; Joerger, M.; van Kuilenburg, A.B.; Largiadèr, C.R. Predicting 5-fluorouracil toxicity: DPD genotype and 5,6-dihydrouracil:uracil ratio. Pharmacogenomics 2014, 15, 1653–1666. [Google Scholar] [CrossRef]
- Jaganathan, K.; Panagiotopoulou, S.K.; McRae, J.F.; Darbandi, S.F.; Knowles, D.; Li, Y.I.; Kosmicki, J.A.; Arbelaez, J.; Cui, W.; Schwartz, G.B.; et al. Predicting Splicing from Primary Sequence with Deep Learning. Cell 2019, 176, 535–548. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Hargreaves, K.A.; Li, R.; Reiter, J.; Wang, Y.; Mort, M.; Cooper, D.N.; Zhou, Y.; Zhang, C.; Eadon, M.T.; et al. RegSNPs-intron: A computational framework for predicting pathogenic impact of intronic single nucleotide variants. Genome Biol. 2019, 20, 254. [Google Scholar] [CrossRef]
- NIH LD Link, LD Link Tool 5.1. 2021. Available online: https://ldlink.nci.nih.gov/?tab=ldmatrix (accessed on 26 May 2021).
Title | Cases | Controls | Total | p-Value |
---|---|---|---|---|
(N = 11) | (N = 22) | (N = 33) | ||
Age | 63.64 (11.79) | 64.77 (11.92) | 64.39 (11.70) | 0.764 |
Sex | 1.000 | |||
Males | 2 (18.2%) | 4 (18.2%) | 6 (18.2%) | |
Females | 9 (81.8%) | 18 (81.8%) | 27 (81.8%) | |
Drug | 1.000 | |||
Capecitabine | 7 (63.6%) | 14 (63.6%) | 21 (63.6%) | |
5-FU | 4 (36.4%) | 8 (36.4%) | 12 (36.4%) | |
Strategy | 0.618 | |||
Monotherapy | 4 (36.4%) | 10 (45.5%) | 14 (42.4%) | |
Combined | 7 (63.6%) | 12 (54.5%) | 19 (57.6%) | |
Carcinoma location | 0.313 | |||
Breast | 3 (27.3%) | 6 (27.3%) | 9 (27.3%) | |
Large bowel | 6 (54.5%) | 16 (72.7%) | 22 (66.7%) | |
Stomach | 2 (18.2%) | 0 (0%) | 2 (6%) |
Case | Demographics | Disease | Treatment | Enterocolitis | Neutropenia | Mucositis or Stomatitis | Diarrhoea | Emesis | Cutaneous toxicity | Anorexia | Asthenia |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 65-year-old male | Colon adenocarcinoma | FOLFOX (5-FU) | IV | |||||||
2 | 46-year-old woman | Breast carcinoma | XELOX (Capecitabine) | III | IV | ||||||
3 | 55-year-old woman | Gastric adenocarcinoma | 5-FU, epirubicin, cisplatin | IV | IV | IV | |||||
4 | 78-year-old woman | Colon adenocarcinoma | Capecitabine | III | III | III | |||||
5 | 47-year-old woman | Rectal adenocarcinoma | XELOX (Capecitabine) | III | |||||||
6 | 79-year-old woman | Gastric adenocarcinoma | XELOX (Capecitabine) | III | III | III | |||||
7 | 67-year-old woman | Colon adenocarcinoma | Capecitabine | III | III | ||||||
8 | 69-year-old woman | Anal adenocarcinoma | 5-FU and cisplatin | III | |||||||
9 | 71-year-old woman | Breast carcinoma | Capecitabine | III | III | ||||||
10 | 52-year-old male | Colon adenocarcinoma | FOLFOX (5-FU) | III | |||||||
11 | 71-year-old woman | Breast carcinoma | Capecitabine | IV | IV |
Location | E2 | E3 | I (E3–E4) | I (E4–E5) | E6 | I (E7–E8) | I (E9–E10) | E10 | I (E10–E11) | E13 | I (E13–E14) | I (E13–E14) | E14 | I (E16–E17) | E18 | I (E18–E19) | E19 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Variant (coding) | c.85T > C | c.187A > G | c.234-81G > A | c.322-63G > C | c.496A > G | c.763-118A > G | c.958 + 134T > G | c.1084G > A | c.1129-15T > C | c.1627A > G | c.1740 + 39C > T | c.1740 + 40A > G | c.1896T > C | c.2058 + 101T > C | c.2194G > A | c.2300-39G > A | c.2324T > G | |
Variant (protein) | p.Cys29Arg | p.Lys63Glu | N/A | N/A | p.Met166Val | N/A | N/A | p.Val362Ile | N/A | p.Ile543Val | N/A | N/A | p.Phe632Phe | N/A | p.Val732Ile | N/A | p.Leu775Trp | |
Variant (RefSeq) | rs1801265 | rs367619008 | rs944174134 | rs2297595 | rs3790387 | rs2811202 | rs76387818 | rs56293913 | rs1801159 | rs2786783 | rs2811178 | rs17376848 | rs1890138 | rs1801160 | rs12137711 | rs200643089 | ||
CPIC status | NF (Strong) | Not included | Not included | Not included | NF (moderate) | Not included | Not included | Not included | Not included | NF (strong) | NF (strong) | Not included | NF (moderate) | Not included | NF (moderate) | Not included | Not included | |
Allele | *9A | *5 | *6 | |||||||||||||||
Case 1 | G/G | |||||||||||||||||
Case 2 | A/G | *1/*6 | ||||||||||||||||
Case 3 | A/G | |||||||||||||||||
Case 4 | A/G | G/A | ||||||||||||||||
Case 5 | *1/*9A | A/G | ||||||||||||||||
Case 6 | A/G | |||||||||||||||||
Case 7 | *5/*5 | T/T | G/G | |||||||||||||||
Case 8 | *1/*9A | *1/*5 | A/G | G/A | ||||||||||||||
Case 9 | *1/*9A | G/C | A/G | |||||||||||||||
Case 10 | *1/*9A | A/G | ||||||||||||||||
Case 11 | G/A | *1/*5 | C/T | G/G | T/G | |||||||||||||
Cnt 1 | *1/*9A | G/G | ||||||||||||||||
Cnt 2 | A/G | *1/*6 | ||||||||||||||||
Cn t3 | *1/*9A | A/G | A/G | T/G | T/C | *1/*5 | G/G | G/A | ||||||||||
Cnt 4 | A/G | C/C | ||||||||||||||||
Cnt 5 | *1/*9A | A/G | A/G | T/G | T/C | *1/*5 | G/G | |||||||||||
Cnt 6 | A/G | |||||||||||||||||
Cnt 7 | G/G | |||||||||||||||||
Cnt 8 | C/C | |||||||||||||||||
Cnt 9 | A/G | |||||||||||||||||
Cnt 10 | *1/*9A | A/G | ||||||||||||||||
Cnt 11 | *1/*9A | A/G | ||||||||||||||||
Cnt 12 | *1/*9A | G/A | A/G | A/G | ||||||||||||||
Cnt 13 | A/G | G/A | ||||||||||||||||
Cnt 14 | G/G | |||||||||||||||||
Cnt 15 | *1/*9A | T/C | ||||||||||||||||
Cnt 16 | *9/*9 | A/G | A/G | T/G | T/C | *1/*5 | C/T | G/G | *1/*6 | |||||||||
Cnt 17 | A/G | T/C | ||||||||||||||||
Cnt 18 | *1/*9A | A/G | A/G | T/G | T/C | *1/*5 | T/C | |||||||||||
Cnt 19 | A/G | |||||||||||||||||
Cnt 20 | G/G | |||||||||||||||||
Cnt 21 | A/G | T/C | *1/*6 | |||||||||||||||
Cnt 22 | A/G |
DPYD Variant | Genotype or Allele | Cases | Controls | Total | p | DPYD Variant | Genotype or Allele | Cases | Controls | Total | p |
---|---|---|---|---|---|---|---|---|---|---|---|
*9A c.85T > C Cys29Arg rs1801265 | *1/*1 | 7 (63.6%) | 13 (59.1%) | 20 (60.6%) | 0.769 | c.1129-15T > C rs56293913 | TT | 11 (100%) | 18 (81.8%) | 29 (87.9%) | 0.131 |
*1/*9 | 4 (36.4%) | 8 (36.4%) | 12(36.4%) | TC | 0 (0%) | 4 (18.2%) | 4 (12.1%) | ||||
*9/*9 | 0 (0%) | 1 (4.5%) | 1 (3%) | CC | 0 (0%) | 0 (0%) | 0 (0%) | ||||
*1 | 18 (81.8%) | 34 (77.3%) | 52 (78.8%) | 0.759 | T | 22 (100%) | 40 (90.9%) | 62 (93.9%) | 0.380 | ||
*9 | 4 (18.2%) | 10 (22.7%) | 14 (21.2%) | C | 0 (0%) | 4 (9.1%) | 4 (6.1%) | ||||
c.187A > G p.Lys63Glu rs367619008 | AA | 10 (90.9%) | 22 (100%) | 32 (97.0%) | 0.151 | c.1627A > G p.Ile543Val rs1801159 | TT | 9 (81.8%) | 18 (81.8%) | 27 (81.8%) | 0.354 |
AG | 1 (9.1%) | 0 (0%) | 1 (3%) | TG | 1 (9.1%) | 4 (18.2%) | 5 (15.2%) | ||||
GG | 0 (0%) | 0 (0%) | 0 (0%) | GG | 1 (9.1%) | 0 (0%) | 1(3%) | ||||
A | 21 (95.5%) | 44 (100%) | 65 (98.5%) | 0.541 | T | 19 (86.4%) | 40 (90.9%) | 59 (89.4%) | 0.690 | ||
G | 1 (4.5%) | 0 (0%) | 1 (1.5%) | G | 3 (13.6%) | 4 (9.1%) | 7 (10.6%) | ||||
c.234-81G > A | GG | 11 (100%) | 21 (95.5%) | 32 (97.0%) | 0.473 | c.1740 + 39 C > T rs2786783 | CC | 9 (81.8%) | 21 (95.5%) | 30 (90.9%) | 0.301 |
GA | 0 (0%) | 1 (4.5%) | 1 (3%) | CT | 1 (9.1%) | 1 (4.5%) | 2 (6.1%) | ||||
AA | 0 (0%) | 0 (0%) | 0 (0%) | TT | 1 (9.1%) | 0 (0%) | 1(3%) | ||||
G | 22 (100%) | 43 (97.7%) | 65 (98.5%) | 0.688 | C | 19 (86.4%) | 43 (97.7%) | 62 (93.9%) | 0.035 | ||
A | 0 (0%) | 1 (2.3%) | 1 (1.5%) | T | 3 (13.6%) | 1 (2.3%) | 4 (6.1%) | ||||
c.322-63G > C rs944174134 | GG | 10 (90.9%) | 22 (100%) | 32 (97.0%) | 0.151 | c.1740 + 40A > G rs2811178 | AA | 1 (9.1%) | 4 (18.2%) | 5 (15.2%) | 0.705 |
GC | 1 (9.1%) | 0 (0%) | 1 (3%) | AG | 7 (63.6%) | 11 (50%) | 18 (54.5%) | ||||
CC | 0 (0%) | 0 (0%) | 0 (0%) | GG | 3 (27.3%) | 7 (31.8%) | 10 (30.3%) | ||||
G | 21 (95.5%) | 44 (100%) | 65 (98.5%) | 0.541 | A | 9 (40.9%) | 19 (43.2%) | 28 (42.4%) | 0.860 | ||
C | 1 (4.5%) | 0 (0%) | 1 (1.5%) | G | 13 (59.1%) | 25 (56.8%) | 38 (57.6%) | ||||
c.496A > G p.Met166Val rs2297595 | AA | 11 (100%) | 16 (72.7%) | 27 (81.8%) | 0.056 | c.1896T > C p.Phe632Phe rs17376848 | TT | 11 (100%) | 20 (90.9%) | 31 (93.9%) | 0.302 |
AG | 0 (0%) | 6 (27.3%) | 6 (18.2%) | TC | 0 (0%) | 2 (9.1%) | 2 (6.1%) | ||||
GG | 0 (0%) | 0 (0%) | 0 (0%) | CC | 0 (0%) | 0 (0%) | 0 (0%) | ||||
A | 22 (100%) | 38 (86.4%) | 60 (90.9%) | 0.190 | T | 22 (100%) | 42 (95.5%) | 64 (97.0%) | 0.980 | ||
G | 0 (0%) | 6 (13.6%) | 6 (9.1%) | C | 0 (0%) | 2 (4.5%) | 2 (3%) | ||||
c.763-118A > G N/A rs3790387 | AA | 11 (100%) | 18 (81.8%) | 29 (87.9%) | 0.131 | c.2058 + 101 T > C rs1890138 | TT | 11 (100%) | 18 (81.8%) | 29 (87.8%) | 0.320 |
AG | 0 (0%) | 4 (18.2%) | 4 (12.1%) | TC | 0 (0%) | 2 (9.1%) | 2 (6.1%) | ||||
GG | 0 (0%) | 0 (0%) | 0 (0%) | CC | 0 (0%) | 2 (9.1%) | 2 (6.1%) | ||||
A | 22 (100%) | 40 (90.9%) | 62 (93.9%) | 0.380 | T | 22 (100%) | 38 (86.4%) | 60 (90.9%) | 0.190 | ||
G | 0 (0%) | 4 (9.1%) | 4 (6.1%) | C | 0 (0%) | 6 (13.6%) | 6 (9.1%) | ||||
c.958 + 134T > G rs2811202 | TT | 11 (100%) | 18 (81.8%) | 29 (87.9%) | 0.131 | c.2194G > A p.Val732Ile rs1801160 | GG | 10 (90.9%) | 19 (86.4%) | 29 (87.9%) | 0.706 |
TG | 0 (0%) | 4 (18.2%) | 4 (12.1%) | GA | 1 (9.1%) | 3 (13.6%) | 4 (12.1%) | ||||
GG | 0 (0%) | 0 (0%) | 0 (0%) | AA | 0 (0%) | 0 (0%) | 0 (0%) | ||||
T | 22 (100%) | 40 (90.9%) | 62 (93.9%) | 0.380 | G | 21 (95.5%) | 41 (93.2%) | 62 (93.9%) | 0.333 | ||
G | 0 (0%) | 4 (9.1%) | 4 (6.1%) | A | 1 (4.5%) | 3 (6.8%) | 4 (6.1%) | ||||
c.1084G > A p.Val362Ile rs76387818 | GG | 10 (90.9%) | 22 (100%) | 32 (97.0%) | 0.151 | c.2300-39 G > A rs12137711 | GG | 9 (81.8%) | 20 (90.9%) | 29 (87.9%) | 0.451 |
GA | 1 (9.1%) | 0 (0%) | 1 (3%) | GA | 2 (18.2%) | 2 (9.1%) | 4 (12.1%) | ||||
AA | 0 (0%) | 0 (0%) | 0 (0%) | AA | 0 (0%) | 0 (0%) | 0 (0%) | ||||
G | 21 (95.5%) | 44 (100%) | 65 (98.5%) | 0.541 | G | 20 (81.8%) | 42 (95.5%) | 62 (93.9%) | 0.684 | ||
A | 1 (4.5%) | 0 (0%) | 1 (1.5%) | A | 2 (9.1%) | 2 (4.5%) | 4 (6.1%) | ||||
c.2324T > G p.Leu775Trp rs200643089 | TT | 10 (90.9%) | 22 (100%) | 32 (97.0%) | 0.151 | ||||||
TG | 1 (9.1%) | 0 (0%) | 1 (3%) | ||||||||
GG | 0 (0%) | 0 (0%) | 0 (0%) | ||||||||
T | 21 (95.5%) | 44 (100%) | 65 (98.5%) | 0.541 | |||||||
G | 1 (4.5%) | 0 (0%) | 1 (1.5%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soria-Chacartegui, P.; Villapalos-García, G.; López-Fernández, L.A.; Navares-Gómez, M.; Mejía-Abril, G.; Abad-Santos, F.; Zubiaur, P. Clinical Relevance of Novel Polymorphisms in the Dihydropyrimidine Dehydrogenase (DPYD) Gene in Patients with Severe Fluoropyrimidine Toxicity: A Spanish Case-Control Study. Pharmaceutics 2021, 13, 2036. https://doi.org/10.3390/pharmaceutics13122036
Soria-Chacartegui P, Villapalos-García G, López-Fernández LA, Navares-Gómez M, Mejía-Abril G, Abad-Santos F, Zubiaur P. Clinical Relevance of Novel Polymorphisms in the Dihydropyrimidine Dehydrogenase (DPYD) Gene in Patients with Severe Fluoropyrimidine Toxicity: A Spanish Case-Control Study. Pharmaceutics. 2021; 13(12):2036. https://doi.org/10.3390/pharmaceutics13122036
Chicago/Turabian StyleSoria-Chacartegui, Paula, Gonzalo Villapalos-García, Luis A. López-Fernández, Marcos Navares-Gómez, Gina Mejía-Abril, Francisco Abad-Santos, and Pablo Zubiaur. 2021. "Clinical Relevance of Novel Polymorphisms in the Dihydropyrimidine Dehydrogenase (DPYD) Gene in Patients with Severe Fluoropyrimidine Toxicity: A Spanish Case-Control Study" Pharmaceutics 13, no. 12: 2036. https://doi.org/10.3390/pharmaceutics13122036
APA StyleSoria-Chacartegui, P., Villapalos-García, G., López-Fernández, L. A., Navares-Gómez, M., Mejía-Abril, G., Abad-Santos, F., & Zubiaur, P. (2021). Clinical Relevance of Novel Polymorphisms in the Dihydropyrimidine Dehydrogenase (DPYD) Gene in Patients with Severe Fluoropyrimidine Toxicity: A Spanish Case-Control Study. Pharmaceutics, 13(12), 2036. https://doi.org/10.3390/pharmaceutics13122036