Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies
Abstract
:1. Introduction
2. Conventional Strategies against Malaria
3. Nanotechnology against Malaria
3.1. Diagnosis
3.2. Vaccines
3.3. Antiplasmodial Therapeutics
4. Next Generation of Antimalarial Medicines
4.1. Ideal Product Profile
4.1.1. TPP1: Case Management Medicines
4.1.2. TPP2: Chemoprotective Medicines
4.2. Next Generation of Therapies Supported by MMV
4.2.1. KAF156/Lumefantrine
4.2.2. Artefenomel/Ferroquine
4.2.3. Cipargamin
4.2.4. MMV048
4.2.5. M5717
4.2.6. P218
5. Nanotechnology Applied to the Next Generation of Antimalarials
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. Global Technical Strategy for Malaria 2016–2030; World Health Organization: Geneva, Switzerland, 2015.
- Lover, A.A.; Baird, J.K.; Gosling, R.; Price, R.N. Malaria elimination: Time to target all species. Am. J. Trop. Med. Hyg. 2018, 99, 17–23. [Google Scholar] [CrossRef]
- Escalante, A.A.; Pacheco, M.A. Malaria molecular epidemiology: An evolutionary genetics perspective. Microbiol. Spectr. 2019, 7, 10–1128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, A.G.; Matuschewski, K.; Zhang, M.; Rug, M. Plasmodium falciparum. Trends Parasitol. 2019, 35, 481–482. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention—About Malaria. Available online: https://www.cdc.gov/malaria/about/biology/index.html (accessed on 11 March 2021).
- Yam, X.Y.; Preiser, P.R. Host immune evasion strategies of malaria blood stage parasite. Mol. Biosyst. 2017, 13, 2498–2508. [Google Scholar] [CrossRef]
- World Health Organization. World Malaria Report 2021; World Health Organization: Geneva, Switzerland, 2021.
- Chang, E.H.; Harford, J.B.; Eaton, M.A.W.; Boisseau, P.M.; Dube, A.; Hayeshi, R.; Swai, H.; Lee, D.S. Nanomedicine: Past, present and future—A global perspective. Biochem. Biophys. Res. Commun. 2015, 468, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Nano on reflection. Nat. Nanotechnol. 2016, 11, 828–834. [CrossRef] [PubMed] [Green Version]
- Islan, G.A.; Durán, M.; Cacicedo, M.L.; Nakazato, G.; Kobayashi, R.K.T.; Martinez, D.S.T.; Castro, G.R.; Durán, N. Nanopharmaceuticals as a solution to neglected diseases: Is it possible? Acta Trop. 2017, 170, 16–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sosnik, A.; Seremeta, K.P.; Imperiale, J.C.; Chiappetta, D.A. Novel formulation and drug delivery strategies for the treatment of pediatric poverty-related diseases. Expert Opin. Drug Deliv. 2012, 9, 303–323. [Google Scholar] [CrossRef]
- Fries, C.N.; Curvino, E.J.; Chen, J.-L.; Permar, S.R.; Fouda, G.G.; Collier, J.H. Advances in nanomaterial vaccine strategies to address infectious diseases impacting global health. Nat. Nanotechnol. 2020, 16, 1–14. [Google Scholar] [CrossRef]
- Anamika, J.; Nikhar, V.; Laxmikant, G.; Priya, S.; Sonal, V.; Vyas, S.P. Nanobiotechnological modules as molecular target tracker for the treatment and prevention of malaria: Options and opportunity. Drug Deliv. Transl. Res. 2020, 10, 1095–1110. [Google Scholar] [CrossRef]
- Borgheti-Cardoso, L.N.; San Anselmo, M.; Lantero, E.; Lancelot, A.; Serrano, J.L.; Hernández-Ainsa, S.; Fernàndez-Busquets, X.; Sierra, T. Promising nanomaterials in the fight against malaria. J. Mater. Chem. B 2020, 8, 9428–9448. [Google Scholar] [CrossRef]
- Fernàndez-Busquets, X. Novel strategies for Plasmodium-targeted drug delivery. Expert Opin. Drug Deliv. 2016, 13, 919–922. [Google Scholar] [CrossRef]
- Park, K. Controlled drug delivery systems: Past forward and future back. J. Control. Release 2014, 190, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Thakkar, M.; Brijesh, S. Combating malaria with nanotechnology-based targeted and combinatorial drug delivery strategies. Drug Deliv. Transl. Res. 2016, 6, 414–425. [Google Scholar] [CrossRef]
- Barabadi, H.; Alizadeh, Z.; Rahimi, M.T.; Barac, A.; Maraolo, A.E.; Robertson, L.J.; Masjedi, A.; Shahrivar, F.; Ahmadpour, E. Nanobiotechnology as an emerging approach to combat malaria: A systematic review. Nanomedicine 2019, 18, 221–233. [Google Scholar] [CrossRef]
- Kuppusamy, P.; Yusoff, M.M.; Maniam, G.P.; Govindan, N. Biosynthesis of metallic nanoparticles using plant derivatives and their new avenues in pharmacological applications—An updated report. Saudi Pharm. J. 2016, 24, 473–484. [Google Scholar] [CrossRef]
- Kokwaro, G. Ongoing challenges in the management of malaria. Malar. J. 2009, 8 (Suppl. 1), S2. [Google Scholar] [CrossRef] [Green Version]
- Tindana, P.; De Haan, F.; Amaratunga, C.; Dhorda, M.; Van Der Pluijm, R.W.; Dondorp, A.M.; Cheah, P.Y. Deploying triple artemisinin-based combination therapy (TACT) for malaria treatment in Africa: Ethical and practical considerations. Malar. J. 2021, 20, 119. [Google Scholar] [CrossRef]
- Chuma, J.; Okungu, V.; Molyneux, C. Barriers to prompt and effective malaria treatment among the poorest population in Kenya. Malar. J. 2010, 9, 144. [Google Scholar] [CrossRef] [Green Version]
- Cotter, C.; Sturrock, H.J.W.; Hsiang, M.S.; Liu, J.; Phillips, A.A.; Hwang, J.; Gueye, C.S.; Fullman, N.; Gosling, R.D.; Feachem, R.G.A. The changing epidemiology of malaria elimination: New strategies for new challenges. Lancet 2013, 382, 900–911. [Google Scholar] [CrossRef]
- Sinden, R.E. Developing transmission-blocking strategies for malaria control. PLoS Pathog. 2017, 13, e1006336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gueye, C.S.; Newby, G.; Gosling, R.D.; Whittaker, M.A.; Chandramohan, D.; Slutsker, L.; Tanner, M. Strategies and approaches to vector control in nine malaria-eliminating countries: A cross-case study analysis. Malar. J. 2016, 15, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barclay, V.C.; Smith, R.A.; Findeis, J.L. Surveillance considerations for malaria elimination. Malar. J. 2012, 11, 304. [Google Scholar] [CrossRef] [Green Version]
- Pasquale, H.; Jarvese, M.; Julla, A.; Doggale, C.; Sebit, B.; Lual, M.Y.; Baba, S.P.; Chanda, E. Malaria control in South Sudan, 2006–2013: Strategies, progress and challenges. Malar. J. 2013, 12, 374. [Google Scholar] [CrossRef] [Green Version]
- Muriuki, J.M.; Kitala, P.; Muchemi, G.; Njeru, I.; Karanja, J.; Bett, B. A comparison of malaria prevalence, control and management strategies in irrigated and non-irrigated areas in eastern Kenya. Malar. J. 2016, 15, 402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiwat, H.; Hardjopawiro, L.S.; Takken, W.; Villegas, L. Novel strategies lead to pre-elimination of malaria in previously high-risk areas in Suriname, South America. Malar. J. 2012, 11, 10. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Beier, J.C. Current vector control challenges in the fight against malaria. Acta Trop. 2017, 174, 91–96. [Google Scholar] [CrossRef]
- Hemingway, J.; Shretta, R.; Wells, T.N.C.; Bell, D.; Djimdé, A.A.; Achee, N.; Qi, G. Tools and strategies for malaria control and elimination: What do we need to achieve a grand convergence in malaria? PLoS Biol. 2016, 14, e1002380. [Google Scholar] [CrossRef] [PubMed]
- Winskill, P.; Walker, P.G.; Cibulskis, R.E.; Ghani, A.C. Prioritizing the scale-up of interventions for malaria control and elimination. Malar. J. 2019, 18, 122. [Google Scholar] [CrossRef] [Green Version]
- Ragavan, K.V.; Kumar, S.; Swaraj, S.; Neethirajan, S. Advances in biosensors and optical assays for diagnosis and detection of malaria. Biosens. Bioelectron. 2018, 105, 188–210. [Google Scholar] [CrossRef]
- Cui, L.; Mharakurwa, S.; Ndiaye, D.; Rathod, P.K.; Rosenthal, P.J. Antimalarial drug resistance: Literature review and activities and findings of the ICEMR network. Am. J. Trop. Med. Hyg. 2015, 93, 57–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Achan, J.; Talisuna, A.O.; Erhart, A.; Yeka, A.; Tibenderana, J.K.; Baliraine, F.N.; Rosenthal, P.J.; D’Alessandro, U. Quinine, an old anti-malarial drug in a modern world: Role in the treatment of malaria. Malar. J. 2011, 10, 144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. Guidelines for the Treatment of Malaria, 3rd ed.; World Health Organization: Geneva, Switzerland, 2015.
- Tse, E.G.; Korsik, M.; Todd, M.H. The past, present and future of anti-malarial medicines. Malar. J. 2019, 18, 93. [Google Scholar] [CrossRef] [Green Version]
- Eastman, R.T.; Fidock, D.A. Artemisinin-based combination therapies: A vital tool in efforts to eliminate malaria. Nat. Rev. Microbiol. 2009, 7, 864–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tangpukdee, N.; Duangdee, C.; Wilairatana, P.; Krudsood, S. Malaria diagnosis: A brief review. Korean J. Parasitol. 2009, 47, 93–102. [Google Scholar] [CrossRef] [Green Version]
- Nsanzabana, C.; Djalle, D.; Guérin, P.J.; Ménard, D.; González, I.J. Tools for surveillance of anti-malarial drug resistance: An assessment of the current landscape. Malar. J. 2018, 17, 75. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, B. Anti-malarial drugs and the prevention of malaria in the population of malaria endemic areas. Malar. J. 2010, 9 (Suppl. 3), S2. [Google Scholar] [CrossRef] [Green Version]
- Onwujekwe, O.; Kaur, H.; Dike, N.; Shu, E.; Uzochukwu, B.; Hanson, K.; Okoye, V.; Okonkwo, P. Quality of anti-malarial drugs provided by public and private healthcare providers in south-east Nigeria. Malar. J. 2009, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Whitty, C.J.; Chandler, C.; Ansah, E.; Leslie, T.; Staedke, S.G. Deployment of ACT antimalarials for treatment of malaria: Challenges and opportunities. Malar. J. 2008, 7 (Suppl. 1), S7. [Google Scholar] [CrossRef] [Green Version]
- RTS,S Clinical Trials Partnership. First results of phase 3 trial of RTS,S/AS01 malaria vaccine in African children. N. Engl. J. Med. 2011, 365, 1863–1875. [Google Scholar] [CrossRef] [Green Version]
- Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F.; Baeza, A. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2020, 25, 112. [Google Scholar] [CrossRef] [Green Version]
- Ephraim, W.; Muda, B.M.; Aaron, Y.; Blessing, G.; Maureen, O.; Go, I.; Abdulazeez, A.K. Nanotechnology for improved anti-malaria efficacy; review update. Int. J. Cell Sci. Mol. Biol. 2019, 6, 87–93. [Google Scholar] [CrossRef]
- Gitta, B.; Kilian, N. Diagnosis of malaria parasites Plasmodium spp. in endemic areas: Current strategies for an ancient disease. BioEssays 2020, 42, e1900138. [Google Scholar] [CrossRef] [Green Version]
- Koepfli, C.; Nguitragool, W.; Hofmann, N.E.; Robinson, L.J.; Ome-Kaius, M.; Sattabongkot, J.; Felger, I.; Mueller, I. Sensitive and accurate quantification of human malaria parasites using droplet digital PCR (ddPCR). Sci. Rep. 2016, 6, 39183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koepfli, C.; Robinson, L.J.; Rarau, P.; Salib, M.; Sambale, N.; Wampfler, R.; Betuela, I.; Nuitragool, W.; Barry, A.E.; Siba, P.; et al. Blood-stage parasitaemia and age determine Plasmodium falciparum and P. vivax gametocytaemia in Papua New Guinea. PLoS ONE 2015, 10, e0126747. [Google Scholar] [CrossRef] [PubMed]
- Kaur, H.; Bruno, J.G.; Kumar, A.; Sharma, T.K. Aptamers in the therapeutics and diagnostics pipelines. Theranostics 2018, 8, 4016–4032. [Google Scholar] [CrossRef]
- Song, K.-M.; Lee, S.; Ban, C. Aptamers and their biological applications. Sensors 2012, 12, 612–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.; Song, K.-M.; Jeon, W.; Jo, H.; Shim, Y.-B.; Ban, C. A highly sensitive aptasensor towards Plasmodium lactate dehydrogenase for the diagnosis of malaria. Biosens. Bioelectron. 2012, 35, 291–296. [Google Scholar] [CrossRef]
- Krampa, F.D.; Aniweh, Y.; Awandare, G.A.; Kanyong, P. Recent progress in the development of diagnostic tests for malaria. Diagnostics 2017, 7, 54. [Google Scholar] [CrossRef]
- Ruiz-Vega, G.; Arias-Alpízar, K.; de la Serna, E.; Borgheti-Cardoso, L.N.; Sulleiro, E.; Molina, I.; Fernàndez-Busquets, X.; Sánchez-Montalvá, A.; del Campo, F.J.; Baldrich, E. Electrochemical POC device for fast malaria quantitative diagnosis in whole blood by using magnetic beads, Poly-HRP and microfluidic paper electrodes. Biosens. Bioelectron. 2020, 150, 111925. [Google Scholar] [CrossRef]
- Hemben, A.; Ashley, J.; Tothill, I.E. Development of an immunosensor for Pf HRP 2 as a biomarker for malaria detection. Biosensors 2017, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- De Souza Castilho, M.; Laube, T.; Yamanaka, H.; Alegret, S.; Pividori, M.I. Magneto immunoassays for Plasmodium falciparum histidine-rich protein 2 related to malaria based on magnetic nanoparticles. Anal. Chem. 2011, 83, 5570–5577. [Google Scholar] [CrossRef]
- Jepsen, M.P.G.; Röser, D.; Christiansen, M.; Olesen Larsen, S.; Cavanagh, D.R.; Dhanasarnsombut, K.; Bygbjerg, I.; Dodoo, D.; Remarque, E.J.; Dziegiel, M.; et al. Development and evaluation of a multiplex screening assay for Plasmodium falciparum exposure. J. Immunol. Methods 2012, 384, 62–70. [Google Scholar] [CrossRef]
- Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat. Protoc. 2008, 3, 877–882. [Google Scholar] [CrossRef] [PubMed]
- Abdul-Ghani, R.; Al-Mekhlafi, A.M.; Karanis, P. Loop-mediated isothermal amplification (LAMP) for malarial parasites of humans: Would it come to clinical reality as a point-of-care test? Acta Trop. 2012, 122, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Han, E.-T. Loop-mediated isothermal amplification test for the molecular diagnosis of malaria. Expert Rev. Mol. Diagn. 2013, 13, 205–218. [Google Scholar] [CrossRef]
- Kim, J.; Lim, D.H.; Mihn, D.C.; Nam, J.; Jang, W.S.; Lim, C.S. Clinical usefulness of labchip real-time PCR using lab-on-a-chip technology for diagnosing malaria. Korean J. Parasitol. 2021, 59, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Frimpong, A.; Kusi, K.A.; Ofori, M.F.; Ndifon, W. Novel strategies for malaria vaccine design. Front. Immunol. 2018, 9, 2769. [Google Scholar] [CrossRef]
- Duffy, P.E.; Gorres, J.P. Malaria vaccines since 2000: Progress, priorities, products. NPJ Vaccines 2020, 5, 48. [Google Scholar] [CrossRef]
- White, M.T.; Verity, R.; Griffin, J.T.; Asante, K.P.; Owusu-Agyei, S.; Greenwood, B.; Drakeley, C.; Gesase, S.; Lusingu, J.; Ansong, D.; et al. Immunogenicity of the RTS,S/AS01 malaria vaccine and implications for duration of vaccine efficacy: Secondary analysis of data from a phase 3 randomised controlled trial. Lancet Infect. Dis. 2015, 15, 1450–1458. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov—Seasonal Malaria Vaccination (RTS,S/AS01) and Seasonal Malaria Chemoprevention (SP/AQ). Available online: https://clinicaltrials.gov/ct2/show/NCT03143218?term=RTS%2CS&cond=Malaria&phase=2&draw=2&rank=2 (accessed on 22 July 2021).
- Laurens, M.B. The promise of a malaria vaccine—Are we closer? Annu. Rev. Microbiol. 2018, 72, 273–292. [Google Scholar] [CrossRef]
- Cockburn, I.A.; Seder, R.A. Malaria prevention: From immunological concepts to effective vaccines and protective antibodies. Nat. Immunol. 2018, 19, 1199–1211. [Google Scholar] [CrossRef] [PubMed]
- Wilson, K.L.; Flanagan, K.L.; Prakash, M.D.; Plebanski, M. Malaria vaccines in the eradication era: Current status and future perspectives. Expert Rev. Vaccines 2019, 18, 133–151. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov—Safety, Immunogenicity and Efficacy of R21 Matrix-M in 5–17 Month Old Children in Nanoro, Burkina Faso. Available online: https://clinicaltrials.gov/ct2/show/NCT03896724 (accessed on 7 May 2021).
- Datoo, M.S.; Natama, M.H.; Somé, A.; Traoré, O.; Rouamba, T.; Bellamy, D.; Yameogo, P.; Valia, D.; Tegneri, M.; Ouedraogo, F.; et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: A randomised controlled trial. Lancet 2021, 397, 1809–1818. [Google Scholar] [CrossRef]
- Moorthy, V.S.; Newman, R.D.; Okwo-Bele, J.-M. Malaria vaccine technology roadmap. Lancet 2013, 382, 1700–1701. [Google Scholar] [CrossRef]
- Vijayan, V.; Mohapatra, A.; Uthaman, S.; Park, I.K. Recent advances in nanovaccines using biomimetic immunomodulatory materials. Pharmaceutics 2019, 11, 534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aditya, N.P.; Vathsala, P.G.; Vieira, V.; Murthy, R.S.R.; Souto, E.B. Advances in nanomedicines for malaria treatment. Adv. Colloid Interface Sci. 2013, 201–202, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.K.; Gupta, C.M. Tuftsin-bearing liposomes in treatment of macrophage-based infections. Adv. Drug Deliv. Rev. 2000, 41, 135–146. [Google Scholar] [CrossRef]
- Peek, L.J.; Middaugh, C.R.; Berkland, C. Nanotechnology in vaccine delivery. Adv. Drug Deliv. Rev. 2008, 60, 915–928. [Google Scholar] [CrossRef] [PubMed]
- Santos-Magalhães, N.S.; Mosqueira, V.C.F. Nanotechnology applied to the treatment of malaria. Adv. Drug Deliv. Rev. 2009, 62, 560–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fanciullino, R.; Ciccolini, J.; Milano, G. COVID-19 vaccine race: Watch your step for cancer patients. Br. J. Cancer 2021, 124, 860. [Google Scholar] [CrossRef]
- Vahedifard, F.; Chakravarthy, K. Nanomedicine for COVID-19: The role of nanotechnology in the treatment and diagnosis of COVID-19. Emergent Mater. 2021, 4, 75–99. [Google Scholar] [CrossRef]
- Puttappa, N.; Kumar, R.S.; Kuppusamy, G.; Radhakrishnan, A. Nano-facilitated drug delivery strategies in the treatment of Plasmodium infection. Acta Trop. 2019, 195, 103–114. [Google Scholar] [CrossRef]
- Alven, S.; Aderibigbe, B.A. Nanoformulations of old and new antimalarial drugs. In Applications of Nanobiotechnology for Neglected Tropical Diseases; Rocha Formiga, F., Inamuddin, Severino, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 191–216. [Google Scholar]
- World Health Organization. Status Report on Artemisinin Resistance; World Health Organization: Geneva, Switzerland, 2014.
- Van der Pluijm, R.W.; Amaratunga, C.; Dhorda, M.; Dondorp, A.M. Triple artemisinin-based combination therapies for malaria—A new paradigm? Trends Parasitol. 2021, 37, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Garnett, M.C. Targeted drug conjugates: Principles and progress. Adv. Drug Deliv. Rev. 2001, 53, 171–216. [Google Scholar] [CrossRef]
- Gref, R.; Dombb, A.; Quelled, P.; Blunk, T.; Miillerd, R.H.; Verbavatz, J.M.; Langerf, R. The controlled intravenous delivery of drugs using PEG-coated sterically stabilized nanospheres. Adv. Drug Deliv. Rev. 1995, 16, 215–233. [Google Scholar] [CrossRef] [Green Version]
- Torchilin, V.P. Multifunctional nanocarriers. Adv. Drug Deliv. Rev. 2006, 58, 1532–1555. [Google Scholar] [CrossRef] [PubMed]
- Mosqueira, V.C.F.; Loiseau, P.M.; Bories, C.; Legrand, P.; Devissaguet, J.-P.; Barratt, G. Efficacy and pharmacokinetics of intravenous nanocapsule formulations of halofantrine in Plasmodium berghei-infected mice. Antimicrob. Agents Chemother. 2004, 48, 1222–1228. [Google Scholar] [CrossRef] [Green Version]
- Urbán, P.; Estelrich, J.; Cortés, A.; Fernàndez-Busquets, X. A nanovector with complete discrimination for targeted delivery to Plasmodium falciparum-infected versus non-infected red blood cells in vitro. J. Control. Release 2011, 151, 202–211. [Google Scholar] [CrossRef]
- Owais, M.; Varshney, G.C.; Choudhury, A.; Chandra, S.; Gupta, C.M. Chloroquine encapsulated in malaria-infected erythrocyte-specific antibody-bearing liposomes effectively controls chloroquine-resistant Plasmodium berghei infections in mice. Antimicrob. Agents Chemother. 1995, 39, 180–184. [Google Scholar] [CrossRef] [Green Version]
- Chandra, S.; Agrawal, A.Κ.; Gupta, C.Μ. Chloroquine delivery to erythrocytes in Plasmodium berghei-infected mice using antibody-bearing liposomes as drug vehicles. J. Biosci. 1991, 16, 137–144. [Google Scholar] [CrossRef]
- Aláez-Versón, C.R.; Lantero, E.; Fernàndez-Busquets, X. Heparin: New life for an old drug. Nanomedicine 2017, 12, 1727–1744. [Google Scholar] [CrossRef]
- Boyle, M.J.; Richards, J.S.; Gilson, P.R.; Chai, W.; Beeson, J.G. Interactions with heparin-like molecules during erythrocyte invasion by Plasmodium falciparum merozoites. Blood 2010, 115, 4559–4568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frith, K.A.; Fogel, R.; Goldring, J.P.D.; Krause, R.G.E.; Khati, M.; Hoppe, H.; Cromhout, M.E.; Jiwaji, M.; Limson, J.L. Towards development of aptamers that specifically bind to lactate dehydrogenase of Plasmodium falciparum through epitopic targeting. Malar. J. 2018, 17, 191. [Google Scholar] [CrossRef] [PubMed]
- Lantero, E.; Belavilas-Trovas, A.; Biosca, A.; Recolons, P.; Moles, E.; Sulleiro, E.; Zarzuela, F.; Ávalos-Padilla, Y.; Ramírez, M.; Fernàndez-Busquets, X. Development of DNA aptamers against Plasmodium falciparum blood stages using cell-systematic evolution of ligands by exponential enrichment. J. Biomed. Nanotechnol. 2020, 16, 315–334. [Google Scholar] [CrossRef]
- Rajendran, V.; Rohra, S.; Raza, M.; Hasan, G.M.; Dutt, S.; Ghosh, P.C. Stearylamine liposomal delivery of monensin in combination with free artemisinin eliminates blood stages of Plasmodium falciparum in culture and P. berghei infection in murine malaria. Antimicrob. Agents Chemother. 2016, 60, 1304–1318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbán, P.; Estelrich, J.; Adeva, A.; Cortés, A.; Fernàndez-Busquets, X. Study of the efficacy of antimalarial drugs delivered inside targeted immunoliposomal nanovectors. Nanoscale Res. Lett. 2011, 6, 620. [Google Scholar] [CrossRef] [Green Version]
- Shakeel, K.; Raisuddin, S.; Ali, S.; Imam, S.S.; Rahman, M.A.; Jain, G.K.; Ahmad, F.J. Development and in vitro/in vivo evaluation of artemether and lumefantrine co-loaded nanoliposomes for parenteral delivery. J. Liposome Res. 2017, 29, 35–43. [Google Scholar] [CrossRef]
- Isacchi, B.; Arrigucci, S.; la Marca, G.; Bergonzi, M.C.; Vannucchi, M.G.; Novelli, A.; Bilia, A.R. Conventional and long-circulating liposomes of artemisinin: Preparation, characterization, and pharmacokinetic profile in mice. J. Liposome Res. 2011, 21, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Larson, N.; Ghandehari, H. Polymeric conjugates for drug delivery. Chem. Mater. 2012, 24, 840–853. [Google Scholar] [CrossRef] [Green Version]
- Pasut, G.; Veronese, F.M. Polymer-drug conjugation, recent achievements and general strategies. Prog. Polym. Sci. 2007, 32, 933–961. [Google Scholar] [CrossRef]
- Surolia, R.; Pachauri, M.; Ghosh, P.C. Preparation and characterization of monensin loaded PLGA nanoparticles: In vitro anti-malarial activity against Plasmodium falciparum. J. Biomed. Nanotechnol. 2012, 8, 172–181. [Google Scholar] [CrossRef] [Green Version]
- Jawahar, N.; Baruah, U.K.; Singh, V. Co-delivery of chloroquine phosphate and azithromycin nanoparticles to overcome drug resistance in malaria through intracellular targeting. J. Pharm. Sci. Res. 2019, 11, 33–40. [Google Scholar]
- Urbán, P.; Valle-Delgado, J.J.; Mauro, N.; Marques, J.; Manfredi, A.; Rottmann, M.; Ranucci, E.; Ferruti, P.; Fernàndez-Busquets, X. Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. J. Control. Release 2014, 177, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Aderibigbe, B.A.; Mhlwatika, Z.; Nwamadi, M.; Balogun, M.O.; Matshe, W.M.R. Synthesis, characterization and in vitro analysis of polymer-based conjugates containing dihydrofolate reductase inhibitors. J. Drug Deliv. Sci. Technol. 2019, 50, 388–401. [Google Scholar] [CrossRef]
- Chadha, R.; Gupta, S.; Pathak, N. Artesunate-loaded chitosan/lecithin nanoparticles: Preparation, characterization, and in vivo studies. Drug Dev. Ind. Pharm. 2012, 38, 1538–1546. [Google Scholar] [CrossRef]
- Kumar, G.D.; Razdan, B.K.; Meenakshi, B. Formulation and evaluation of nanoparticles containing artemisinin HCl. Int. J. Res. Dev. Pharm. Life Sci. 2014, 3, 892–901. [Google Scholar]
- Dauda, K.; Busari, Z.; Morenikeji, O.; Afolayan, F.; Oyeyemi, O.; Meena, J.; Sahu, D.; Panda, A. Poly(D,L-lactic-co-glycolic acid)-based artesunate nanoparticles: Formulation, antimalarial and toxicity assessments. J. Zhejiang Univ. Sci. B 2017, 18, 977–985. [Google Scholar] [CrossRef] [Green Version]
- Yaméogo, J.B.G.; Gze, A.; Choisnard, L.; Putaux, J.L.; Gansané, A.; Sirima, S.B.; Semdé, R.; Wouessidjewe, D. Self-assembled biotransesterified cyclodextrins as artemisinin nanocarriers—I: Formulation, lyoavailability and in vitro antimalarial activity assessment. Eur. J. Pharm. Biopharm. 2012, 80, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, R.K.; Sharma, R.; Murthy, R.S.R.; Bhardwaj, T.R. Design, synthesis and evaluation of antimalarial potential of polyphosphazene linked combination therapy of primaquine and dihydroartemisinin. Eur. J. Pharm. Sci. 2015, 66, 123–137. [Google Scholar] [CrossRef]
- Carlton, J.M.; Adams, J.H.; Silva, J.C.; Bidwell, S.L.; Lorenzi, H.; Caler, E.; Crabtree, J.; Angiuoli, S.V.; Merino, E.F.; Amedeo, P.; et al. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature 2008, 455, 757–763. [Google Scholar] [CrossRef]
- Gardner, M.J.; Hall, N.; Fung, E.; White, O.; Berriman, M.; Hyman, R.W.; Carlton, J.M.; Pain, A.; Nelson, K.E.; Bowman, S.; et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 2002, 419, 498–511. [Google Scholar] [CrossRef] [PubMed]
- Burrows, J.N.; van Huijsduijnen, R.H.; Möhrle, J.J.; Oeuvray, C.; Wells, T.N. Designing the next generation of medicines for malaria control and eradication. Malar. J. 2013, 12, 187. [Google Scholar] [CrossRef] [Green Version]
- Medicines for Malaria Venture—Target Product Profiles & Target Candidate Profiles. Available online: https://www.mmv.org/research-development/information-scientists/target-product-profiles-target-candidate-profiles (accessed on 13 April 2021).
- Medicines for Malaria Venture—MMV-Supported Projects. Available online: https://www.mmv.org/research-development/mmv-supported-projects (accessed on 13 April 2021).
- Burrows, J.N.; Duparc, S.; Gutteridge, W.E.; van Huijsduijnen, R.H.; Kaszubska, W.; Macintyre, F.; Mazzuri, S.; Möhrle, J.J.; Wells, T.N.C. New developments in anti-malarial target candidate and product profiles. Malar. J. 2017, 16, 26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medicines for Malaria Venture. Annual Report 2019; Medicines for Malaria Venture: Geneva, Switzerland, 2020. [Google Scholar]
- Wells, T.N.C.; van Huijsduijnen, R.H.; van Voorhis, W.C. Malaria medicines: A glass half full? Nat. Rev. Drug Discov. 2015, 14, 424–442. [Google Scholar] [CrossRef]
- The malERA Consultative Group on Drugs. A research agenda for malaria eradication: Drugs. PLoS Med. 2011, 8, e1000402. [Google Scholar] [CrossRef]
- Ashley, E.A.; Phyo, A.P. Drugs in development for malaria. Drugs 2018, 78, 861–879. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zongo, I.; Milligan, P.; Compaore, Y.D.; Some, A.F.; Greenwood, B.; Tarning, J.; Rosenthal, P.J.; Sutherland, C.; Nosten, F.; Ouedraogo, J.B. Randomized noninferiority trial of dihydroartemisinin-piperaquine compared with sulfadoxine-pyrimethamine plus amodiaquine for seasonal malaria chemoprevention in Burkina Faso. Antimicrob. Agents Chemother. 2015, 59, 4387–4396. [Google Scholar] [CrossRef] [Green Version]
- Noor, A.M.; Kibuchi, E.; Mitto, B.; Coulibaly, D.; Doumbo, O.K.; Snow, R.W. Sub-national targeting of seasonal malaria chemoprevention in the Sahelian countries of the Nouakchott Initiative. PLoS ONE 2015, 10, e0136919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cairns, M.; Roca-Feltrer, A.; Garske, T.; Wilson, A.L.; Diallo, D.; Milligan, P.J.; Ghani, A.C.; Greenwood, B.M. Estimating the potential public health impact of seasonal malaria chemoprevention in African children. Nat. Commun. 2012, 3, 881. [Google Scholar] [CrossRef] [Green Version]
- Matondo, S.I.; Temba, G.S.; Kavishe, A.A.; Kauki, J.S.; Kalinga, A.; van Zwetselaar, M.; Reyburn, H.; Kavishe, R.A. High levels of sulphadoxine-pyrimethamine resistance Pfdhfr-Pfdhps quintuple mutations: A cross sectional survey of six regions in Tanzania. Malar. J. 2014, 13, 152. [Google Scholar] [CrossRef] [Green Version]
- Medicines for Malaria Venture. Annual Report 2017—Defeating Malaria Together; Medicines for Malaria Venture: Geneva, Switzerland, 2018. [Google Scholar]
- Ashton, T.D.; Devine, S.M.; Möhrle, J.J.; Laleu, B.; Burrows, J.N.; Charman, S.A.; Creek, D.J.; Sleebs, B.E. The development process for discovery and clinical advancement of modern antimalarials. J. Med. Chem. 2019, 62, 10526–10562. [Google Scholar] [CrossRef]
- Stewart, H.L.; Hanby, A.R.; King, T.A.; Bond, A.D.; Moss, T.A.; Sore, H.F.; Spring, D.R. An efficient, stereocontrolled and versatile synthetic route to bicyclic partially saturated privileged scaffolds. Chem. Commun. 2020, 56, 6818–6821. [Google Scholar] [CrossRef] [PubMed]
- Koller, R.; Mombo-Ngoma, G.; Grobusch, M.P. The early preclinical and clinical development of ganaplacide (KAF156), a novel antimalarial compound. Expert Opin. Investig. Drugs 2018, 27, 803–810. [Google Scholar] [CrossRef] [PubMed]
- Leong, F.J.; Zhao, R.; Zeng, S.; Magnusson, B.; Diagana, T.T.; Pertel, P. A first-in-human randomized, double-blind, placebo-controlled, single- and multiple-ascending oral dose study of novel imidazolopiperazine KAF156 to assess its safety, tolerability, and pharmacokinetics in healthy adult volunteers. Antimicrob. Agents Chemother. 2014, 58, 6437–6443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kublin, J.G.; Murphy, S.C.; Maenza, J.; Seilie, A.M.; Jain, J.P.; Berger, D.; Spera, D.; Zhao, R.; Soon, R.L.; Czartoski, J.L.; et al. Safety, pharmacokinetics, and causal prophylactic efficacy of KAF156 in a Plasmodium falciparum human infection study. Clin. Infect. Dis. 2021, 73, e2407–e2414. [Google Scholar] [CrossRef]
- White, N.J.; Duong, T.T.; Uthaisin, C.; Nosten, F.; Phyo, A.P.; Hanboonkunupakarn, B.; Pukrittayakamee, S.; Jittamala, P.; Chuthasmit, K.; Cheung, M.S.; et al. Antimalarial activity of KAF156 in falciparum and vivax malaria. N. Engl. J. Med. 2016, 375, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Jain, J.P.; Leong, F.J.; Chen, L.; Kalluri, S.; Koradia, V.; Stein, D.S.; Wolf, M.C.; Sunkara, G.; Kotaa, J. Bioavailability of lumefantrine is significantly enhanced with a novel formulation approach, an outcome from a randomized, open-label pharmacokinetic study in healthy volunteers. Antimicrob. Agents Chemother. 2017, 61, e00868-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinicalTrials.gov—Efficacy and Safety of KAF156 in Combination with LUM-SDF in Adults and Children with Uncomplicated Plasmodium falciparum Malaria. Available online: https://clinicaltrials.gov/ct2/show/NCT03167242 (accessed on 8 April 2021).
- Kuhen, K.L.; Chatterjee, A.K.; Rottmann, M.; Gagaring, K.; Borboa, R.; Buenviaje, J.; Chen, Z.; Francek, C.; Wu, T.; Nagle, A.; et al. KAF156 is an antimalarial clinical candidate with potential for use in prophylaxis, treatment, and prevention of disease transmission. Antimicrob. Agents Chemother. 2014, 58, 5060–5067. [Google Scholar] [CrossRef] [Green Version]
- Medicines for Malaria Venture—OZ439: A Winning Network of Partners. Available online: https://www.mmv.org/newsroom/interviews/oz439-winning-network-partners (accessed on 27 October 2021).
- Charman, S.A.; Arbe-Barnes, S.; Bathurst, I.C.; Brund, R.; Campbell, M.; Charman, W.N.; Chiu, F.C.K.; Chollet, J.; Craft, J.C.; Creek, D.J.; et al. Synthetic ozonide drug candidate OZ439 offers new hope for a single-dose cure of uncomplicated malaria. Proc. Natl. Acad. Sci. USA 2011, 108, 4400–4405. [Google Scholar] [CrossRef] [Green Version]
- Rosenthal, P.J. Artefenomel: A promising new antimalarial drug. Lancet Infect. Dis. 2016, 16, 6–8. [Google Scholar] [CrossRef] [Green Version]
- Moehrle, J.J.; Duparc, S.; Siethoff, C.; van Giersbergen, P.L.M.; Craft, J.C.; Arbe-Barnes, S.; Charman, S.A.; Gutierrez, M.; Wittlin, S.; Vennerstrom, J.L. First-in-man safety and pharmacokinetics of synthetic ozonide OZ439 demonstrates an improved exposure profile relative to other peroxide antimalarials. Br. J. Clin. Pharmacol. 2013, 75, 535–548. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov—Efficacy, Tolerability, PK of OZ439 in Adults with Acute, Uncomplicated P. falciparum or vivax Malaria Mono-Infection. Available online: https://clinicaltrials.gov/ct2/show/NCT01213966 (accessed on 8 April 2021).
- Phyo, A.P.; Jittamala, P.; Nosten, F.H.; Pukrittayakamee, S.; Imwong, M.; White, N.J.; Duparc, S.; Macintyre, F.; Baker, M.; Möhrle, J.J. Antimalarial activity of artefenomel (OZ439), a novel synthetic antimalarial endoperoxide, in patients with Plasmodium falciparum and Plasmodium vivax malaria: An open-label phase 2 trial. Lancet Infect. Dis. 2016, 16, 61–69. [Google Scholar] [CrossRef] [Green Version]
- Mathews, E.S.; Odom John, A.R. Tackling resistance: Emerging antimalarials and new parasite targets in the era of elimination. F1000Research 2018, 7, 1170. [Google Scholar] [CrossRef]
- Mairet-Khedim, M.; Nardella, F.; Khim, N.; Kim, S.; Kloeung, N.; Ke, S.; Kauy, C.; Eam, R.; Khean, C.; Pellet, A.; et al. In vitro activity of ferroquine against artemisinin-based combination therapy (ACT)-resistant Plasmodium falciparum isolates from Cambodia. J. Antimicrob. Chemother. 2019, 74, 3240–3244. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.gov—Study to Investigate the Clinical and Parasiticidal Activity and Pharmacokinetics of Different Doses of Artefenomel and Ferroquine in Patients with Uncomplicated Plasmodium falciparum Malaria. Available online: https://clinicaltrials.gov/ct2/show/NCT03660839 (accessed on 8 April 2021).
- Bouwman, S.A.; Zoleko-Manego, R.; Renner, K.C.; Schmitt, E.K.; Mombo-Ngoma, G.; Grobusch, M.P. The early preclinical and clinical development of cipargamin (KAE609), a novel antimalarial compound. Travel Med. Infect. Dis. 2020, 36, 101765. [Google Scholar] [CrossRef]
- Rottmann, M.; McNamara, C.; Yeung, B.K.S.; Lee, M.C.S.; Zou, B.; Russell, B.; Seitz, P.; Plouffe, D.M.; Dharia, N.V.; Tan, J.; et al. Spiroindolones, a potent compound class for the treatment of malaria. Science 2010, 329, 1175–1180. [Google Scholar] [CrossRef] [Green Version]
- Goldgof, G.M.; Durrant, J.D.; Ottilie, S.; Vigil, E.; Allen, K.E.; Gunawan, F.; Kostylev, M.; Henderson, K.A.; Yang, J.; Schenken, J.; et al. Comparative chemical genomics reveal that the spiroindolone antimalarial KAE609 (Cipargamin) is a P-type ATPase inhibitor. Sci. Rep. 2016, 6, 27806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Upton, L.M.; Brock, P.M.; Churcher, T.S.; Ghani, A.C.; Gething, P.W.; Delves, M.J.; Sala, K.A.; Leroy, D.; Sinden, R.E.; Blagborough, A.M. Lead clinical and preclinical antimalarial drugs can significantly reduce sporozoite transmission to vertebrate populations. Antimicrob. Agents Chemother. 2015, 59, 490–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinicalTrials.gov—Safety of KAE609 in Adults with Uncomplicated Plasmodium falciparum Malaria. Available online: https://www.clinicaltrials.gov/ct2/show/results/NCT03334747 (accessed on 8 April 2021).
- White, N.J.; Pukrittayakamee, S.; Phyo, A.P.; Rueangweerayut, R.; Nosten, F.; Jittamala, P.; Jeeyapant, A.; Jain, J.P.; Lefèvre, G.; Li, R.; et al. Spiroindolone KAE609 for falciparum and vivax malaria. N. Engl. J. Med. 2014, 371, 403–410. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov—To Evaluate Efficacy, Safety, Tolerability and PK of Intravenous Cipargamin in Participants with Severe Plasmodium falciparum Malaria. Available online: https://clinicaltrials.gov/ct2/show/NCT04675931 (accessed on 8 April 2021).
- Medicines for Malaria Venture—MMV048. Available online: https://www.mmv.org/related-story-type/mmv048 (accessed on 9 April 2021).
- Paquet, T.; le Manach, C.; Cabrera, D.G.; Younis, Y.; Henrich, P.P.; Abraham, T.S.; Lee, M.C.S.; Basak, R.; Ghidelli-Disse, S.; Lafuente-Monasterio, M.J.; et al. Antimalarial efficacy of MMV390048, an inhibitor of Plasmodium phosphatidylinositol 4-kinase. Sci. Transl. Med. 2017, 9, 9735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinicalTrials.gov—Phase I Study of Ascending Doses of MMV390048 in Healthy Adult Volunteers. Available online: https://clinicaltrials.gov/ct2/show/NCT02230579 (accessed on 9 April 2021).
- ClinicalTrials.gov—A Study to Evaluate the Pharmacokinetics of Oral Formulations of MMV390048 Administered Fasted to Healthy Volunteers. Available online: https://clinicaltrials.gov/ct2/show/NCT02554799 (accessed on 9 April 2021).
- ClinicalTrials.gov—MMV390048 Against Early Plasmodium falciparum Blood Stage Infection in Healthy Participants. Available online: https://clinicaltrials.gov/ct2/show/NCT02281344 (accessed on 9 April 2021).
- Sinxadi, P.; Donini, C.; Johnstone, H.; Langdon, G.; Wiesner, L.; Allen, E.; Duparc, S.; Chalon, S.; McCarthy, J.S.; Lorch, U.; et al. Safety, tolerability, pharmacokinetics, and antimalarial activity of the novel Plasmodium phosphatidylinositol 4-kinase inhibitor MMV390048 in healthy volunteers. Antimicrob. Agents Chemother. 2020, 64, e01896-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ClinicalTrials.gov—MMV390048 POC in Patients with P. vivax and P. falciparum Malaria. Available online: https://clinicaltrials.gov/ct2/show/NCT02880241?cond=MMV390048&phase=1&draw=2&rank=1 (accessed on 9 April 2021).
- Medicines for Malaria Venture. Annual Report 2020; Medicines for Malaria Venture: Geneva, Switzerland, 2021. [Google Scholar]
- Rottmann, M.; Jonat, B.; Gumpp, C.; Dhingra, S.K.; Giddins, M.J.; Yin, X.; Badolo, L.; Greco, B.; Fidock, D.A.; Oeuvray, C.; et al. Preclinical antimalarial combination study of M5717, a Plasmodium falciparum elongation factor 2 inhibitor, and pyronaridine, a hemozoin formation inhibitor. Antimicrob. Agents Chemother. 2020, 64, e02181-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baragaña, B.; Hallyburton, I.; Lee, M.C.S.; Norcross, N.R.; Grimaldi, R.; Otto, T.D.; Proto, W.R.; Blagborough, A.M.; Meister, S.; Wirjanata, G.; et al. A novel multiple-stage antimalarial agent that inhibits protein synthesis. Nature 2015, 522, 315–320. [Google Scholar] [CrossRef]
- ClinicalTrials.gov—First-in-Human Trial of Single Ascending Dose, Multiple Ascending Dose and Malaria Challenge Model in Healthy Subjects. Available online: https://clinicaltrials.gov/ct2/show/NCT03261401?cond=M5717&draw=2&rank=2 (accessed on 9 April 2021).
- ClinicalTrials.gov—Chemoprophylactic Activity of M5717 in PfSPZ Challenge Model. Available online: https://clinicaltrials.gov/ct2/show/NCT04250363 (accessed on 9 April 2021).
- Chughlay, M.F.; El Gaaloul, M.; Donini, C.; Campo, B.; Berghmans, P.-J.; Lucardie, A.; Marx, M.W.; Cherkaoui-Rbati, M.H.; Langdon, G.; Angulo-Barturen, I.; et al. Chemoprotective antimalarial activity of P218 against Plasmodium falciparum: A randomized, placebo-controlled volunteer infection study. Am. J. Trop. Med. Hyg. 2021, 104, 1348–1358. [Google Scholar] [CrossRef] [PubMed]
- Chughlay, M.F.; Rossignol, E.; Donini, C.; El Gaaloul, M.; Lorch, U.; Coates, S.; Langdon, G.; Hammond, T.; Möhrle, J.; Chalon, S. First-in-human clinical trial to assess the safety, tolerability and pharmacokinetics of P218, a novel candidate for malaria chemoprotection. Br. J. Clin. Pharmacol. 2020, 86, 1113–1124. [Google Scholar] [CrossRef] [Green Version]
- ClinicalTrials.gov—A FIH Study to Investigate the Safety, Tolerability and PK of P218. Available online: https://clinicaltrials.gov/ct2/show/NCT02885506?cond=P218&draw=2&rank=1 (accessed on 12 April 2021).
- ClinicalTrials.gov—Safety, Tolerability and Chemoprotective Activity of P218 in PfSPZ Challenge Model. Available online: https://clinicaltrials.gov/ct2/show/NCT03707041 (accessed on 9 April 2021).
- Urbán, P.; Fernàndez-Busquets, X. Nanomedicine against malaria. Curr. Med. Chem. 2014, 21, 605–629. [Google Scholar] [CrossRef]
- Moles, E.; Moll, K.; Ch’ng, J.H.; Parini, P.; Wahlgren, M.; Fernàndez-Busquets, X. Development of drug-loaded immunoliposomes for the selective targeting and elimination of rosetting Plasmodium falciparum-infected red blood cells. J. Control. Release 2016, 241, 57–67. [Google Scholar] [CrossRef]
- Marques, J.; Moles, E.; Urbán, P.; Prohens, R.; Busquets, M.A.; Sevrin, C.; Grandfils, C.; Fernàndez-Busquets, X. Application of heparin as a dual agent with antimalarial and liposome targeting activities toward Plasmodium-infected red blood cells. Nanomedicine 2014, 10, 1719–1728. [Google Scholar] [CrossRef] [PubMed]
- Marques, J.; Valle-Delgado, J.J.; Urbán, P.; Baró, E.; Prohens, R.; Mayor, A.; Cisteró, P.; Delves, M.; Sinden, R.E.; Grandfils, C.; et al. Adaptation of targeted nanocarriers to changing requirements in antimalarial drug delivery. Nanomedicine 2017, 13, 515–525. [Google Scholar] [CrossRef] [Green Version]
- Moles, E.; Urbán, P.; Jiménez-Díaz, M.B.; Viera-Morilla, S.; Angulo-Barturen, I.; Busquets, M.A.; Fernàndez-Busquets, X. Immunoliposome-mediated drug delivery to Plasmodium-infected and non-infected red blood cells as a dual therapeutic/prophylactic antimalarial strategy. J. Control. Release 2015, 210, 217–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moles, E.; Galiano, S.; Gomes, A.; Quiliano, M.; Teixeira, C.; Aldana, I.; Gomes, P.; Fernàndez-Busquets, X. ImmunoPEGliposomes for the targeted delivery of novel lipophilic drugs to red blood cells in a falciparum malaria murine model. Biomaterials 2017, 145, 178–191. [Google Scholar] [CrossRef] [Green Version]
- Moles, E.; Kavallaris, M.; Fernàndez-Busquets, X. Modeling the distribution of diprotic basic drugs in liposomal systems: Perspectives on malaria nanotherapy. Front. Pharmacol. 2019, 10, 1064. [Google Scholar] [CrossRef]
- Biosca, A.; Dirscherl, L.; Moles, E.; Imperial, S.; Fernàndez-Busquets, X. An immunoPEGliposome for targeted antimalarial combination therapy at the nanoscale. Pharmaceutics 2019, 11, 341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biosca, A.; Cabanach, P.; Abdulkarim, M.; Gumbleton, M.; Gómez-Canela, C.; Ramírez, M.; Bouzón-Arnáiz, I.; Avalos-Padilla, Y.; Borros, S.; Fernàndez-Busquets, X. Zwitterionic self-assembled nanoparticles as carriers for Plasmodium targeting in malaria oral treatment. J. Control. Release 2021, 331, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Martí Coma-Cros, E.; Lancelot, A.; San Anselmo, M.; Borgheti-Cardoso, L.N.; Valle-Delgado, J.J.; Serrano, J.L.; Fernàndez-Busquets, X.; Sierra, T. Micelle carriers based on dendritic macromolecules containing bis-MPA and glycine for antimalarial drug delivery. Biomater. Sci. 2019, 7, 1661–1674. [Google Scholar] [CrossRef] [Green Version]
- Movellan, J.; Urbán, P.; Moles, E.; de la Fuente, J.M.; Sierra, T.; Serrano, J.L.; Fernàndez-Busquets, X. Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs. Biomaterials 2014, 35, 7940–7950. [Google Scholar] [CrossRef]
- Sisquella, X.; de Pourcq, K.; Alguacil, J.; Robles, J.; Sanz, F.; Anselmetti, D.; Imperial, S.; Fernàndez-Busquets, X. A single-molecule force spectroscopy nanosensor for the identification of new antibiotics and antimalarials. FASEB J. 2010, 24, 4203–4217. [Google Scholar] [CrossRef]
- Paaijmans, K.; Fernàndez-Busquets, X. Antimalarial drug delivery to the mosquito: An option worth exploring? Future Microbiol. 2014, 9, 579–582. [Google Scholar] [CrossRef] [Green Version]
- Urbán, P.; Ranucci, E.; Fernàndez-Busquets, X. Polyamidoamine nanoparticles as nanocarriers for the drug delivery to malaria parasite stages in the mosquito vector. Nanomedicine 2015, 10, 3401–3414. [Google Scholar] [CrossRef] [Green Version]
- Martí Coma-Cros, E.; Biosca, A.; Marques, J.; Carol, L.; Urbán, P.; Berenguer, D.; Riera, M.C.; Delves, M.; Sinden, R.E.; Valle-Delgado, J.J.; et al. Polyamidoamine nanoparticles for the oral administration of antimalarial drugs. Pharmaceutics 2018, 10, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EuroNanoMed—NANOpheles. Development of Nanovectors for the Targeted Delivery in Anopheles Mosquitoes of Agents Blocking Transmission of Plasmodium Parasites. Available online: https://euronanomed.net/wp-content/uploads/2018/08/NANOpheles-new.pdf (accessed on 15 September 2021).
- Maxmen, A. Scientists hail historic malaria vaccine approval—but point to challenges ahead. Nature 2021, in press. [Google Scholar] [CrossRef] [PubMed]
Profile | Use |
---|---|
TPP1 | Case management medicines |
TPP2 | Chemoprotection medicines |
TCP1 | Molecules that clear asexual blood-stage parasitemia |
TCP3 | Molecules with activity against hypnozoites |
TCP4 | Molecules with activity against hepatic schizonts |
TCP5 | Molecules that block transmission by targeting parasite gametocytes |
TCP6 | Molecules that block transmission by targeting the insect vector |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guasch-Girbau, A.; Fernàndez-Busquets, X. Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics 2021, 13, 2189. https://doi.org/10.3390/pharmaceutics13122189
Guasch-Girbau A, Fernàndez-Busquets X. Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics. 2021; 13(12):2189. https://doi.org/10.3390/pharmaceutics13122189
Chicago/Turabian StyleGuasch-Girbau, Arnau, and Xavier Fernàndez-Busquets. 2021. "Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies" Pharmaceutics 13, no. 12: 2189. https://doi.org/10.3390/pharmaceutics13122189
APA StyleGuasch-Girbau, A., & Fernàndez-Busquets, X. (2021). Review of the Current Landscape of the Potential of Nanotechnology for Future Malaria Diagnosis, Treatment, and Vaccination Strategies. Pharmaceutics, 13(12), 2189. https://doi.org/10.3390/pharmaceutics13122189