Improving Breviscapine Oral Bioavailability by Preparing Nanosuspensions, Liposomes and Phospholipid Complexes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Animals
2.2. Preparation of BVP-NS, BVP-LP and BVP-PLC
2.2.1. BVP-NS
2.2.2. BVP-LP
2.2.3. BVP-PLC
2.3. Encapsulation Efficiency (EE) of BVP-LP
2.4. Complexation Efficiency (CE) of BVP-PLC
2.5. Characterization
2.5.1. Determination of Particle Size and Zeta Potential
2.5.2. Polarized Light Microscopy (PLM) Analysis
2.5.3. Transmission Electron Microscopy (TEM) Analysis
2.5.4. Fourier Transform Infrared Spectroscopy (FT-IR) Analysis
2.5.5. Differential Scanning Calorimetry (DSC) Analysis
2.5.6. Powder X-ray Diffraction (PXRD) Analysis
2.6. In Vitro Release Studies
2.7. Pharmacokinetic Studies
2.8. Statistical Analysis
3. Results and Discussion
3.1. Characterization
3.1.1. Particle Size and Zeta Potential
3.1.2. EE (%) of BVP-LP and CE (%) of BVP-PLC
3.1.3. TEM
3.1.4. PLM Analysis
3.1.5. FT-IR Analysis
3.1.6. DSC Analysis
3.1.7. PXRD Analysis
3.2. In Vitro Release Studies
3.3. Pharmacokinetics Study
3.3.1. Pharmacokinetics Results of Different Preparations: BVP-NS, BVP-LP and BVP-PLC
3.3.2. Pharmacokinetic Results of BVP-PLC with Different Drug-Lipid Ratios
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Xia, H.; Liu, Y.; Qiu, F.; Di, X. Simultaneous determination of three glucuronide conjugates of scutellarein in rat plasma by LC-MS/MS for pharmacokinetic study of breviscapine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2014, 965, 79–84. [Google Scholar] [CrossRef]
- Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, W.-B.; Song, J.-L.; Luan, Y.; Jin, C.-Y. Effect of Breviscapine on Recovery of Viable Myocardium and Left Ventricular Remodeling in Chronic Total Occlusion Patients After Revascularization: Rationale and Design for a Randomized Controlled Trial. Med. Sci. Monit. 2018, 24, 4602–4609. [Google Scholar] [CrossRef]
- Guo, C.; Zhu, Y.; Weng, Y.; Wang, S.; Guan, Y.; Wei, G.; Yin, Y.; Xi, M.; Wen, A. Therapeutic time window and underlying therapeutic mechanism of breviscapine injection against cerebral ischemia/reperfusion injury in rats. J. Ethnopharmacol. 2014, 151, 660–666. [Google Scholar] [CrossRef]
- Li, X.L.; Li, Y.Q.; Yan, W.M.; Li, H.Y.; Xu, H.; Zheng, X.X.; Guo, D.W.; Tang, L.K. A study of the cardioprotective effect of breviscapine during hypoxia of cardiomyocytes in vitro and during myocardial infarction in vivo. Planta Med. 2004, 70, 1039–1044. [Google Scholar] [CrossRef]
- Wang, J.; Ji, S.-Y.; Liu, S.-Z.; Jing, R.; Lou, W.-J. Cardioprotective effect of breviscapine: Inhibition of apoptosis in H9c2 cardiomyocytes via the PI3K/Akt/eNOS pathway following simulated ischemia/reperfusion injury. Pharmazie 2015, 70, 593–597. [Google Scholar]
- Zhang, P.; Guo, T.; He, H.; Yang, L.; Deng, Y. Breviscapine confers a neuroprotective efficacy against transient focal cerebral ischemia by attenuating neuronal and astrocytic autophagy in the penumbra. Biomed. Pharmacother. 2017, 90, 69–76. [Google Scholar]
- Jiang, L.; Xia, Q.J.; Dong, X.J.; Hu, Y.; Chen, Z.W.; Chen, K.; Wang, K.H.; Liu, J.; Wang, T.H. Neuroprotective effect of breviscapine on traumatic brain injury in rats associated with the inhibition of GSK3beta signaling pathway. Brain Res. 2017, 1660, 1–9. [Google Scholar] [CrossRef]
- Wang, L.; Ma, Q. Clinical benefits and pharmacology of scutellarin: A comprehensive review. Pharmacol. Ther. 2018, 190, 105–127. [Google Scholar] [CrossRef]
- Xiong, F.; Wang, H.; Geng, K.-K.; Gu, N.; Zhu, J.-B. Optimized Preparation, Characterization and Biodistribution in Heart of Breviscapine Lipid Emulsion. Chem. Pharm. Bull. 2010, 58, 1455–1460. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Miao, X.; Cao, F.; Li, S.; Ai, N.; Chang, Q.; Lee, S.M.Y.; Zheng, Y. Nanosuspension Development of Scutellarein as an Active and Rapid Orally Absorbed Precursor of its BCS Class IV Glycoside Scutellarin. J. Pharm. Sci. 2014, 103, 3576–3584. [Google Scholar] [CrossRef]
- Cui, M.-Y.; Tian, C.-C.; Ju, A.-X.; Zhang, C.-T.; Li, Q.-H. Pharmacokinetic interaction between scutellarin and valsartan in rats. Acta Pharm. Sin. 2013, 48, 541–546. [Google Scholar]
- Hao, X.H.; Cheng, G.; Yu, J.; He, Y.X.; An, F.; Sun, J.; Cui, F.D. Study on the role of hepatic first-pass elimination in the low oral bioavailability of scutellarin in rats. Pharmazie 2005, 60, 477–478. [Google Scholar]
- Xing, J.-F.; You, H.-S.; Dong, Y.-L.; Lu, J.; Chen, S.-Y.; Zhu, H.-F.; Dong, Q.; Wang, M.-Y.; Dong, W.-H. Metabolic and pharmacokinetic studies of scutellarin in rat plasma, urine, and feces. Acta Pharmacol. Sin. 2011, 32, 655–663. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Cui, L.; Duan, X.; Ma, B.; Zhong, D. Pharmacokinetics and metabolism of the flavonoid scutellarin in humans after a single oral administration. Drug Metab. Dispos. 2006, 34, 1345–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, F.; Wang, H.; Cheng, J.; Zhu, J.B. Determination of scutellarin in mouse plasma and different tissues by high-performance liquid chromatography. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2006, 835, 114–118. [Google Scholar] [CrossRef]
- Huang, J.M.; Weng, W.Y.; Huang, X.B.; Ji, Y.H.; Chen, E. Pharmacokinetics of scutellarin and its aglycone conjugated metabolites in rats. Eur. J. Drug Metab. Pharmacokinet. 2005, 30, 165–170. [Google Scholar] [CrossRef]
- Zhou, Y.; Ning, Q.; Yu, D.-N.; Li, W.-G.; Deng, J. Improved oral bioavailability of breviscapine via a Pluronic P85-modified liposomal delivery system. J. Pharm. Pharmacol. 2014, 66, 903–911. [Google Scholar] [CrossRef]
- Xie, J.; Luo, Y.; Chen, Y.; Ma, Y.; Yue, P.; Yang, M. Novel breviscapine nanocrystals modified by panax notoginseng saponins for enhancing bioavailability and synergistic anti-platelet aggregation effect. Colloids Surf. B Biointerfaces 2019, 175, 333–342. [Google Scholar]
- Ma, Y.; Li, H.; Guan, S. Enhancement of the oral bioavailability of breviscapine by nanoemulsions drug delivery system. Drug Dev. Ind. Pharm. 2015, 41, 177–182. [Google Scholar] [CrossRef]
- Samir, A.; Elgamal, B.M.; Gabr, H.; Sabaawy, H.E. Nanotechnology applications in hematological malignancies. Oncol. Rep. 2015, 34, 1097–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Mai, Y.; Gu, X.; Zhao, Y.; Di, X.; Ma, X.; Yang, J. A wet-milling method for the preparation of cilnidipine nanosuspension with enhanced dissolution and oral bioavailability. J. Drug Deliv. Sci. Technol. 2020, 55, 101371. [Google Scholar] [CrossRef]
- He, H.; Lu, Y.; Qi, J.; Zhu, Q.; Chen, Z.; Wu, W. Adapting liposomes for oral drug delivery. Acta Pharm. Sin. B 2019, 9, 36–48. [Google Scholar] [CrossRef]
- Bao, R.; Wang, Q.-L.; Li, R.; Adu-Frimpong, M.; Toreniyazov, E.; Ji, H.; Xu, X.-M.; Yu, J.-N. Improved oral bioavailability and target delivery of 6-shogaol via vitamin E TPGS-modified liposomes: Preparation, in-vitro and in-vivo characterizations. J. Drug Deliv. Sci. Technol. 2020, 59, 101842. [Google Scholar] [CrossRef]
- Guo, Y.; Shen, L.-X.; Lu, Y.-F.; Li, H.-Y.; Min, K.; Li, L.-F.; Yu, C.-Y.; Zheng, X. Preparation of Rutin-liposome Drug Delivery Systems and Evaluation on Their in vitro Antioxidant Activity. Chin. Herb. Med. 2016, 8, 371–375. [Google Scholar] [CrossRef]
- Toniazzo, T.; Peres, M.S.; Ramos, A.P.; Pinho, S.C. Encapsulation of quercetin in liposomes by ethanol injection and physicochemical characterization of dispersions and lyophilized vesicles. Food Biosci. 2017, 19, 17–25. [Google Scholar] [CrossRef]
- Silva-Weiss, A.; Quilaqueo, M.; Venegas, O.; Ahumada, M.; Silva, W.; Osorio, F.; Gimenez, B. Design of dipalmitoyl lecithin liposomes loaded with quercetin and rutin and their release kinetics from carboxymethyl cellulose edible films. J. Food Eng. 2018, 224, 165–173. [Google Scholar] [CrossRef]
- Liu, W.; Kong, Y.; Ye, A.; Shen, P.; Dong, L.; Xu, X.; Hou, Y.; Wang, Y.; Jin, Y.; Han, J. Preparation, formation mechanism and in vitro dynamic digestion behavior of quercetin-loaded liposomes in hydrogels. Food Hydrocoll. 2020, 104, 105743. [Google Scholar] [CrossRef]
- Hao, J.; Guo, B.; Yu, S.; Zhang, W.; Zhang, D.; Wang, J.; Wang, Y. Encapsulation of the flavonoid quercetin with chitosan-coated nano-liposomes. LWT Food Sci. Technol. 2017, 85, 37–44. [Google Scholar] [CrossRef]
- Kumar, N.; Rai, A.; Reddy, N.D.; Raj, P.V.; Jain, P.; Deshpande, P.; Mathew, G.; Kutty, N.G.; Udupa, N.; Rao, C.M. Silymarin liposomes improves oral bioavailability of silybin besides targeting hepatocytes, and immune cells. Pharmacol. Rep. 2014, 66, 788–798. [Google Scholar] [CrossRef]
- El-Samaligy, M.S.; Afifi, N.N.; Mahmoud, E.A. Evaluation of hybrid liposomes-encapsulated silymarin regarding physical stability and in vivo performance. Int. J. Pharm. 2006, 319, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shi, C.; Zhou, X.; Lin, T.; Gong, Y.; Yin, M.; Fan, L.; Wang, W.; Fang, J. Preparation of a nanoscale dihydromyricetin-phospholipid complex to improve the bioavailability: In vitro and in vivo evaluations. Eur. J. Pharm. Sci. 2019, 138, 104994. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Qiu, Q.; Luo, X.; Liu, X.; Sun, J.; Wang, C.; Lin, X.; Deng, Y.; Song, Y. Phyto-phospholipid complexes (phytosomes): A novel strategy to improve the bioavailability of active constituents. Asian J. Pharm. Sci. 2019, 14, 265–274. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, M.; Liu, Z.; Zhang, Y.; Gu, L.; Hu, G.; Chen, X.; Jia, J. Development of quercetin-phospholipid complex to improve the bioavailability and protection effects against carbon tetrachloride-induced hepatotoxicity in SD rats. Fitoterapia 2016, 113, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Gu, L.; Chen, J.; Zhang, Y.; Jiang, Y.; Zhao, L.; Bi, K.; Chen, X. Preparation and evaluation of kaempferol-phospholipid complex for pharmacokinetics and bioavailability in SD rats. J. Pharm. Biomed. Anal. 2015, 114, 168–175. [Google Scholar] [CrossRef]
- Chi, C.; Zhang, C.; Liu, Y.; Nie, H.; Zhou, J.; Ding, Y. Phytosome-nanosuspensions for silybin-phospholipid complex with increased bioavailability and hepatoprotection efficacy. Eur. J. Pharm. Sci. 2020, 144, 105212. [Google Scholar] [CrossRef] [PubMed]
- Maiti, K.; Mukherjee, K.; Gantait, A.; Saha, B.P.; Mukherjee, P.K. Curcumin–phospholipid complex: Preparation, therapeutic evaluation and pharmacokinetic study in rats. Int. J. Pharm. 2007, 330, 155–163. [Google Scholar] [CrossRef]
- Jena, S.K.; Singh, C.; Dora, C.P.; Suresh, S. Development of tamoxifen-phospholipid complex: Novel approach for improving solubility and bioavailability. Int. J. Pharm. 2014, 473, 1–9. [Google Scholar] [CrossRef]
- Li, M.; Azad, M.; Davé, R.; Bilgili, E. Nanomilling of Drugs for Bioavailability Enhancement: A Holistic Formulation-Process Perspective. Pharmaceutics 2016, 8, 17. [Google Scholar] [CrossRef] [Green Version]
- Chu, C.; Tong, S.S.; Xu, Y.; Wang, L.; Fu, M.; Ge, Y.R.; Yu, J.N.; Xu, X.M. Proliposomes for oral delivery of dehydrosilymarin: Preparation and evaluation in vitro and invivo. Acta Pharmacol. Sin. 2011, 32, 973–980. [Google Scholar] [CrossRef] [Green Version]
- Chu, J.; Zou, C.; Li, C.; Zhang, J.; Zhao, Y.; Xu, M.; Wu, T.; Ju, W. Determination of scutellarein in human plasma by enzymatic hydrolysis and liquid chromatograph-triple quadrupole tandem mass spectrometer analysis: Its use in determining the bioequivalence of scutellarin in Chinese volunteers. Eur. J. Integr. Med. 2016, 8, 519–525. [Google Scholar] [CrossRef]
- Bilgili, E.; Rahman, M.; Palacios, D.; Arevalo, F. Impact of polymers on the aggregation of wet-milled itraconazole particles and their dissolution from spray-dried nanocomposites. Adv. Powder Technol. 2018, 29, 2941–2956. [Google Scholar] [CrossRef]
- Koradia, K.D.; Sheth, N.R.; Koradia, H.D.; Dabhi, M.R. Ziprasidone nanocrystals by wet media milling followed by spray drying and lyophilization: Formulation and process parameter optimization. J. Drug Deliv. Sci. Technol. 2018, 43, 73–84. [Google Scholar] [CrossRef]
- Tan, Q.; Liu, S.; Chen, X.; Wu, M.; Wang, H.; Yin, H.; He, D.; Xiong, H.; Zhang, J. Design and Evaluation of a Novel Evodiamine-Phospholipid Complex for Improved Oral Bioavailability. AAPS PharmSciTech 2012, 13, 534–547. [Google Scholar] [CrossRef] [Green Version]
- Mazumder, A.; Dwivedi, A.; Preez, J.L.D.; Plessis, J.D. In vitro wound healing and cytotoxic effects of sinigrin-phytosome complex. Int. J. Pharm. 2016, 498, 283–293. [Google Scholar] [CrossRef]
- Patel, P.J.; Gajera, B.Y.; Dave, R.H. A quality-by-design study to develop Nifedipine nanosuspension: Examining the relative impact of formulation variables, wet media milling process parameters and excipient variability on drug product quality attributes. Drug Dev. Ind. Pharm. 2018, 44, 1942–1952. [Google Scholar] [CrossRef] [PubMed]
- Freag, M.S.; Elnaggar, Y.; Abdallah, O.Y. Lyophilized phytosomal nanocarriers as platforms for enhanced diosmin delivery: Optimization and ex vivo permeation. Int. J. Nanomed. 2013, 8, 2385–2397. [Google Scholar]
- da Silva, A.B.; Miniter, M.; Thom, W.; Hewitt, R.E.; Wills, J.; Jugdaohsingh, R.; Powell, J.J. Gastrointestinal Absorption and Toxicity of Nanoparticles and Microparticles: Myth, Reality and Pitfalls explored through Titanium Dioxide. Curr. Opin. Toxicol. 2020, 19, 112–120. [Google Scholar] [CrossRef]
- Kuche, K.; Bhargavi, N.; Parkash, C.; Jain, S. Drug-Phospholipid Complex—A Go Through Strategy for Enhanced Oral Bioavailability. AAPS PharmSciTech 2019, 20, 43. [Google Scholar] [CrossRef]
- Ji, P.; Wang, L.; Chen, Y.; Wang, S.; Wu, Z.; Qi, X. Hyaluronic acid hydrophilic surface rehabilitating curcumin nanocrystals for targeted breast cancer treatment with prolonged biodistribution. Biomater. Sci. 2020, 8, 462–472. [Google Scholar] [CrossRef]
Time (min) | Flow Rate (mL/min) | %A | %B |
---|---|---|---|
0.0 | 0.2 | 60 | 40 |
0.5 | 0.2 | 60 | 40 |
1.2 | 0.2 | 25 | 75 |
1.8 | 0.2 | 5 | 95 |
2.8 | 0.2 | 5 | 95 |
3.0 | 0.2 | 60 | 40 |
3.5 | 0.2 | 60 | 40 |
Formulation | Drug-Lipid Radio | Mean Particle Size/nm | PDI | EE%/CE% | Zeta Potential/mV |
---|---|---|---|---|---|
BVP-NS | - | 277.4 ± 5.6 | 0.234 ± 0.070 | - | −15.2 ± 0.6 |
BVP-LP | - | 265.3 ± 13.0 | 0.221 ± 0.058 | 76.41 ± 5.61 | −13.1 ± 1.3 |
BVP-PLC | 1:1 | 272.2 ± 20.1 | 0.29 ± 0.068 | 61.31 ± 2.32 | −20.5 ± 0.8 |
BVP-PLC | 1:2 | 298.6 ± 36.6 | 0.278 ± 0.051 | 72.90 ± 3.21 | −22.2 ± 1.0 |
BVP-PLC | 1:3 | 338.4 ± 26.7 | 0.266 ± 0.047 | 79.36 ± 3.76 | −21.0 ± 0.9 |
Parameter | Unit | BVP | BVP-NS | BVP-LP | BVP-PLC (1:2) |
---|---|---|---|---|---|
AUC(0–t) | μg/L·h | 803.43 ± 168.33 | 1976.22 ± 185.29 ** | 1908.26 ± 316.62 ** | 3786.72 ± 356.01 ** |
AUC(0–∞) | μg/L·h | 810.65 ± 171.45 | 2007.77 ± 194.50 ** | 2422.41 ± 491.91 ** | 4460.31 ± 597.51 ** |
MRT(0–t) | h | 7.30 ± 0.49 | 6.70 ± 0.41 | 10.26 ± 0.74 ** | 10.79 ± 0.25 ** |
MRT(0–∞) | h | 9.57 ± 0.59 | 9.41 ± 1.07 | 15.83 ± 2.36 ** | 14.75 ± 2.75 * |
t1/2z | h | 3.50 ± 0.53 | 4.20 ± 0.76 | 8.89 ± 1.40 ** | 8.95 ± 2.80 ** |
Tmax | h | 3.60 ± 0.89 | 2.00 ± 0.00 * | 6.8 ± 1.10 ** | 12 ± 0 ** |
Cmax | μg/L | 101.70 ± 27.45 | 444.06 ± 54.10 ** | 166.82 ± 17.72 ** | 291.20 ± 43.08 ** |
Relative Bioavailability | - | 245.97% | 237.51% | 471.32% |
Parameter | Unit | BVP | 1: 1 | 1: 2 | 1: 3 |
---|---|---|---|---|---|
AUC(0–t) | μg/L·h | 803.43 ± 168.33 | 948.50 ± 70.46 | 3786.72 ± 356.01 ** | 1261.41 ± 124.99 ** |
AUC(0–∞) | μg/L·h | 810.65 ± 171.45 | 1002.07 ± 90.48 | 4460.31 ± 597.51 ** | 2327.07 ± 321.38 ** |
MRT(0–t) | h | 7.30 ± 0.49 | 8.03 ± 0.31 * | 10.79 ± 0.25 ** | 12.99 ± 0.71 ** |
MRT(0–∞) | h | 9.57 ± 0.59 | 10.47 ± 0.83 | 14.75 ± 2.75 * | 29.72 ± 6.56 ** |
t1/2z | h | 3.50 ± 0.53 | 4.69 ± 2.82 | 8.95 ± 2.80 ** | 17.67 ± 3.63 ** |
Tmax | h | 3.60 ± 0.89 | 5.60 ± 0.89 ** | 12.00 ± 0.00 ** | 12.00 ± 0.00 ** |
Cmax | μg/L | 101.70 ± 27.45 | 117.22 ± 17.73 | 291.20 ± 43.08 ** | 100.95 ± 19.00 |
Relative Bioavailability | - | 118.06% | 471.32% | 157.00% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Z.; Yin, J.; Xiao, P.; Chen, J.; Gou, J.; Wang, Y.; Zhang, Y.; Yin, T.; Tang, X.; He, H. Improving Breviscapine Oral Bioavailability by Preparing Nanosuspensions, Liposomes and Phospholipid Complexes. Pharmaceutics 2021, 13, 132. https://doi.org/10.3390/pharmaceutics13020132
Song Z, Yin J, Xiao P, Chen J, Gou J, Wang Y, Zhang Y, Yin T, Tang X, He H. Improving Breviscapine Oral Bioavailability by Preparing Nanosuspensions, Liposomes and Phospholipid Complexes. Pharmaceutics. 2021; 13(2):132. https://doi.org/10.3390/pharmaceutics13020132
Chicago/Turabian StyleSong, Zilin, Jiaojiao Yin, Peifu Xiao, Jin Chen, Jingxin Gou, Yanjiao Wang, Yu Zhang, Tian Yin, Xing Tang, and Haibing He. 2021. "Improving Breviscapine Oral Bioavailability by Preparing Nanosuspensions, Liposomes and Phospholipid Complexes" Pharmaceutics 13, no. 2: 132. https://doi.org/10.3390/pharmaceutics13020132
APA StyleSong, Z., Yin, J., Xiao, P., Chen, J., Gou, J., Wang, Y., Zhang, Y., Yin, T., Tang, X., & He, H. (2021). Improving Breviscapine Oral Bioavailability by Preparing Nanosuspensions, Liposomes and Phospholipid Complexes. Pharmaceutics, 13(2), 132. https://doi.org/10.3390/pharmaceutics13020132