Pharmacokinetic Estimation Models-based Approach to Predict Clinical Implications for CYP Induction by Calcitriol in Human Cryopreserved Hepatocytes and HepaRG Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HepaRG Seeding and Culture
2.3. Human Hepatocyte Seeding and Culture
2.4. Test Article Treatment
2.5. RNA Isolation and RT-qPCR
2.6. CYP Activity Test
2.7. Determination of Emax and EC50
2.8. Prediction of Clinical Significance of CYP Induction by Calcitriol—Basic Kinetic Model
2.9. Prediction of Clinical Significance of CYP Induction by Calcitriol—Static Mechanistic Model
2.10. Prediction of Clinical Significance of CYP Induction by Calcitriol—Dynamic Mechanistic Model (PBPK Model)
2.11. Data Analysis
3. Results
3.2. CYP Activity Test
3.3. Determination of Emax and EC50
3.4. Prediction of Clinical Significance of CYP Induction by Calcitriol Using a Basic Kinetic Model
3.5. Prediction of Clinical Significance of CYP Induction by Calcitriol Using Static Mechanistic Model
3.6. Prediction of Clinical Significance of CYP3A4 Induction by Calcitriol Using PBPK Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bikle, D.D.; Christakos, S. New aspects of vitamin D metabolism and action—Addressing the skin as source and target. Nat. Rev. Endocrinol. 2020, 16, 234–252. [Google Scholar] [CrossRef] [PubMed]
- Bikle, D.D. Vitamin D metabolism, mechanism of action, and clinical applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurbel, S.; Radić, R.; Kotromanović, Z.; Puseljić, Z.; Kratofil, B. A calcium homeostasis model: Orchestration of fast acting PTH and calcitonin with slow calcitriol. Med. Hypotheses 2003, 61, 346–350. [Google Scholar] [CrossRef]
- Food and Drug Administration. Label of Rocaltrol®. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/1998/21068lbl.pdf (accessed on 10 November 2020).
- Food and Drug Administration. Label of Calcijex®. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/018874s022lbl.pdf (accessed on 10 November 2020).
- A Hershberger, P.; Yu, W.D.; A Modzelewski, R.; Rueger, R.M.; Johnson, C.S.; Trump, D.L. Calcitriol (1,25-dihydroxycholecalciferol) enhances paclitaxel antitumor activity in vitro and in vivo and accelerates paclitaxel-induced apoptosis. Clin. Cancer Res. 2001, 7, 1043–1051. [Google Scholar]
- Johnson, C.S.; Muindi, J.R.; A Hershberger, P.; Trump, D.L. The antitumor efficacy of calcitriol: Preclinical studies. Anticancer Res. 2006, 26, 2543–2549. [Google Scholar]
- Light, B.W.; Yu, W.D.; McElwain, M.C.; Russell, D.M.; Trump, D.L.; Johnson, C.S. Potentiation of cisplatin antitumor activity using a vitamin D analogue in a murine squamous cell carcinoma model system. Cancer Res. 1997, 57, 3759–3764. [Google Scholar]
- A Eisman, J.; Barkla, D.H.; Tutton, P.J. Suppression of in vivo growth of human cancer solid tumor xenografts by 1,25-dihydroxyvitamin D3. Cancer Res. 1987, 47, 21–25. [Google Scholar]
- Kawa, S.; Nikaido, T.; Aoki, Y.; Zhai, Y.L.; Kumagai, T.; Furihata, K.; Fujii, S.; Kiyosawa, K. Vitamin D analogues up-regulate p21 and p27 during growth inhibition of pancreatic cancer cell lines. Br. J. Cancer 1997, 76, 884–889. [Google Scholar] [CrossRef] [Green Version]
- Shabahang, M.; Buras, R.R.; Davoodi, F.; Schumaker, L.M.; Nauta, R.J.; Evans, S.R. 1,25-Dihydroxyvitamin D3 receptor as a marker of human colon carcinoma cell line differentiation and growth inhibition. Cancer Res. 1993, 53, 3712–3718. [Google Scholar]
- Gross, C.; Stamey, T.; Hancock, S.; Feldman, D. Treatment of early recurrent prostate cancer with 1,25-dihydroxyvitamin d3 (calcitriol). J. Urol. 1998, 159, 2035–2040. [Google Scholar] [CrossRef]
- Trudel, D.; Van der Kwast, T.; Nonn, L.; Vieth, R. Randomized clinical trial of vitamin D3 doses on prostatic vitamin D me-tabolite levels and ki67 labeling in prostate cancer patients. J. Clin. Endocrinol. Metab. 2013, 98, 1498–1507. [Google Scholar]
- Trump, D.L. Calcitriol and cancer therapy: A missed opportunity. Bone Rep. 2018, 9, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, M.; Munoz-Castaneda, J.R.; Almaden, Y. Therapeutic use of calcitriol. Curr. Vasc. Pharmacol. 2014, 12, 294–299. [Google Scholar] [CrossRef] [PubMed]
- Gil, Á.; Plaza-Díaz, J.; Mesa, M.D. Vitamin D: Classic and novel actions. Ann. Nutr. Metab. 2018, 72, 87–95. [Google Scholar] [CrossRef]
- Díaz, L.; Noyola-Martínez, N.; Barrera, D.; Hernández, G.; Avila, E.; Halhali, A.; Larrea, F. Calcitriol inhibits TNF-α-induced inflammatory cytokines in human trophoblasts. J. Reprod. Immunol. 2009, 81, 17–24. [Google Scholar] [CrossRef]
- Colotta, F.; Jansson, B.; Bonelli, F. Modulation of inflammatory and immune responses by vitamin D. J. Autoimmun. 2017, 85, 78–97. [Google Scholar] [CrossRef]
- Baeke, F.; Takiishi, T.; Korf, H.; Gysemans, C.; Mathieu, C. Vitamin D: Modulator of the immune system. Curr. Opin. Pharmacol. 2010, 10, 482–496. [Google Scholar] [CrossRef]
- Ramnath, N.; Daignault-Newton, S.; Dy, G.K.; Muindi, J.R.; Adjei, A.; Elingrod, V.L.; Kalemkerian, G.P.; Cease, K.B.; Stella, P.J.; Brenner, D.E.; et al. A phase I/II pharmacokinetic and pharmacogenomic study of calcitriol in combination with cisplatin and docetaxel in advanced non-small-cell lung cancer. Cancer Chemother. Pharmacol. 2013, 71, 1173–1182. [Google Scholar] [CrossRef] [Green Version]
- Beer, T.M.; Eilers, K.M.; Garzotto, M.; Egorin, M.J.; Lowe, B.A.; Henner, W.D. Weekly high-dose calcitriol and docetaxel in metastatic androgen-independent prostate cancer. J. Clin. Oncol. 2003, 21, 123–128. [Google Scholar] [CrossRef]
- Van Etten, E.; Gysemans, C.; Branisteanu, D.D.; Verstuyf, A.; Bouillon, R.; Overbergh, L.; Mathieu, C. Novel insights in the immune function of the vitamin D system: Synergism with interferon-beta. J. Steroid Biochem. Mol. Biol. 2007, 103, 546–551. [Google Scholar] [CrossRef]
- Ng, K.; Nimeiri, H.S.; McCleary, N.J.; Abrams, T.A.; Yurgelun, M.B.; Cleary, J.M.; Rubinson, D.A.; Schrag, D.; Miksad, R.; Bullock, A.J.; et al. Effect of high-dose vs standard-dose vitamin D3 supplementation on progression-free survival among patients with advanced or metastatic colorectal cancer: The sunshine randomized clinical trial. JAMA 2019, 321, 1370–1379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, R.; Tayrouz, Y.; Bsc, K.R.; Burhenne, J.; Weiss, J.; Mikus, G.; Haefeli, W.E. Substantial pharmacokinetic interaction between digoxin and ritonavir in healthy volunteers*1. Clin. Pharmacol. Ther. 2004, 76, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Hebert, M.F.; Fisher, R.M.; Marsh, C.L.; Dressler, D.; Bekersky, I. Effects of rifampin on tacrolimus pharmacokinetics in healthy volunteers. J. Clin. Pharmacol. 1999, 39, 91–96. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.A. Comparative pharmacokinetic interaction profiles of pravastatin, simvastatin, and atorvastatin when coadministered with cytochrome P450 inhibitors. Am. J. Card. 2004, 94, 1140–1146. [Google Scholar] [CrossRef]
- Djoerban, Z.; Setiabudy, R. Pharmacokinetic interaction between efavirenz and rifampicin in healthy volunteers. Int J. Clin. Pharmacol. Ther. 2011, 49, 162–168. [Google Scholar]
- Mueller, S.C.; Majcher-Peszynska, J.; Uehleke, B.; Klammt, S.; Mundkowski, R.G.; Miekisch, W.; Sievers, H.; Bauer, S.; Frank, B.; Kundt, G.; et al. The extent of induction of CYP3A by St. John’s wort varies among products and is linked to hyperforin dose. Eur. J. Clin. Pharmacol. 2006, 62, 29–36. [Google Scholar] [CrossRef]
- Guengerich, F.P. Cytochrome P450 and chemical toxicology. Chem. Res. Toxicol. 2008, 21, 70–83. [Google Scholar] [CrossRef]
- Drocourt, L.; Ourlin, J.-C.; Pascussi, J.-M.; Maurel, P.; Vilarem, M.-J. Expression of CYP3A4, CYP2B6, and CYP2C9 is regulated by the vitamin D receptor pathway in primary humanh. J. Biol. Chem. 2002, 277, 25125–25132. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Goldstein, J.A. The transcriptional regulation of the human CYP2C genes. Curr. Drug Metab. 2009, 10, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. Guidance for Industry: In vitro Drug Interaction Studies-Cytochrome P450 Enzyme- and Transporter- Mediated Drug Interactions. Available online: https://www.fda.gov/media/134582/download (accessed on 10 November 2020).
- Lambert, C.B.; Spire, C.; Claude, N.; Guillouzo, A. Dose-and time-dependent effects of phenobarbital on gene expression pro-filing in human hepatoma HepaRG cells. Toxicol. Appl. Pharmacol. 2009, 234, 345–360. [Google Scholar] [CrossRef]
- Andersson, T.B.; Kanebratt, K.P.; Kenna, J.G. The HepaRG cell line: A unique in vitro tool for understanding drug metabolism and toxicology in human. Expert Opin. Drug Metab. Toxicol. 2012, 8, 909–920. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Guidance for industry: Clinical Drug Interaction Studies - Cytochrome P450 Enzyme- and Transporter- Mediated Drug Interactions. Available online: https://www.fda.gov/media/134581/download (accessed on 10 November 2020).
- Sudsakorn, S.; Bahadduri, P.; Fretland, J.; Lu, C. 2020 FDA Drug-drug Interaction Guidance: A comparison analysis and action plan by pharmaceutical industrial scientists. Curr. Drug Metab. 2020, 21, 403–426. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Clinical Pharmacology and Biopharmaceutics Review of Rocaltrol®. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/98/021068a_clinphrm.pdf (accessed on 10 November 2020).
- Brandi, L.; Egfjord, M.; Olgaard, K. Pharmacokinetics of 1,25(OH)2D3 and 1α(OH)D3 in normal and uraemic men. Nephrol. Dial. Transplant. 2002, 17, 829–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fakih, M.G.; Trump, D.L.; Muindi, J.R.; Black, J.D.; Bernardi, R.J.; Creaven, P.J.; Schwartz, J.; Brattain, M.G.; Hutson, A.; French, R.; et al. A Phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral gefitinib in patients with advanced solid tumors. Clin. Cancer Res. 2007, 13, 1216–1223. [Google Scholar] [CrossRef] [Green Version]
- Rostami-Hodjegan, A.; Tucker, G. ’In silico’ simulations to assess the ’in vivo’ consequences of ’in vitro’ metabolic drug-drug interactions. Drug Discov. Today Technol. 2004, 1, 441–448. [Google Scholar] [CrossRef]
- Ito, K.; Iwatsubo, T.; Kanamitsu, S.; Ueda, K.; Suzuki, H.; Sugiyama, Y. Prediction of pharmacokinetic alterations caused by drug-drug interactions: Metabolic interaction in the liver. Pharmacol. Rev. 1998, 50, 387–412. [Google Scholar]
- Yang, J.; Jamei, M.; Yeo, K.R.; Tucker, G.T.; Rostami-Hodjegan, A. Prediction of intestinal first-pass drug metabolism. Curr. Drug Metab. 2007, 8, 676–684. [Google Scholar] [CrossRef]
- Yang, J.; Jamei, M.; Yeo, K.R.; Rostami-Hodjegan, A.; Tucker, G.T. Misuse of the well-stirred model of hepatic drug clearance. Drug Metab. Dispos. 2007, 35, 501–502. [Google Scholar] [CrossRef]
- Almond, L.M.; Mukadam, S.; Gardner, I.; Okialda, K.; Wong, S.; Hatley, O.; Tay, S.; Rowland-Yeo, K.; Jamei, M.; Rostami-Hodjegan, A.; et al. Prediction of drug-drug interactions arising from CYP3A induction using a physiologically based dynamic model. Drug Metab. Dispos. 2016, 44, 821–832. [Google Scholar] [CrossRef]
- Cheeti, S.; Budha, N.R.; Rajan, S.; Dresser, M.J.; Jin, J. A physiologically based pharmacokinetic (PBPK) approach to evaluate pharmacokinetics in patients with cancer. Biopharm. Drug Dispos. 2013, 34, 141–154. [Google Scholar] [CrossRef]
- Mendes, M.D.S.; Hatley, O.; Gill, K.L.; Yeo, K.R.; Ke, A.B. A physiologically based pharmacokinetic-pharmacodynamic modelling approach to predict incidence of neutropenia as a result of drug-drug interactions of paclitaxel in cancer patients. Eur. J. Pharm. Sci. 2020, 150, 105355. [Google Scholar] [CrossRef]
- Rodgers, T.; Rowland, M. Physiologically based pharmacokinetic modelling 2: Predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J. Pharm. Sci. 2006, 95, 1238–1257. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, P.; Nagini, S. Cytochrome P450 structure, function and clinical significance: A Review. Curr. Drug Targets 2018, 19, 38–54. [Google Scholar] [CrossRef] [PubMed]
- Lynch, T.; Price, A. The effect of cytochrome P450 metabolism on drug response, interactions, and adverse effects. Am. Fam. Physician 2007, 76, 391–396. [Google Scholar] [PubMed]
- Makishima, M.; Lu, T.T.; Xie, W.; Whitfield, G.K.; Domoto, H.; Evans, R.M.; Haussler, M.R.; Mangelsdorf, D.J. Vitamin D receptor as an intestinal bile acid sensor. Science 2002, 296, 1313–1316. [Google Scholar] [CrossRef] [Green Version]
- Fahmi, O.A.; Kish, M.; Boldt, S.; Obach, R.S. Cytochrome P450 3A4 mRNA is a more reliable marker than CYP3A4 activity for detecting pregnane X receptor-activated induction of drug-metabolizing enzymes. Drug Metab. Dispos. 2010, 38, 1605–1611. [Google Scholar] [CrossRef] [Green Version]
- Yajima, K.; Uno, Y.; Murayama, N.; Uehara, S.; Shimizu, M.; Nakamura, C.; Iwasaki, K.; Utoh, M.; Yamazaki, H. Evaluation of 23 lots of commercially available cryopreserved hepatocytes for induction assays of human cytochromes P450. Drug Metab. Dispos. 2014, 42, 867–871. [Google Scholar] [CrossRef]
- Sun, M.; Zhang, Q.; Yang, X.; Qian, S.Y.; Guo, B. Vitamin D enhances the efficacy of irinotecan through miR-627–mediated inhibition of intratumoral drug metabolism. Mol. Cancer Ther. 2016, 15, 2086–2095. [Google Scholar] [CrossRef] [Green Version]
- Food and Drug Administration. Guidance for Industry: Statistical Approaches to Establishing Bioequivalence. Available online: https://www.fda.gov/media/70958/download (accessed on 15 January 2021).
- Einolf, H.J.; Chen, L.; Fahmi, O.A.; Gibson, C.R.; Obach, R.S.; Shebley, M.; Silva, J.; Sinz, M.W.; Unadkat, J.D.; Zhang, L.; et al. Evaluation of various static and dynamic modeling methods to predict clinical CYP3A induction using in vitro CYP3A4 mRNA induction data. Clin. Pharmacol. Ther. 2014, 95, 179–188. [Google Scholar] [CrossRef]
- Yoshida, K.; Zhao, P.; Zhang, L.; Abernethy, D.R.; Rekić, D.; Reynolds, K.S.; Galetin, A.; Huang, S.-M. In vitro–in vivo extrapolation of metabolism-and transporter-mediated drug–drug interactions—overview of basic prediction methods. J. Pharm. Sci. 2017, 106, 2209–2213. [Google Scholar] [CrossRef] [Green Version]
- Chow, E.C.Y.; Quach, H.P.; Vieth, R.; Pang, K.S. Temporal changes in tissue 1α,25-dihydroxyvitamin D3, vitamin D receptor target genes, and calcium and PTH levels after 1,25(OH)2D3 treatment in mice. Am. J. Physiol. Metab. 2013, 304, E977–E989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thelen, K.; Dressman, J.B. Cytochrome P450-mediated metabolism in the human gut wall. J. Pharm. Pharmacol. 2009, 61, 541–558. [Google Scholar] [CrossRef] [PubMed]
- Holtbecker, N.; Fromm, M.F.; Kroemer, H.K.; E Ohnhaus, E.; Heidemann, H. The nifedipine-rifampin interaction. Evidence for induction of gut wall metabolism. Drug Metab. Dispos. 1996, 24, 1121–1123. [Google Scholar] [PubMed]
- Gorski, J.C.; Jones, D.R.; Haehner-Daniels, B.D.; Hamman, M.A.; O’Mara Jr, E.M.; Hall, S.D. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin. Pharmacol. Ther. 1998, 64, 133–143. [Google Scholar] [CrossRef]
- Fromm, M.F.; Busse, D.; Kroemer, H.K.; Eichelbaum, M. Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin. Hepatology 1996, 24, 796–801. [Google Scholar] [CrossRef]
- Speer, J.E.; Wang, Y.; Fallon, J.K.; Smith, P.C.; Allbritton, N.L. Evaluation of human primary intestinal monolayers for drug metabolizing capabilities. J. Biol. Eng. 2019, 13, 82. [Google Scholar] [CrossRef]
- Miller, G.J.; E Stapleton, G.; E Hedlund, T.; A Moffat, K. Vitamin D receptor expression, 24-hydroxylase activity, and inhibition of growth by 1alpha,25-dihydroxyvitamin D3 in seven human prostatic carcinoma cell lines. Clin. Cancer Res. 1995, 1, 997–1003. [Google Scholar]
- Chouvet, C.; Vicard, E.; Devonec, M.; Saez, S. 1,25-Dihydroxyvitamin D3 inhibitory effect on the growth of two human breast cancer cell lines (MCF-7, BT-20). J. Steroid Biochem. 1986, 24, 373–376. [Google Scholar] [CrossRef]
- Getzenberg, R.H.; Light, B.W.; Lapco, P.E.; Konety, B.R.; Nangia, A.K.; Acierno, J.S.; Dhir, R.; Shurin, Z.; Day, R.S.; Trump, D.L.; et al. Vitamin d inhibition of prostate adenocarcinoma growth and metastasis in the dunning rat prostate model system. Urology 1997, 50, 999–1006. [Google Scholar] [CrossRef]
- Colston, K.W.; Chander, S.K.; Mackay, A.G.; Coombes, R. Effects of synthetic vitamin d analogues on breast cancer cell proliferation in vivo and in vitro. Biochem. Pharmacol. 1992, 44, 693–702. [Google Scholar] [CrossRef]
- Beer, T.M.; Venner, P.M.; Ryan, C.W.; Petrylak, D.; Chatta, G.; Ruether, J.D.; Chi, K.N.; Curd, J.G.; Deloughery, T.G. High dose calcitriol may reduce thrombosis in cancer patients. Br. J. Haematol. 2006, 135, 392–394. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Chang, J.-H.; Chen, C.-C.; Su, S.-B.; Yang, L.-K.; Ma, W.-Y.; Zheng, C.-M.; Diang, L.-K.; Lu, K.-C. Calcitriol treatment attenuates inflammation and oxidative stress in hemodialysis patients with secondary hyperparathyroidism. Tohoku J. Exp. Med. 2011, 223, 153–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mok, C.K.; Ng, Y.L.; Ahidjo, B.A.; Lee, R.C.H.; Loe, M.W.C.; Liu, J.; Tan, K.S.; Kaur, P.; Chng, W.J.; Wong, J.E.L. Calcitriol, the active form of vitamin D, is a promising candidate for COVID-19 prophylaxis. bioRxiv 2020. [Google Scholar]
- Hengstler, J.G.; Utesch, D.; Steinberg, P.; Platt, K.; Diener, B.; Ringel, M.; Swales, N.; Fischer, T.; Biefang, K.; Gerl, M. Cryopreserved primary hepatocytes as a constantly available in vitro model for the evaluation of human and animal drug metabolism and enzyme induction. Drug Metab. Rev. 2000, 32, 81–118. [Google Scholar] [CrossRef] [PubMed]
- Hengstler, J.G.; Ringel, M.; Biefang, K.; Hammel, S.; Milbert, U.; Gerl, M.; Klebach, M.; Diener, B.; Platt, K.L.; Böttger, T.; et al. Cultures with cryopreserved hepatocytes: Applicability for studies of enzyme induction. Chem. Interact. 2000, 125, 51–73. [Google Scholar] [CrossRef]
- Roymans, D.; Annaert, P.; Van Houdt, J.; Weygers, A.; Noukens, J.; Sensenhauser, C.; Silva, J.; Van Looveren, C.; Hendrickx, J.; Mannens, G.; et al. Expression and induction potential of cytochromes P450 in human cryopreserved hepatocytes. Drug Metab. Dispos. 2005, 33, 1004–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia, M.; Rager, J.; Wang, Q.; Strab, R.; Hidalgo, I.J.; Owen, A.; Li, J. Cryopreserved human hepatocytes as alternative in vitro model for cytochrome p450 induction studies. In Vitro Cell. Dev. Biol. Anim. 2003, 39, 283–287. [Google Scholar] [CrossRef]
- Braver-Sewradj, S.P.D.; Braver, M.W.D.; Vermeulen, N.P.; Commandeur, J.N.; Richert, L.; Vos, J.C. Inter-donor variability of phase I/phase II metabolism of three reference drugs in cryopreserved primary human hepatocytes in suspension and monolayer. Toxicol. In Vitro 2016, 33, 71–79. [Google Scholar] [CrossRef]
- Wrighton, S.A.; Schuetz, E.G.; Thummel, K.E.; Shen, D.; Korzekwa, K.R.; Watkins, P.B. The human CYP3A subfamily: Practical considerations. Drug Metab. Rev. 2000, 32, 339–361. [Google Scholar] [CrossRef]
- Chae, Y.-J.; Cho, K.H.; Yoon, I.-S.; Noh, C.-K.; Lee, H.-J.; Park, Y.; Ji, E.; Seo, M.-D.; Maeng, H.-J. Vitamin D receptor-mediated upregulation of CYP3A4 and MDR1 by quercetin in Caco-2 cells. Planta Med. 2015, 82, 121–130. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Ong, S.S.; Chai, S.C.; Chen, T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin. Drug Metab. Toxicol. 2012, 8, 803–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameters | Definition | Equation or value used | Source |
---|---|---|---|
Cg | Effect of induction in gut | [32] | |
Ch | Effect of induction in liver | [32] | |
Fg | Fraction available after intestinal metabolism | 1 | [32] |
fm | Fraction of hepatic clearance of the substrate mediated by the cytochrome P450 (CYP) enzyme that is subject to induction | 1 | |
d | Scaling factor | 1 | [32] |
[I]g | Concentration of calcitriol in gut | [40] | |
[I]h | Concentration of calcitriol in liver | [41] | |
fu,p | Unbound fraction in plasma | 0.01 | [32] |
Fa | Fraction absorbed after oral administration | 1 | [42] |
Ka | First order absorption rate constant in vivo | 0.1 min−1 | [41] |
Qh | Hepatic blood flow | 97 L/h/70 kg | [42] |
Qen | Blood flow through enterocytes | 18 L/h/70 kg | [43] |
RB | Blood-to-plasma concentration ratio | 1 |
CYPs | Parameter | Hepatocyte #1 | Hepatocyte #2 | Hepatocyte #3 | HepaRG |
---|---|---|---|---|---|
CYP2B6 | Emax | NA a | NA | NA | 9.647 |
EC50 (nM) | NA | NA | NA | 45.330 | |
CYP3A4 | Emax | 50.120 | 4.462 | 11.560 | 39.650 |
EC50 (nM) | 49.110 | 44.270 | 32.560 | 25.850 | |
CYP2C8 | Emax | 2.879 | 2.305 | NA | 6.941 |
EC50 (nM) | 2.733 | 2.239 | NA | 71.850 | |
CYP2C9 | Emax | 2.141 | NA | NA | 4.208 |
EC50 (nM) | 2.461 | NA | NA | 32.110 |
CYPs | Dose Regimen | Hepatocyte #1 | Hepatocyte #2 | Hepatocyte #3 | HepaRG |
---|---|---|---|---|---|
CYP2B6 | Calcitriol standard PO regimen a | NA d | NA | NA | 0.886 |
Calcitriol standard IV regimen b | NA | NA | NA | 0.605 | |
Calcitriol high-dose IV regimen c | NA | NA | NA | 0.168 | |
CYP3A4 | Calcitriol standard PO regimen | 0.618 | 0.943 | 0.824 | 0.522 |
Calcitriol standard IV regimen | 0.282 | 0.800 | 0.537 | 0.183 | |
Calcitriol high-dose IV regimen | 0.039 | 0.301 | 0.127 | 0.037 | |
CYP2C8 | Calcitriol standard PO regimen | 0.655 | 0.669 | NA | 0.945 |
Calcitriol standard IV regimen | 0.415 | 0.446 | NA | 0.767 | |
Calcitriol high-dose IV regimen | 0.269 | 0.312 | NA | 0.264 | |
CYP2C9 | Calcitriol standard PO regimen | 0.701 | NA | NA | 0.927 |
Calcitriol standard IV regimen | 0.475 | NA | NA | 0.719 | |
Calcitriol high-dose IV regimen | 0.329 | NA | NA | 0.284 |
CYPs | Dose Regimen | Hepatocyte #1 | Hepatocyte #2 | Hepatocyte #3 | HepaRG |
---|---|---|---|---|---|
CYP2B6 | Calcitriol standard PO regimen a | NA d | NA | NA | 1.000 |
Calcitriol standard IV regimen b | NA | NA | NA | 0.998 | |
Calcitriol high-dose IV regimen c | NA | NA | NA | 0.967 | |
CYP3A4 | Calcitriol standard PO regimen | 0.998 | 1.000 | 0.999 | 0.997 |
Calcitriol standard IV regimen | 0.989 | 0.999 | 0.996 | 0.983 | |
Calcitriol high-dose IV regimen | 0.858 | 0.984 | 0.946 | 0.802 | |
CYP2C8 | Calcitriol standard PO regimen | 0.998 | 0.998 | NA | 1.000 |
Calcitriol standard IV regimen | 0.989 | 0.989 | NA | 0.999 | |
Calcitriol high dose IV regimen | 0.861 | 0.865 | NA | 0.985 | |
CYP2C9 | Calcitriol standard PO regimen | 0.998 | NA | NA | 1.000 |
Calcitriol standard IV regimen | 0.991 | NA | NA | 0.999 | |
Calcitriol high-dose IV regimen | 0.883 | NA | NA | 0.979 |
Data Source | Geometric Mean (90% Confidence Interval) | Geometric Mean Ratio (Midazolam+Calcitriol /Midazolam) | ||||
---|---|---|---|---|---|---|
Midazolam | Midazolam + Calcitriol | |||||
Cmax (ng/mL) | AUC0–24h a (ng/mL·h) | Cmax (ng/mL) | AUC0–24h (ng/mL·h) | Cmax | AUC0-24h | |
Hepatocytes #1 | 12.18 (11.25, 13.17) | 35.50 (32.54, 38.74) | 12.16 (11.24, 13.16) | 35.39 (32.44, 38.61) | 0.9989 | 0.9969 |
Hepatocytes #2 | 12.17 (11.25, 13.17) | 35.48 (32.52, 38.72) | 0.9998 | 0.9994 | ||
Hepatocytes #3 | 12.17 (11.25, 13.17) | 35.46 (32.50, 38.69) | 0.9995 | 0.9988 | ||
HepaRG | 12.16 (11.23, 13.15) | 35.35 (32.40, 38.56) | 0.9985 | 0.9955 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, Y.-J.; Kim, M.-S.; Chung, S.-J.; Lee, M.-K.; Lee, K.-R.; Maeng, H.-J. Pharmacokinetic Estimation Models-based Approach to Predict Clinical Implications for CYP Induction by Calcitriol in Human Cryopreserved Hepatocytes and HepaRG Cells. Pharmaceutics 2021, 13, 181. https://doi.org/10.3390/pharmaceutics13020181
Chae Y-J, Kim M-S, Chung S-J, Lee M-K, Lee K-R, Maeng H-J. Pharmacokinetic Estimation Models-based Approach to Predict Clinical Implications for CYP Induction by Calcitriol in Human Cryopreserved Hepatocytes and HepaRG Cells. Pharmaceutics. 2021; 13(2):181. https://doi.org/10.3390/pharmaceutics13020181
Chicago/Turabian StyleChae, Yoon-Jee, Min-Soo Kim, Suk-Jae Chung, Mi-Kyung Lee, Kyeong-Ryoon Lee, and Han-Joo Maeng. 2021. "Pharmacokinetic Estimation Models-based Approach to Predict Clinical Implications for CYP Induction by Calcitriol in Human Cryopreserved Hepatocytes and HepaRG Cells" Pharmaceutics 13, no. 2: 181. https://doi.org/10.3390/pharmaceutics13020181
APA StyleChae, Y. -J., Kim, M. -S., Chung, S. -J., Lee, M. -K., Lee, K. -R., & Maeng, H. -J. (2021). Pharmacokinetic Estimation Models-based Approach to Predict Clinical Implications for CYP Induction by Calcitriol in Human Cryopreserved Hepatocytes and HepaRG Cells. Pharmaceutics, 13(2), 181. https://doi.org/10.3390/pharmaceutics13020181