Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties
Abstract
:1. Introduction
2. Natural Extracts with Antimicrobial Activity
3. Agro-Food Wastes as Antimicrobials
4. Nanofibers as Carriers of Antimicrobial Natural Products
4.1. Synthetic Polymer-Based Nanofibers
4.1.1. Polyacrylates
4.1.2. Polyesters
4.1.3. Poly(Vinyl Alcohol)
4.1.4. Polyvinylpyrrolidone
4.2. Natural Polymer-Based Nanofibers
4.2.1. Polysaccharides
4.2.2. Proteins
5. Nanoparticles as Carriers of Antimicrobial Natural Products
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sridhar, R.; Lakshminarayanan, R.; Madhaiyan, K.; Barathi, V.A.; Limh, K.H.C.; Ramakrishna, S. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: Applications in tissue regeneration, drug delivery and pharmaceuticals. Chem. Soc. Rev. 2015, 44, 790–814. [Google Scholar] [CrossRef] [Green Version]
- Curcio, M.; Altimari, I.; Spizzirri, U.G.; Cirillo, G.; Vittorio, O.; Puoci, F.; Picci, N.; Iemma, F. Biodegradable gelatin-based nanospheres as pH-responsive drug delivery systems. J. Nanoparticle Res. 2013, 15. [Google Scholar] [CrossRef]
- Cirillo, G.; Spataro, T.; Curcio, M.; Spizzirri, U.G.; Nicoletta, F.P.; Picci, N.; Iemma, F. Tunable thermo-responsive hydrogels: Synthesis, structural analysis and drug release studies. Mater. Sci. Eng. C 2015, 48, 499–510. [Google Scholar] [CrossRef]
- Saka, R.; Chella, N. Nanotechnology for delivery of natural therapeutic substances: A review. Environ. Chem. Lett. 2020. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, L.; Su, L.; Van der Mei, H.C.; Jutte, P.C.; Ren, Y.; Busscher, H.J. Nanotechnology-based antimicrobials and delivery systems for biofilm-infection control. Chem. Soc. Rev. 2019, 48, 428–446. [Google Scholar] [CrossRef]
- Rahman, H.S.; Othman, H.H.; Hammadi, N.I.; Yeap, S.K.; Amin, K.M.; Samad, N.A.; Alitheen, N.B. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int. J. Nanomed. 2020, 15, 2439–2483. [Google Scholar] [CrossRef] [Green Version]
- Sansone, F.; Mencherini, T.; Picerno, P.; Lauro, M.R.; Cerrato, M.; Aquino, R.P. Development of health products from natural sources. Curr. Med. Chem. 2019, 26, 4606–4630. [Google Scholar] [CrossRef] [PubMed]
- Miguel, S.P.; Sequeira, R.S.; Moreira, A.F.; Cabral, C.S.D.; Mendonça, A.G.; Ferreira, P.; Correia, I.J. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur. J. Pharm. Biopharm. 2019, 139, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Ambekar, R.S.; Kandasubramanian, B. Advancements in nanofibers for wound dressing: A review. Eur. Polym. J. 2019, 117, 304–336. [Google Scholar] [CrossRef]
- Sabra, S.; Ragab, D.M.; Agwa, M.M.; Rohani, S. Recent advances in electrospun nanofibers for some biomedical applications. Eur. J. Pharm. Sci. 2020, 144, 105224. [Google Scholar] [CrossRef]
- Sofi, H.S.; Rashid, R.; Amna, T.; Hamid, R.; Sheikh, F.A. Recent advances in formulating electrospun nanofiber membranes: Delivering active phytoconstituents. J. Drug Deliv. Sci. Technol. 2020, 60, 102038. [Google Scholar] [CrossRef]
- Aiello, F.; Armentano, B.; Polerà, N.; Carullo, G.; Loizzo, M.R.; Bonesi, M.; Cappello, M.S.; Capobianco, L.; Tundis, R. From Vegetable Waste to New Agents for Potential Health Applications: Antioxidant Properties and Effects of Extracts, Fractions and Pinocembrin from Glycyrrhiza glabra L. Aerial Parts on Viability of Five Human Cancer Cell Lines. J. Agric. Food Chem. 2017, 65, 7944–7954. [Google Scholar] [CrossRef]
- Aiello, F.; Carullo, G.; Badolato, M.; Brizzi, A. TRPV1-FAAH-COX: The couples game in pain treatment. ChemMedChem 2016, 11, 1686–1694. [Google Scholar] [CrossRef] [PubMed]
- Tundis, R.; Frattaruolo, L.; Carullo, G.; Armentano, B.; Badolato, M.; Loizzo, M.R.; Aiello, F.; Cappello, A.R. An ancient remedial repurposing: Synthesis of new pinocembrin fatty acid acyl derivatives as potential antimicrobial/anti-inflammatory agents. Nat. Prod. Res. 2018, 6419, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Badolato, M.; Carullo, G.; Cione, E.; Aiello, F.; Caroleo, M.C. From the hive: Honey, a novel weapon against cancer. Eur. J. Med. Chem. 2017, 142, 290–299. [Google Scholar] [CrossRef]
- Carullo, G.; Cappello, A.R.; Frattaruolo, L.; Badolato, M.; Armentano, B.; Aiello, F. Quercetin and derivatives: Useful tools in inflammation and pain management. Future Med. Chem. 2017, 9, 79–93. [Google Scholar] [CrossRef]
- Carullo, G.; Aiello, F. Quercetin-3-oleate. Molbank 2018, 2018, M1006. [Google Scholar] [CrossRef] [Green Version]
- Governa, P.; Carullo, G.; Biagi, M.; Rago, V.; Aiello, F. Evaluation of the in vitro wound-healing activity of calabrian honeys. Antioxidants 2019, 8, 36. [Google Scholar] [CrossRef] [Green Version]
- Carullo, G.; Sciubba, F.; Governa, P.; Mazzotta, S.; Frattaruolo, L.; Grillo, G.; Cappello, A.R.; Cravotto, G.; Di Cocco, M.E.; Aiello, F. Mantonico and pecorello grape seed extracts: Chemical characterization and evaluation of in vitro wound-healing and anti-inflammatory activities. Pharmaceuticals 2020, 13, 97. [Google Scholar] [CrossRef] [PubMed]
- Carullo, G.; Ahmed, A.; Fusi, F.; Sciubba, F.; Di Cocco, M.E.; Restuccia, D.; Spizzirri, U.G.; Saponara, S.; Aiello, F. Vasorelaxant Effects Induced by Red Wine and Pomace Extracts of Magliocco Dolce cv. Pharmaceuticals 2020, 13, 87. [Google Scholar] [CrossRef]
- Carullo, G.; Durante, M.; Sciubba, F.; Restuccia, D.; Spizzirri, U.G.; Ahmed, A.; Di Cocco, M.E.; Saponara, S.; Aiello, F.; Fusi, F. Vasoactivity of Mantonico and Pecorello grape pomaces on rat aorta rings: An insight into nutraceutical development. J. Funct. Foods 2019, 57, 328–334. [Google Scholar] [CrossRef]
- Spizzirri, U.G.; Carullo, G.; De Cicco, L.; Crispini, A.; Scarpelli, F.; Restuccia, D.; Aiello, F. Synthesis and characterization of a (+)-catechin and L-(+)-ascorbic acid cocrystal as a new functional ingredient for tea drinks. Heliyon 2019, 5, e02291. [Google Scholar] [CrossRef] [Green Version]
- Restuccia, D.; Giorgi, G.; Gianfranco Spizzirri, U.; Sciubba, F.; Capuani, G.; Rago, V.; Carullo, G.; Aiello, F. Autochthonous white grape pomaces as bioactive source for functional jams. Int. J. Food Sci. Technol. 2019, 54, 1313–1320. [Google Scholar] [CrossRef]
- Badolato, M.; Carullo, G.; Perri, M.; Cione, E.; Manetti, F.; Di Gioia, M.L.; Brizzi, A.; Caroleo, M.C.; Aiello, F. Quercetin/oleic acid-based G-protein-coupled receptor 40 ligands as new insulin secretion modulators. Future Med. Chem. 2017, 9, 1873–1885. [Google Scholar] [CrossRef]
- Carullo, G.; Spizzirri, U.G.; Loizzo, M.R.; Leporini, M.; Sicari, V.; Aiello, F.; Restuccia, D. Valorization of red grape (Vitis vinifera cv. Sangiovese) pomace as functional food ingredient. Ital. J. Food Sci. 2020, 32, 367–385. [Google Scholar] [CrossRef]
- Carullo, G.; Governa, P.; Spizzirri, U.G.; Biagi, M.; Sciubba, F.; Giorgi, G.; Loizzo, M.R.; Di Cocco, M.E.; Aiello, F.; Restuccia, D. Sangiovese cv pomace seeds extract-fortified kefir exerts anti-inflammatory activity in an in vitro model of intestinal epithelium using caco-2 cells. Antioxidants 2020, 9, 54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mazzotta, S.; Carullo, G.; Schiano Moriello, A.; Amodeo, P.; Di Marzo, V.; Vega-Holm, M.; Vitale, R.M.; Aiello, F.; Brizzi, A.; De Petrocellis, L. Design, Synthesis and In Vitro Experimental Validation of Novel TRPV4 Antagonists Inspired by Labdane Diterpenes. Mar. Drugs 2020, 18, 519. [Google Scholar] [CrossRef]
- Carullo, G.; Ahmed, A.; Trezza, A.; Spiga, O.; Brizzi, A.; Saponara, S.; Fusi, F.; Aiello, F. Design, synthesis and pharmacological evaluation of ester-based quercetin derivatives as selective vascular KCa1.1 channel stimulators. Bioorg. Chem. 2020, 105, 104404. [Google Scholar] [CrossRef]
- Carullo, G.; Mazzotta, S.; Koch, A.; Hartmann, K.M.; Friedrich, O.; Gilbert, D.F.; Vega-Holm, M.; Schneider-Stock, R.; Aiello, F. New oleoyl hybrids of natural antioxidants: Synthesis and in vitro evaluation as inducers of apoptosis in colorectal cancer cells. Antioxidants 2020, 9, 1077. [Google Scholar] [CrossRef] [PubMed]
- Fröhlich, T.; Ndreshkjana, B.; Muenzner, J.K.; Reiter, C.; Hofmeister, E.; Mederer, S.; Fatfat, M.; El-Baba, C.; Gali-Muhtasib, H.; Schneider-Stock, R.; et al. Synthesis of Novel Hybrids of Thymoquinone and Artemisinin with High Activity and Selectivity Against Colon Cancer. ChemMedChem 2017, 12, 226–234. [Google Scholar] [CrossRef]
- Mazzotta, S.; Frattaruolo, L.; Brindisi, M.; Ulivieri, C.; Vanni, F.; Brizzi, A.; Carullo, G.; Cappello, A.R.; Aiello, F. 3-Amino-alkylated indoles: Unexplored green products acting as anti-inflammatory agents. Future Med. Chem. 2020, 12, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, S.; Cebrero-Cangueiro, T.; Frattaruolo, L.; Vega-Holm, M.; Carretero-Ledesma, M.; Sánchez-Céspedes, J.; Cappello, A.R.; Aiello, F.; Pachón, J.; Vega-Pérez, J.M.; et al. Exploration of piperazine-derived thioureas as antibacterial and anti-inflammatory agents. In vitro evaluation against clinical isolates of colistin-resistant Acinetobacter baumannii. Bioorg. Med. Chem. Lett. 2020, 30, 127411. [Google Scholar] [CrossRef]
- Karra, S.; Sebii, H.; Jardak, M.; Bouaziz, M.A.; Attia, H.; Blecker, C.; Besbes, S. Male date palm flowers: Valuable nutritional food ingredients and alternative antioxidant source and antimicrobial agent. S. Afr. J. Bot. 2020, 131, 181–187. [Google Scholar] [CrossRef]
- Sun, Z.L.; Liu, T.; Wang, S.Y.; Ji, X.Y.; Mu, Q. TLC-bioautography directed isolation of antibacterial compounds from active fractionation of Ferula ferulioides. Nat. Prod. Res. 2019, 33, 1761–1764. [Google Scholar] [CrossRef] [PubMed]
- Mohotti, S.; Rajendran, S.; Muhammad, T.; Strömstedt, A.A.; Adhikari, A.; Burman, R.; de Silva, E.D.; Göransson, U.; Hettiarachchi, C.M.; Gunasekera, S. Screening for bioactive secondary metabolites in Sri Lankan medicinal plants by microfractionation and targeted isolation of antimicrobial flavonoids from Derris scandens. J. Ethnopharmacol. 2020, 246, 112158. [Google Scholar] [CrossRef] [PubMed]
- Değirmenci, H.; Erkurt, H. Relationship between volatile components, antimicrobial and antioxidant properties of the essential oil, hydrosol and extracts of Citrus aurantium L. flowers. J. Infect. Public Health 2020, 13, 58–67. [Google Scholar] [CrossRef]
- Shafiei, Z.; Rahim, Z.H.A.; Philip, K.; Thurairajah, N.; Yaacob, H. Potential effects of Psidium sp., Mangifera sp., Mentha sp. and its mixture (PEM) in reducing bacterial populations in biofilms, adherence and acid production of S. sanguinis and S. mutans. Arch. Oral Biol. 2020, 109, 104554. [Google Scholar] [CrossRef] [PubMed]
- Abdel Bar, F.M.; Elsbaey, M.; Taha, N.; Elgaml, A.; Abdel-Fattah, G.M. Phytochemical, antimicrobial and antiquorum-sensing studies of pulicaria undulata L.: A revision on the structure of 1β,2α,3β,19α,23-pentahydroxy-urs-12-en-28-oic acid. Nat. Prod. Res. 2020, 34, 804–809. [Google Scholar] [CrossRef] [PubMed]
- Barek, S.; Rahmoun, N.M.; Aissaoui, M.; El Haci, I.A.; Bensouici, C.; Choukchou-Braham, E.N. Phenolic Contents, Antioxidant, and Antibacterial Activities of the Algerian Genista saharae Solvent Extracts. J. Herbs Spices Med. Plants 2020, 26, 1–13. [Google Scholar] [CrossRef]
- Frankova, A.; Vistejnova, L.; Merinas-Amo, T.; Leheckova, Z.; Doskocil, I.; Wong Soon, J.; Kudera, T.; Laupua, F.; Alonso-Moraga, A.; Kokoska, L. In vitro antibacterial activity of extracts from Samoan medicinal plants and their effect on proliferation and migration of human fibroblasts. J. Ethnopharmacol. 2021, 264, 113220. [Google Scholar] [CrossRef]
- Ranadive, K.R.; Belsare, M.H.; Deokule, S.S.; Jagtap, N.V.; Jadhav, H.K.; Vaidya, J.G. Glimpses of antimicrobial activity of fungi from World. J. New Biol. Reports 2013, 2, 142–162. [Google Scholar]
- Zhang, W.; Wang, J.; Chen, Y.; Zheng, H.; Xie, B.; Sun, Z. Flavonoid compounds and antibacterial mechanisms of different parts of white guava (Psidium guajava L. cv. Pearl). Nat. Prod. Res. 2020, 34, 1621–1625. [Google Scholar] [CrossRef] [PubMed]
- Rosa, D.; Halim, Y.; Kam, N.; Sugata, M.; Samantha, A. Antibacterial Activity of Polyscias Scutellaria Fosberg Against Acinetobacter sp. Asian J. Pharm. Clin. Res. 2019, 12, 516. [Google Scholar] [CrossRef]
- Terán Baptista, Z.P.; de los Angeles Gómez, A.; Kritsanida, M.; Grougnet, R.; Mandova, T.; Aredes Fernandez, P.A.; Sampietro, D.A. Antibacterial activity of native plants from Northwest Argentina against phytopathogenic bacteria. Nat. Prod. Res. 2020, 34, 1782–1785. [Google Scholar] [CrossRef]
- Souissi, M.; Azelmat, J.; Chaieb, K.; Grenier, D. Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections. Anaerobe 2020, 61, 102089. [Google Scholar] [CrossRef] [PubMed]
- Fournomiti, M.; Kimbaris, A.; Mantzourani, I.; Plessas, S.; Theodoridou, I.; Papaemmanouil, V.; Kapsiotis, I.; Panopoulou, M.; Stavropoulou, E.; Bezirtzoglou, E.E.; et al. Antimicrobial activity of essential oils of cultivated oregano (Origanum vulgare), sage (Salvia officinalis), and thyme (Thymus vulgaris) against clinical isolates of Escherichia coli, Klebsiella oxytoca, and Klebsiella pneumoniae. Microb. Ecol. Health Dis. 2015, 26. [Google Scholar] [CrossRef]
- Dechayont, B.; Phuaklee, P.; Chunthorng-Orn, J.; Poomirat, S.; Juckmeta, T.; Phumlek, K.; Mokmued, K.; Ouncharoen, K. Antimicrobial, Anti-inflammatory, and Antioxidant Activities of the Wood of Myristica fragrans. J. Herbs Spices Med. Plants 2020, 26, 49–60. [Google Scholar] [CrossRef]
- De Araújo, K.M.; De Lima, A.; Silva, J.D.N.; Rodrigues, L.L.; Amorim, A.G.N.; Quelemes, P.V.; Dos Santos, R.C.; Rocha, J.A.; De Andrades, É.O.; Leite, J.R.S.A.; et al. Identification of phenolic compounds and evaluation of antioxidant and antimicrobial properties of Euphorbia tirucalli L. Antioxidants 2014, 3, 159–175. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.B.L.; Yap, W.J.; Tan, S.Y.; Lim, Y.Y.; Lee, S.M. Antioxidant content, antioxidant activity, and antibacterial activity of five plants from the commelinaceae family. Antioxidants 2014, 3, 758–769. [Google Scholar] [CrossRef]
- Ahmed, D.; Khan, M.M.; Saeed, R. Comparative analysis of phenolics, flavonoids, and antioxidant and antibacterial potential of methanolic, hexanic and aqueous extracts from Adiantum caudatum leaves. Antioxidants 2015, 4, 394–409. [Google Scholar] [CrossRef]
- Park, C.H.; Yeo, H.J.; Baskar, T.B.; Park, Y.E.; Park, J.S.; Lee, S.Y.; Park, S.U. In vitro antioxidant and antimicrobial properties of flower, leaf, and stem extracts of Korean mint. Antioxidants 2019, 8, 75. [Google Scholar] [CrossRef] [Green Version]
- Karpiński, T.M.; Adamczak, A. Fucoxanthin—An antibacterial carotenoid. Antioxidants 2019, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Tanase, C.; Mocan, A.; Coșarcă, S.; Gavan, A.; Nicolescu, A.; Gheldiu, A.M.; Vodnar, D.C.; Muntean, D.L.; Crișan, O. Biological and chemical insights of beech (Fagus sylvatica l.) bark: A source of bioactive compounds with functional properties. Antioxidants 2019, 8, 417. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.L.; Zhan, P.; Li, K.X. Analysis of components and study on antioxidant and antimicrobial activities of oil in apple seeds. Int. J. Food Sci. Nutr. 2010, 61, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Szabo, K.; Diaconeasa, Z.; Cătoi, A.F.; Vodnar, D.C. Screening of ten tomato varieties processing waste for bioactive components and their related antioxidant and antimicrobial activities. Antioxidants 2019, 8, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiboub, W.; Sassi, A.B.; Amina, C.M.h.; Souilem, F.; El Ayeb, A.; Djlassi, B.; Ascrizzi, R.; Flamini, G.; Harzallah-Skhiri, F. Valorization of the Green Waste from Two Varieties of Fennel and Carrot Cultivated in Tunisia by Identification of the Phytochemical Profile and Evaluation of the Antimicrobial Activities of Their Essentials Oils. Chem. Biodivers. 2019, 16. [Google Scholar] [CrossRef] [PubMed]
- Chanda, P.; Mitra, S.; Sen, S.K.; Bhavana, S. Exploration of Betel Leaf Waste for Its Antibacterial Activity. Bioscan 2013, 8, 611–615. [Google Scholar]
- Leouifoudi, I.; Harnafi, H.; Zyad, A. Olive Mill Waste Extracts: Polyphenols Content, Antioxidant, and Antimicrobial Activities. Adv. Pharmacol. Sci. 2015, 2015. [Google Scholar] [CrossRef]
- Olabanji, I.O.; Ajayi, S.O.; Akinkunmi, E.O.; Kilanko, O.; Adefemi, G.O. Physicochemical and in vitro antimicrobial activity of the oils and soap of the seed and peel of Citrus sinensis. Afr. J. Microbiol. Res. 2016, 10, 245–253. [Google Scholar] [CrossRef] [Green Version]
- Geraci, A.; Di Stefano, V.; Di Martino, E.; Schillaci, D.; Schicchi, R. Essential oil components of orange peels and antimicrobial activity. Nat. Prod. Res. 2017, 31, 653–659. [Google Scholar] [CrossRef] [PubMed]
- Kulastic Jassy, A.; Dillwyn, S.; Pragalyaashree, M.M.; Tiroutchelvame, D. Evaluation of antibacterial and antioxidant properties of different varieties of grape seeds(Vitis vinifera L.). Int. J. Sci. Technol. Res. 2020, 9, 4116–4120. [Google Scholar]
- Cheng, V.J.; Bekhit, A.E.D.A.; McConnell, M.; Mros, S.; Zhao, J. Effect of extraction solvent, waste fraction and grape variety on the antimicrobial and antioxidant activities of extracts from wine residue from cool climate. Food Chem. 2012, 134, 474–482. [Google Scholar] [CrossRef]
- Vasileva, I.; Denkova, R.; Chochkov, R.; Teneva, D.; Denkova, Z.; Dessev, T.; Denev, P.; Slavov, A. Effect of lavender (Lavandula angustifolia) and melissa (Melissa officinalis) waste on quality and shelf life of bread. Food Chem. 2018, 253, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Adan, A.A.; Ojwang, R.A.; Muge, E.K.; Mwanza, B.K.; Nyaboga, E.N. Phytochemical composition and essential mineral profile, antioxidant and antimicrobial potential of unutilized parts of jackfruit. Food Res. 2020, 4, 1125–1134. [Google Scholar] [CrossRef]
- Mutua, J.K.; Imathiu, S.; Owino, W. Evaluation of the proximate composition, antioxidant potential, and antimicrobial activity of mango seed kernel extracts. Food Sci. Nutr. 2017, 5, 349–357. [Google Scholar] [CrossRef]
- Garzón, G.A.; Soto, C.Y.; López-R, M.; Riedl, K.M.; Browmiller, C.R.; Howard, L. Phenolic profile, in vitro antimicrobial activity and antioxidant capacity of Vaccinium meridionale swartz pomace. Heliyon 2020, 6. [Google Scholar] [CrossRef]
- Fernández-Agulló, A.; Pereira, E.; Freire, M.S.; Valentão, P.; Andrade, P.B.; González-álvarez, J.; Pereira, J.A. Influence of solvent on the antioxidant and antimicrobial properties of walnut (Juglans regia L.) green husk extracts. Ind. Crops Prod. 2013, 42, 126–132. [Google Scholar] [CrossRef]
- Do Prado, A.C.P.; da Silva, H.S.; da Silveira, S.M.; Barreto, P.L.M.; Vieira, C.R.W.; Maraschin, M.; Ferreira, S.R.S.; Block, J.M. Effect of the extraction process on the phenolic compounds profile and the antioxidant and antimicrobial activity of extracts of pecan nut [Carya illinoinensis (Wangenh) C. Koch] shell. Ind. Crops Prod. 2014, 52, 552–561. [Google Scholar] [CrossRef]
- Kallel, F.; Driss, D.; Chaari, F.; Belghith, L.; Bouaziz, F.; Ghorbel, R.; Chaabouni, S.E. Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Ind. Crops Prod. 2014, 62, 34–41. [Google Scholar] [CrossRef]
- Palakawong, C.; Sophanodora, P.; Toivonen, P.; Delaquis, P. Optimized extraction and characterization of antimicrobial phenolic compounds from mangosteen (Garcinia mangostana L.) cultivation and processing waste. J. Sci. Food Agric. 2013, 93, 3792–3800. [Google Scholar] [CrossRef]
- Guo, C.; Shan, Y.; Yang, Z.; Zhang, L.; Ling, W.; Liang, Y.; Ouyang, Z.; Zhong, B.; Zhang, J. Chemical composition, antioxidant, antibacterial, and tyrosinase inhibition activity of extracts from Newhall navel orange (Citrus sinensis Osbeck cv. Newhall) peel. J. Sci. Food Agric. 2020, 100, 2664–2674. [Google Scholar] [CrossRef] [PubMed]
- Foujdar, R.; Bera, M.B.; Chopra, H.K. Optimization of process variables of probe ultrasonic-assisted extraction of phenolic compounds from the peel of Punica granatum Var. Bhagwa and it’s chemical and bioactivity characterization. J. Food Process. Preserv. 2020, 44, 1–16. [Google Scholar] [CrossRef]
- Socaci, S.A.; Fărcaş, A.C.; Diaconeasa, Z.M.; Vodnar, D.C.; Rusu, B.; Tofană, M. Influence of the extraction solvent on phenolic content, antioxidant, antimicrobial and antimutagenic activities of brewers’ spent grain. J. Cereal Sci. 2018, 80, 180–187. [Google Scholar] [CrossRef]
- Ade-Ajayi, a.F.; Hammuel, C.; Ezeayanaso, C.; Ogabiela, E.E.; Udiba, U.U.; Anyim, B.; Olabanji, O. Preliminary phytochemical and antimicrobial screening of Agave sisalana Perrine juice (waste). J. Environ. Chem. Ecotoxicol. 2011, 3, 180–183. [Google Scholar]
- Saleem, M.; Saeed, M.T. Potential application of waste fruit peels (orange, yellow lemon and banana) as wide range natural antimicrobial agent. J. King Saud Univ. Sci. 2020, 32, 805–810. [Google Scholar] [CrossRef]
- Martin, J.G.P.; Porto, E.; Corrêa, C.B.; Alencar, S.M.D.; Gloria, E.M.D.; Ribeiro, I.S.; Cabral, L.M.D.A. Antimicrobial potential and chemical composition of agro-industrial wastes. J. Nat. Prod. 2012, 5, 27–36. [Google Scholar]
- El-hawary, S.S.; Rabeh, M.A. Mangifera indica peels: A common waste product with impressive immunostimulant, anticancer and antimicrobial potency. J. Nat. Sci. Res. 2014, 4, 102–115. [Google Scholar]
- Conceição, N.; Albuquerque, B.R.; Pereira, C.; Corrêa, R.C.G.; Lopes, C.B.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Ferreira, I.C.F.R. By-products of camu-camu [Myrciaria dubia (Kunth) McVaugh] as promising sources of bioactive high added-value food ingredients: Functionalization of yogurts. Molecules 2020, 25, 70. [Google Scholar] [CrossRef] [Green Version]
- Silvan, J.M.; Pinto-Bustillos, M.A.; Vásquez-Ponce, P.; Prodanov, M.; Martinez-Rodriguez, A.J. Olive mill wastewater as a potential source of antibacterial and anti-inflammatory compounds against the food-borne pathogen Campylobacter. Innov. Food Sci. Emerg. Technol. 2019, 51, 177–185. [Google Scholar] [CrossRef] [Green Version]
- Moreira, M.D.; Melo, M.M.; Coimbra, J.M.; Reis, K.C.d.; Schwan, R.F.; Silva, C.F. Solid coffee waste as alternative to produce carotenoids with antioxidant and antimicrobial activities. Waste Manag. 2018, 82, 93–99. [Google Scholar] [CrossRef]
- Juncos Bombin, A.D.; Dunne, N.J.; McCarthy, H.O. Electrospinning of natural polymers for the production of nanofibres for wound healing applications. Mater. Sci. Eng. C 2020, 114, 110994. [Google Scholar] [CrossRef]
- Nazarnezhad, S.; Baino, F.; Kim, H.W.; Webster, T.J.; Kargozar, S. Electrospun Nanofibers for Improved Angiogenesis: Promises for Tissue Engineering Applications. Nanomaterials 2020, 10, 1609. [Google Scholar] [CrossRef] [PubMed]
- Croitoru, A.M.; Ficai, D.; Ficai, A.; Mihailescu, N.; Andronescu, E.; Turculet, C.F. Nanostructured fibers containing natural or synthetic bioactive compounds in wound dressing applications. Materials 2020, 13, 2407. [Google Scholar] [CrossRef]
- Kim, J.I.; Pant, H.R.; Sim, H.J.; Lee, K.M.; Kim, C.S. Electrospun propolis/polyurethane composite nanofibers for biomedical applications. Mater. Sci. Eng. C 2014, 44, 52–57. [Google Scholar] [CrossRef]
- Ma, X.; Wu, G.; Dai, F.; Li, D.; Li, H.; Zhang, L.; Deng, H. Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications. Carbohydr. Polym. 2021, 251, 117058. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Khanian, N.; Choong, T.S.Y.; Rashid, U. Recent progress in the design and synthesis of nanofibers with diverse synthetic methodologies: Characterization and potential applications. New J. Chem. 2020, 44, 9581–9606. [Google Scholar] [CrossRef]
- Ibrahim, H.M.; Klingner, A. A review on electrospun polymeric nanofibers: Production parameters and potential applications. Polym. Test. 2020, 90, 106647. [Google Scholar] [CrossRef]
- Parham, S.; Kharazi, A.Z.; Bakhsheshi-Rad, H.R.; Ghayour, H.; Ismail, A.F.; Nur, H.; Berto, F. Electrospun Nano-fibers for biomedical and tissue engineering applications: A comprehensive review. Materials 2020, 13, 2153. [Google Scholar] [CrossRef]
- Kurakula, M.; Koteswara Rao, G.S.N. Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. Eur. Polym. J. 2020, 136. [Google Scholar] [CrossRef]
- Padil, V.V.T.; Cheong, J.Y.; AkshayKumar, A.K.; Makvandi, P.; Zare, E.N.; Torres-Mendieta, R.; Wacławek, S.; Černík, M.; Kim, I.D.; Varma, R.S. Electrospun fibers based on carbohydrate gum polymers and their multifaceted applications. Carbohydr. Polym. 2020, 247, 116705. [Google Scholar] [CrossRef] [PubMed]
- Garg, T.; Rath, G.; Goyal, A.K. Biomaterials-based nanofiber scaffold: Targeted and controlled carrier for cell and drug delivery. J. Drug Target. 2015, 23, 202–221. [Google Scholar] [CrossRef]
- Fayemi, O.E.; Ekennia, A.C.; Katata-Seru, L.; Ebokaiwe, A.P.; Ijomone, O.M.; Onwudiwe, D.C.; Ebenso, E.E. Antimicrobial and Wound Healing Properties of Polyacrylonitrile-Moringa Extract Nanofibers. ACS Omega 2018, 3, 4791–4797. [Google Scholar] [CrossRef]
- Yadav, R.; Balasubramanian, K. Polyacrylonitrile/Syzygium aromaticum hierarchical hydrophilic nanocomposite as a carrier for antibacterial drug delivery systems. RSC Adv. 2015, 5, 3291–3298. [Google Scholar] [CrossRef]
- Balasubramanian, K.; Kodam, K.M. Encapsulation of therapeutic lavender oil in an electrolyte assisted polyacrylonitrile nanofibres for antibacterial applications. RSC Adv. 2014, 4, 54892–54901. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, C.; Kusmartseva, O.; Thomas, N.L.; Mele, E. Electrospinning of polylactic acid fibres containing tea tree and manuka oil. React. Funct. Polym. 2017, 117, 106–111. [Google Scholar] [CrossRef]
- Al-Youssef, H.M.; Amina, M.; Hassan, S.; Amna, T.; Jeong, J.W.; Nam, K.T.; Kim, H.Y. Herbal drug loaded poly(D,L-lactide-co-glycolide) ultrafine fibers: Interaction with pathogenic bacteria. Macromol. Res. 2013, 21, 589–598. [Google Scholar] [CrossRef]
- Garcia-Orue, I.; Gainza, G.; Gutierrez, F.B.; Aguirre, J.J.; Evora, C.; Pedraz, J.L.; Hernandez, R.M.; Delgado, A.; Igartua, M. Novel nanofibrous dressings containing rhEGF and Aloe vera for wound healing applications. Int. J. Pharm. 2017, 523, 556–566. [Google Scholar] [CrossRef]
- Namboodiri, A.G.; Parameswaran, R. Fibro-porous polycaprolactone membrane containing extracts of Biophytum sensitivum: A prospective antibacterial wound dressing. J. Appl. Polym. Sci. 2013, 129, 2280–2286. [Google Scholar] [CrossRef]
- Ramalingam, R.; Dhand, C.; Leung, C.M.; Ong, S.T.; Annamalai, S.K.; Kamruddin, M.; Verma, N.K.; Ramakrishna, S.; Lakshminarayanan, R.; Arunachalam, K.D. Antimicrobial properties and biocompatibility of electrospun poly-ε-caprolactone fibrous mats containing Gymnema sylvestre leaf extract. Mater. Sci. Eng. C 2019, 98, 503–514. [Google Scholar] [CrossRef]
- Ravichandran, S.; Radhakrishnan, J.; Jayabal, P.; Venkatasubbu, G.D. Antibacterial screening studies of electrospun Polycaprolactone nano fibrous mat containing Clerodendrum phlomidis leaves extract. Appl. Surf. Sci. 2019, 484, 676–687. [Google Scholar] [CrossRef]
- Ghaseminezhad, K.; Zare, M.; Lashkarara, S.; Yousefzadeh, M.; Aghazadeh Mohandesi, J. Fabrication of althea officinalis loaded electrospun nanofibrous scaffold for potential application of skin tissue engineering. J. Appl. Polym. Sci. 2020, 137, 1–9. [Google Scholar] [CrossRef]
- Figueroa-Lopez, K.J.; Castro-Mayorga, J.L.; Andrade-Mahecha, M.M.; Cabedo, L.; Lagaron, J.M. Antibacterial and barrier properties of gelatin coated by electrospun polycaprolactone ultrathin fibers containing black pepper oleoresin of interest in active food biopackaging applications. Nanomaterials 2018, 8, 199. [Google Scholar] [CrossRef] [Green Version]
- Suganya, S.; Venugopal, J.; Ramakrishna, S.; Lakshmi, B.S.; Dev, V.R.G. Naturally derived biofunctional nanofibrous scaffold for skin tissue regeneration. Int. J. Biol. Macromol. 2014, 68, 135–143. [Google Scholar] [CrossRef]
- Urena-Saborio, H.; Rodríguez, G.; Madrigal-Carballo, S.; Gunasekaran, S. Characterization and applications of silver nanoparticles-decorated electrospun nanofibers loaded with polyphenolic extract from rambutan (Nepelium lappaceum). Materialia 2020, 11, 100687. [Google Scholar] [CrossRef]
- Unnithan, A.R.; Pichiah, P.B.T.; Gnanasekaran, G.; Seenivasan, K.; Barakat, N.A.M.; Cha, Y.S.; Jung, C.H.; Shanmugam, A.; Kim, H.Y. Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering. Colloids Surf. A Physicochem. Eng. Asp. 2012, 415, 454–460. [Google Scholar] [CrossRef]
- Avci, H.; Gergeroglu, H. Synergistic effects of plant extracts and polymers on structural and antibacterial properties for wound healing. Polym. Bull. 2019, 76, 3709–3731. [Google Scholar] [CrossRef]
- Canbay-Gokce, E.; Akgul, Y.; Gokce, A.Y.; Tasdelen-Yucedag, C.; Kilic, A.; Hassanin, A. Characterization of solution blown thermoplastic polyurethane nanofibers modified with Szygium aromaticum extract. J. Text. Inst. 2020, 111, 10–15. [Google Scholar] [CrossRef]
- Kim, J.h.; Lee, H.; Lee, J.; Kim, I.S. Preparation and characterization of Juniperus chinensis extract-loaded polyurethane nanofiber laminate with polyurethane resin on polyethylene terephthalate fabric. Polym. Bull. 2020, 77, 919–928. [Google Scholar] [CrossRef]
- Almasian, A.; Najafi, F.; Eftekhari, M.; Ardekani, M.R.S.; Sharifzadeh, M.; Khanavi, M. Polyurethane/carboxymethylcellulose nanofibers containing Malva sylvestris extract for healing diabetic wounds: Preparation, characterization, in vitro and in vivo studies. Mater. Sci. Eng. C 2020, 114. [Google Scholar] [CrossRef] [PubMed]
- Avci, H.; Monticello, R.; Kotek, R. Preparation of antibacterial PVA and PEO nanofibers containing Lawsonia Inermis (henna) leaf extracts. J. Biomater. Sci. Polym. Ed. 2013, 24, 1815–1830. [Google Scholar] [CrossRef]
- Ganesan, P.; Pradeepa, P. Development and characterization of nanofibrous mat from PVA/Tridax Procumbens (TP) leaves extracts. Wound Med. 2017, 19, 15–22. [Google Scholar] [CrossRef]
- Yang, S.B.; Kim, E.H.; Kim, S.H.; Kim, Y.H.; Oh, W.; Lee, J.T.; Jang, Y.A.; Sabina, Y.; Ji, B.C.; Yeum, J.H. Electrospinning fabrication of poly(Vinyl alcohol)/coptis chinensis extract nanofibers for antimicrobial exploits. Nanomaterials 2018, 8, 734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeyohanness, S.S.; Abd Hamid, H.; Zulkifli, F.H. Poly(vinyl alcohol) electrospun nanofibers containing antimicrobial Rhodomyrtus tomentosa extract. J. Bioact. Compat. Polym. 2018, 33, 585–596. [Google Scholar] [CrossRef]
- Jeong, J.; Lee, S. Electrospun poly(vinyl alcohol) nanofibrous membranes containing Coptidis Rhizoma extracts for potential biomedical applications. Text. Res. J. 2019, 89, 3506–3518. [Google Scholar] [CrossRef]
- Costa, L.M.M.; de Olyveira, G.M.; Cherian, B.M.; Leão, A.L.; de Souza, S.F.; Ferreira, M. Bionanocomposites from electrospun PVA/pineapple nanofibers/Stryphnodendron adstringens bark extract for medical applications. Ind. Crops Prod. 2013, 41, 198–202. [Google Scholar] [CrossRef]
- Jenifer, P.; Kalachaveedu, M.; Viswanathan, A.; Gnanamani, A. Mubeena Fabricated approach for an effective wound dressing material based on a natural gum impregnated with Acalypha indica extract. J. Bioact. Compat. Polym. 2018, 33, 612–628. [Google Scholar] [CrossRef]
- Rafiq, M.; Hussain, T.; Abid, S.; Nazir, A.; Masood, R. Development of sodium alginate/PVA antibacterial nanofibers by the incorporation of essential oils. Mater. Res. Express 2018, 5. [Google Scholar] [CrossRef]
- Choi, J.; Yang, B.J.; Bae, G.N.; Jung, J.H. Herbal Extract Incorporated Nanofiber Fabricated by an Electrospinning Technique and its Application to Antimicrobial Air Filtration. ACS Appl. Mater. Interfaces 2015, 7, 25313–25320. [Google Scholar] [CrossRef] [PubMed]
- Kesici Güler, H.; Cengiz Çallıoğlu, F.; Sesli Çetin, E. Antibacterial PVP/cinnamon essential oil nanofibers by emulsion electrospinning. J. Text. Inst. 2019, 110, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Liakos, I.; Rizzello, L.; Hajiali, H.; Brunetti, V.; Carzino, R.; Pompa, P.P.; Athanassiou, A.; Mele, E. Fibrous wound dressings encapsulating essential oils as natural antimicrobial agents. J. Mater. Chem. B 2015, 3, 1583–1589. [Google Scholar] [CrossRef]
- Liakos, I.L.; Holban, A.M.; Carzino, R.; Lauciello, S.; Grumezescu, A.M. Electrospun fiber pads of cellulose acetate and essential oils with antimicrobial activity. Nanomaterials 2017, 7, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peršin, Z.; Ravber, M.; Stana Kleinschek, K.; Knez, Ž.; Škerget, M.; Kurečič, M. Bio-nanofibrous mats as potential delivering systems of natural substances. Text. Res. J. 2017, 87, 444–459. [Google Scholar] [CrossRef]
- Ahmadi, R.; Ghanbarzadeh, B.; Ayaseh, A.; Kafil, H.S.; Özyurt, H.; Katourani, A.; Ostadrahimi, A. The antimicrobial bio-nanocomposite containing non-hydrolyzed cellulose nanofiber (CNF) and Miswak (Salvadora persica L.) extract. Carbohydr. Polym. 2019, 214, 15–25. [Google Scholar] [CrossRef]
- Yadav, C.; Maji, P.K. Synergistic effect of cellulose nanofibres and bio- extracts for fabricating high strength sodium alginate based composite bio-sponges with antibacterial properties. Carbohydr. Polym. 2019, 203, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Zhang, C.; Li, C.; Lin, L. Preparation and antibacterial activity of Litsea cubeba essential oil/dandelion polysaccharide nanofiber. Ind. Crops Prod. 2019, 140, 111739. [Google Scholar] [CrossRef]
- Charernsriwilaiwat, N.; Rojanarata, T.; Ngawhirunpat, T.; Sukma, M.; Opanasopit, P. Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int. J. Pharm. 2013, 452, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Kegere, J.; Ouf, A.; Siam, R.; Mamdouh, W. Fabrication of Poly(vinyl alcohol)/Chitosan/Bidens pilosa Composite Electrospun Nanofibers with Enhanced Antibacterial Activities. ACS Omega 2019, 4, 8778–8785. [Google Scholar] [CrossRef] [Green Version]
- Sarhan, W.A.; Azzazy, H.M.E. High concentration honey chitosan electrospun nanofibers: Biocompatibility and antibacterial effects. Carbohydr. Polym. 2015, 122, 135–143. [Google Scholar] [CrossRef]
- Sarhan, W.A.; Azzazy, H.M.E.; El-Sherbiny, I.M. The effect of increasing honey concentration on the properties of the honey/polyvinyl alcohol/chitosan nanofibers. Mater. Sci. Eng. C 2016, 67, 276–284. [Google Scholar] [CrossRef]
- Sarhan, W.A.; Azzazy, H.M.E.; El-Sherbiny, I.M. Honey/Chitosan Nanofiber Wound Dressing Enriched with Allium sativum and Cleome droserifolia: Enhanced Antimicrobial and Wound Healing Activity. ACS Appl. Mater. Interfaces 2016, 8, 6379–6390. [Google Scholar] [CrossRef]
- Rieger, K.A.; Schiffman, J.D. Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly(ethylene oxide) nanofibers. Carbohydr. Polym. 2014, 113, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Sadri, M.; Arab-Sorkhi, S.; Vatani, H.; Bagheri-Pebdeni, A. New wound dressing polymeric nanofiber containing green tea extract prepared by electrospinning method. Fibers Polym. 2015, 16, 1742–1750. [Google Scholar] [CrossRef]
- Kwak, H.W.; Kang, M.J.; Bae, J.H.; Hur, S.B.; Kim, I.S.; Park, Y.H.; Lee, K.H. Fabrication of Phaeodactylum tricornutum extract-loaded gelatin nanofibrous mats exhibiting antimicrobial activity. Int. J. Biol. Macromol. 2014, 63, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.H.; Yeh, J.Y.; Chen, Y.S.; Li, M.H.; Huang, C.H. Wound-healing effect of electrospun gelatin nanofibres containing Centella asiatica extract in a rat model. J. Tissue Eng. Regen. Med. 2017, 11, 905–915. [Google Scholar] [CrossRef]
- Chiu, C.; Nootem, J.; Santiwat, T.; Srisuwannaket, C. Curcuma comosa Roxb. Extract in Electrospun. Fibers 2019, 7, 76. [Google Scholar] [CrossRef] [Green Version]
- Barnthip, N.; Paosoi, J.; Pinyakong, O. Concentration effect of Chromolaena odorata (Siam weed) crude extract on size and properties of gelatin nanofibers fabricated by electrospinning process. J. Ind. Text. 2020, 1–12. [Google Scholar] [CrossRef]
- Baghersad, S.; Bahrami, S.H.; Ranjbar, M.; Reza, M.; Mojtahedi, M.; Brouki, P. Development of biodegradable electrospun gelatin/aloe-vera/poly (ε-caprolactone) hybrid nano fi brous sca ff old for application as skin substitutes. Mater. Sci. Eng. C 2018, 93, 367–379. [Google Scholar]
- Yang, X.; Fan, L.; Ma, L.; Wang, Y.; Lin, S.; Yu, F.; Pan, X.; Luo, G.; Zhang, D.; Wang, H. Green electrospun Manuka honey/silk fibroin fibrous matrices as potential wound dressing. Mater. Des. 2017, 119, 76–84. [Google Scholar] [CrossRef]
- Chan, W.P.; Huang, K.C.; Bai, M.Y. Silk fibroin protein-based nonwoven mats incorporating baicalein Chinese herbal extract: Preparation, characterizations, and in vivo evaluation. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 420–430. [Google Scholar] [CrossRef]
- Doğan, G.; Başal, G.; Bayraktar, O.; Ozyildiz, F.; Uzel, A.; Erdoğan, I. Bioactive Sheath/Core nanofibers containing olive leaf extract. Microsc. Res. Tech. 2016, 79, 38–49. [Google Scholar] [CrossRef] [Green Version]
- Dehcheshmeh, M.A.; Fathi, M. Production of core-shell nanofibers from zein and tragacanth for encapsulation of saffron extract. Int. J. Biol. Macromol. 2019, 122, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Moradkhannejhad, L.; Abdouss, M.; Nikfarjam, N.; Mazinani, S.; Heydari, V. Electrospinning of zein/propolis nanofibers; antimicrobial properties and morphology investigation. J. Mater. Sci. Mater. Med. 2018, 29. [Google Scholar] [CrossRef]
- Wang, S.; Marcone, M.F.; Barbut, S.; Lim, L.T. Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus strigosus) extracts. Food Res. Int. 2013, 52, 467–472. [Google Scholar] [CrossRef]
- Selvam, A.K.; Nallathambi, G. Polyacrylonitrile/silver nanoparticle electrospun nanocomposite matrix for bacterial filtration. Fibers Polym. 2015, 16, 1327–1335. [Google Scholar] [CrossRef]
- Aslan, S.; Loebick, C.Z.; Kang, S.; Elimelech, M.; Pfefferle, L.D.; Van Tassel, P.R. Antimicrobial biomaterials based on carbon nanotubes dispersed in poly(lactic-co-glycolic acid). Nanoscale 2010, 2, 1789–1794. [Google Scholar] [CrossRef]
- Govardhan Singh, R.S.; Negi, P.S.; Radha, C. Phenolic composition, antioxidant and antimicrobial activities of free and bound phenolic extracts of Moringa oleifera seed flour. J. Funct. Foods 2013, 5, 1883–1891. [Google Scholar] [CrossRef]
- Matan, N.; Rimkeeree, H.; Mawson, A.J.; Chompreeda, P.; Haruthaithanasan, V.; Parker, M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int. J. Food Microbiol. 2006, 107, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Divakara Shetty, S.; Shetty, N. Investigation of mechanical properties and applications of polylactic acids—A review. Mater. Res. Express 2019, 6. [Google Scholar] [CrossRef]
- Santoro, M.; Shah, S.R.; Walker, J.L.; Mikos, A.G. Poly(lactic acid) nanofibrous scaffolds for tissue engineering. Adv. Drug Deliv. Rev. 2016, 107, 206–212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Otto, M. Staphylococcus epidermidis—The “accidental” pathogen. Nat. Rev. Microbiol. 2009, 7, 555–567. [Google Scholar] [CrossRef] [Green Version]
- Killeen, D.P.; Larsen, L.; Dayan, F.E.; Gordon, K.C.; Perry, N.B.; Van Klink, J.W. Nortriketones: Antimicrobial Trimethylated Acylphloroglucinols from Mānuka (Leptospermum scoparium). J. Nat. Prod. 2016, 79, 564–569. [Google Scholar] [CrossRef]
- Imran Ul-Haq, M.; Lai, B.F.L.; Chapanian, R.; Kizhakkedathu, J.N. Influence of architecture of high molecular weight linear and branched polyglycerols on their biocompatibility and biodistribution. Biomaterials 2012, 33, 9135–9147. [Google Scholar] [CrossRef]
- Perumal, G.; Pappuru, S.; Chakraborty, D.; Maya Nandkumar, A.; Chand, D.K.; Doble, M. Synthesis and characterization of curcumin loaded PLA—Hyperbranched polyglycerol electrospun blend for wound dressing applications. Mater. Sci. Eng. C 2017, 76, 1196–1204. [Google Scholar] [CrossRef] [PubMed]
- Keat, C.L.; Aziz, A.; Eid, A.M.; Elmarzugi, N.A. Biosynthesis of nanoparticles and silver nanoparticles. Bioresour. Bioprocess. 2015, 2. [Google Scholar] [CrossRef] [Green Version]
- Sheikh, F.A.; Barakat, N.A.M.; Kanjwal, M.A.; Chaudhari, A.A.; Jung, I.H.; Lee, J.H.; Kim, H.Y. Electrospun antimicrobial polyurethane nanofibers containing silver nanoparticles for biotechnological applications. Macromol. Res. 2009, 17, 688–696. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Luo, L.; Chen, B.; Fu, Y. Recent development of chemical components in propolis. Front. Biol. China 2009, 4, 385–391. [Google Scholar] [CrossRef]
- Koski, A.; Yim, K.; Shivkumar, S. Effect of molecular weight on fibrous PVA produced by electrospinning. Mater. Lett. 2004, 58, 493–497. [Google Scholar] [CrossRef]
- Calixto, J.B. Efficacy, safety, quality control, marketing and regulatory guidelines for herbal medicines (phytotherapeutic agents). Braz. J. Med. Biol. Res. 2000, 33, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Chang, M.W.; Ahmad, Z.; Zheng, H.; Li, J.S. Mass and controlled fabrication of aligned PVP fibers for matrix type antibiotic drug delivery systems. Chem. Eng. J. 2017, 307, 661–669. [Google Scholar] [CrossRef]
- Zhang, L.; Menkhaus, T.J.; Fong, H. Fabrication and bioseparation studies of adsorptive membranes/felts made from electrospun cellulose acetate nanofibers. J. Memb. Sci. 2008, 319, 176–184. [Google Scholar] [CrossRef]
- Fan, L.; Peng, K.; Li, M.; Wang, L.; Wang, T. Preparation and properties of carboxymethyl κ-carrageenan/alginate blend fibers. J. Biomater. Sci. Polym. Ed. 2013, 24, 1099–1111. [Google Scholar] [CrossRef] [PubMed]
- Lisnyak, Y.V.; Martynov, A.V.; Baumer, V.N.; Shishkin, O.V.; Gubskaya, A.V. Crystal and molecular structure of β-cyclodextrin inclusion complex with succinic acid. J. Incl. Phenom. Macrocycl. Chem. 2007, 58, 367–375. [Google Scholar] [CrossRef]
- Lin, L.; Zhu, Y.; Li, C.; Liu, L.; Surendhiran, D.; Cui, H. Antibacterial activity of PEO nanofibers incorporating polysaccharide from dandelion and its derivative. Carbohydr. Polym. 2018, 198, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, R.; Prabaharan, M.; Sudheesh Kumar, P.T.; Nair, S.V.; Tamura, H. Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol. Adv. 2011, 29, 322–337. [Google Scholar] [CrossRef] [PubMed]
- Cirillo, G.; Curcio, M.; Spizzirri, U.G.; Vittorio, O.; Valli, E.; Farfalla, A.; Leggio, A.; Nicoletta, F.P.; Iemma, F. Chitosan–Quercetin Bioconjugate as Multi-Functional Component of Antioxidants and Dual-Responsive Hydrogel Networks. Macromol. Mater. Eng. 2019, 304, 1–12. [Google Scholar] [CrossRef]
- Li, C.W.; Fu, R.Q.; Yu, C.P.; Li, Z.H.; Guan, H.Y.; Hu, D.Q.; Zhao, D.H.; Lu, L.C. Silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofibers as wound dressings: A preclinical study. Int. J. Nanomed. 2013, 8, 4131–4145. [Google Scholar] [CrossRef]
- Jana, S.; Florczyk, S.J.; Leung, M.; Zhang, M. High-strength pristine porous chitosan scaffolds for tissue engineering. J. Mater. Chem. 2012, 22, 6291–6299. [Google Scholar] [CrossRef]
- Su, P.; Wang, C.; Yang, X.; Chen, X.; Gao, C.; Feng, X.X.; Chen, J.Y.; Ye, J.; Gou, Z. Electrospinning of chitosan nanofibers: The favorable effect of metal ions. Carbohydr. Polym. 2011, 84, 239–246. [Google Scholar] [CrossRef]
- Yan, E.; Fan, S.; Li, X.; Wang, C.; Sun, Z.; Ni, L.; Zhang, D. Electrospun polyvinyl alcohol/chitosan composite nanofibers involving Au nanoparticles and their in vitro release properties. Mater. Sci. Eng. C 2013, 33, 461–465. [Google Scholar] [CrossRef]
- Chomnawang, M.T.; Surassmo, S.; Wongsariya, K.; Bunyapraphatsara, N. Antibacterial Activity of Thai Medicinal Plants against Methicillin-resistant Staphylococcus aureus. Fitoterapia 2009, 80, 102–104. [Google Scholar] [CrossRef]
- Mandal, M.D.; Mandal, S. Honey: Its medicinal property and antibacterial activity. Asian Pac. J. Trop. Biomed. 2011, 1, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; He, J.H. Electrospun polyvinyl alcohol-honey nanofibers. Therm. Sci. 2013, 17, 1549–1550. [Google Scholar] [CrossRef]
- Taokaew, S.; Seetabhawang, S.; Siripong, P.; Phisalaphong, M. Biosynthesis and characterization of nanocellulose-gelatin films. Materials 2013, 6, 782–794. [Google Scholar] [CrossRef] [Green Version]
- Desbois, A.P.; Walton, M.; Smith, V.J. Differential antibacterial activities of fusiform and oval morphotypes of phaeodactylum tricornutum (bacillariophyceae). J. Mar. Biol. Assoc. UK 2010, 90, 769–774. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.C.; Zhang, C.; Ahmad, Z.; Huang, J.; Li, J.S.; Chang, M.W. Designer fibers from 2D to 3D—Simultaneous and controlled engineering of morphology, shape and size. Chem. Eng. J. 2018, 334, 89–98. [Google Scholar] [CrossRef]
- Calamak, S.; Aksoy, E.A.; Ertas, N.; Erdogdu, C.; Sagiroglu, M.; Ulubayram, K. Ag/silk fibroin nanofibers: Effect of fibroin morphology on Ag+ release and antibacterial activity. Eur. Polym. J. 2015, 67, 99–112. [Google Scholar] [CrossRef]
- Cooper, R.A.; Jenkins, L.; Henriques, A.F.M.; Duggan, R.S.; Burton, N.F. Absence of bacterial resistance to medical-grade manuka honey. Eur. J. Clin. Microbiol. Infect. Dis. 2010, 29, 1237–1241. [Google Scholar] [CrossRef] [Green Version]
- Hashemi, S.M.B.; Jafarpour, D. The efficacy of edible film from Konjac glucomannan and saffron petal extract to improve shelf life of fresh-cut cucumber. Food Sci. Nutr. 2020, 8, 3128–3137. [Google Scholar] [CrossRef]
- Manuel Franco, C.; Vázquez, B.I. Natural compounds as antimicrobial agents. Antibiotics 2020, 9, 217. [Google Scholar] [CrossRef]
- Sanna, V.; Lubinu, G.; Madau, P.; Pala, N.; Nurra, S.; Mariani, A.; Sechi, M. Polymeric nanoparticles encapsulating white tea extract for nutraceutical application. J. Agric. Food Chem. 2015, 63, 2026–2032. [Google Scholar] [CrossRef] [PubMed]
- Hill, L.E.; Taylor, T.M.; Gomes, C. Antimicrobial Efficacy of Poly (DL-lactide-co-glycolide) (PLGA) Nanoparticles with Entrapped Cinnamon Bark Extract against Listeria monocytogenes and Salmonella typhimurium. J. Food Sci. 2013, 78. [Google Scholar] [CrossRef]
- Silva, L.M.; Hill, L.E.; Figueiredo, E.; Gomes, C.L. Delivery of phytochemicals of tropical fruit by-products using poly (dl-lactide-co-glycolide) (PLGA) nanoparticles: Synthesis, characterization, and antimicrobial activity. Food Chem. 2014, 165, 362–370. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Angonese, M.; Ferreira, S.R.S.; Gomes, C.L. Nanoencapsulation of passion fruit by-products extracts for enhanced antimicrobial activity. Food Bioprod. Process. 2017, 104, 137–146. [Google Scholar] [CrossRef]
- Pereira, M.C.; Hill, L.E.; Zambiazi, R.C.; Mertens-Talcott, S.; Talcott, S.; Gomes, C.L. Nanoencapsulation of hydrophobic phytochemicals using poly (dl-lactide-co-glycolide) (PLGA) for antioxidant and antimicrobial delivery applications: Guabiroba fruit (Campomanesia xanthocarpa O. Berg) study. LWT Food Sci. Technol. 2015, 63, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Pereira, M.C.; Oliveira, D.A.; Hill, L.E.; Zambiazi, R.C.; Borges, C.D.; Vizzotto, M.; Mertens-Talcott, S.; Talcott, S.; Gomes, C.L. Effect of nanoencapsulation using PLGA on antioxidant and antimicrobial activities of guabiroba fruit phenolic extract. Food Chem. 2018, 240, 396–404. [Google Scholar] [CrossRef]
- Bernardos, A.; Piacenza, E.; Sancenón, F.; Hamidi, M.; Maleki, A.; Turner, R.J.; Martínez-Máñez, R. Mesoporous Silica-Based Materials with Bactericidal Properties. Small 2019, 15, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Asefa, T.; Tao, Z. Biocompatibility of Mesoporous Silica Nanoparticles. Chem. Res. Toxicol. 2012, 25, 2265–2284. [Google Scholar] [CrossRef] [PubMed]
- Croissant, J.G.; Fatieiev, Y.; Khashab, N.M. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Adv. Mater. 2017, 29, 1604634. [Google Scholar] [CrossRef]
- Wu, S.-H.; Mou, C.-Y.; Lin, H.-P. Synthesis of Mesoporous Silica Nanoparticles. Chem. Soc. Rev. 2013, 42, 3862–3875. [Google Scholar] [CrossRef]
- Slowing, I.I.; Vivero-Escoto, J.L.; Trewyn, B.G.; Lin, V.S.Y. Mesoporous silica nanoparticles: Structural design and applications. J. Mater. Chem. 2010, 20, 7924–7937. [Google Scholar] [CrossRef] [Green Version]
- Laís, L.F.; Teles da Silva, L.V.d.A.; do Nascimento, T.G.; de Almeida, L.M.; Calumby, R.J.N.; Nunes, Á.M.; de Magalhães Oliveira, L.M.T.; da Silva Fonseca, E.J. Antioxidant and antimicrobial activity of red propolis embedded mesoporous silica nanoparticles. Drug Dev. Ind. Pharm. 2020, 46, 1199–1208. [Google Scholar] [CrossRef]
- Righi, A.A.; Alves, T.R.; Negri, G.; Marques, L.M.; Breyer, H.; Salatino, A. Brazilian red propolis: Unreported substances, antioxidant and antibacterial activities. J. Sci. Food Agric. 2011, 91, 2363–2370. [Google Scholar] [CrossRef] [PubMed]
- Brezoiu, A.M.; Prundeanu, M.; Berger, D.; Deaconu, M.; Matei, C.; Oprea, O.; Vasile, E.; Negreanu-Pîrjol, T.; Muntean, D.; Danciu, C. Properties of salvia offcinalis l. And thymus serpyllum l. extracts free and embedded into mesopores of silica and titania nanomaterials. Nanomaterials 2020, 10, 820. [Google Scholar] [CrossRef] [PubMed]
Source | Microorganisms | Antibacterial Activity | Ref. |
---|---|---|---|
Male date palm flower | Pseudomonas savastonoi, Escherichia coli, Salmonella enterica, Agrobacterium tumefaciens, Bacillus subtilis, Staphylococcus aureus, Micrococcus luteus, Listeria monocytogenes | 10.5–12.1 a | [33] |
Ferula ferulioides | S. aureus | 0.00025 > 0.128 b | [34] |
Derris scandens | S. aureus, Bacillus cereus, E. coli, Pseudomonas aeruginosa | 0.06–13 b | [35] |
C. aurantium flowers | B. cereus | 1.562 ≤ 6.250 b | [36] |
Psidium sp., Mangifera sp. and Mentha sp | Streptococcus sanguinis, Streptococcus mutans | 31.63 ± 5.11 c | [37] |
Pulicaria undulata L | S. aureus, E. coli, Klebsiella pneumoniae, P. aeruginosa | 17–18 d | [38] |
Genista saharae | E. coli, Acinetobacter baumannii, Citrobacter freundii, Proteus mirabilis, Salmonella typhimurium, Enterobacter cloacae, S. aureus, B. cereus, B. subtilis, Enterococcus faecalis, L. monocytogenes | 0.01 > 1000 c | [39] |
Cerbera manghas, Commelina diffusa, Kleinhovia hospita, Mikania micrantha, Omalanthus nutans, Peperomia pellucida, Phymatosorus scolopendria, Piper graeffei, Psychotria insularum, Schizostachyum glaucifolium | S. aureus, E. coli, P. aeruginosa | 0.004–0.512 b | [40] |
Fungi | − | − | [41] |
Psidium guajava L. cv. Pearl | E. coli, S. aureus, P. aeruginosa | 0.3 – 10.0 b | [42] |
Polyscias scutellaria Fosberg | A. sp. | 225–400 d | [43] |
Aspidosperma quebracho-blanco, Schinus fasciculatus, S. gracilipes, Amphilophium cynanchoides, Tecoma stans | Pseudomonas corrugate, Pseudomonas syringae pv. tomato, Erwinia carotovora var. carotovora, A. tumefaciens, Xanthomonas campestres pv. vesicatoria | 2.2 > 4.0 b 2.0–4.8 a | [44] |
Cardamom (Elettaria cardamomum) | Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum, Porphyromonas gingivalis, Prevotella intermedia | 0.06–1.00 b | [45] |
Origanum vulgare, Salvia officinalis, Thymus vulgaris | E. coli, Klebsiella oxytoca, K. pneumoniae | 2–370 b | [46] |
Myristica fragrans | S. aureus, methicillin-resistant S. aureus, Streptococcus pyogenes, P. aeruginosa, Candida albicans | 0–12 b 0–45 a | [47] |
Euphorbia tirucalli L. | S. aureus, Staphylococcus epidermidis, E. faecalis, E. coli, P. aeruginosa | 12.8–16.0 b | [48] |
Tradescantia zebrina | B. cereus, B. subtilis, M. luteus, S. aureus, S. epidermidis | 5 > 10 b | [49] |
Adiantum caudatum | B. subtilis, E. coli, P. aeruginosa | 8-22 a | [50] |
Agastache rugosa Korean Mint | Aeromonas salmonicida, Cronobacter sakazakii, E. coli, Staphylococcus haemolyticus, Aeromonas hydrophila | 9.3–28.3 a | [51] |
Algae and diatoms | E. faecalis, S. aureus, S. epidermidis, Streptococcus agalactiae, Streptococcus pneumoniae, S. pyogenes, Acinetobacter lwoffii, E. coli, K. oxytoca, K. pneumoniae, P. mirabilis, P. aeruginosa, Serratia marcescens | 6.0–12.0 a 0.062 > 1000 b | [52] |
Fagus sylvatica L | S. aureus, P. aeruginosa, S. typhimurium, E. coli, Candida | 1-3 (MIC) b; 3-6 (MBC) b | [53] |
Source | Microorganisms | Antimicrobial Activity | Ref. |
---|---|---|---|
Apple seeds | Escherichia coli, Salmonella sp., Bacillus subtilis, Staphylococcus aureus, Candida sp., Saccharomyces cerevisiae, Aspergillus flavus, Penicillium citrinum, Mucor sp., Rhizopus sp. | 0.3–0.6 a | [54] |
Tomato peels | S. aureus, B. subtilis, Listeria monocytogenes, E. coli, Pseudomonas aeruginosa, Salmonella typhimurium | 2.5–10.0 a | [55] |
Leaves of fennel and carrot | Salmonella enteritidis, S. aureus, Candida albicans | 6.5–50.0 a | [56] |
Betel leaf stalk | B. subtilis, E.coli, P. aeruginosa, S. aureus | 0.025–0.250 a | [57] |
Olive mill waste | S. aureus, E. coli, Staphylococcus faecalis | 11.1–28.8 b | [58] |
Seed and peel of Citrus sinensis | S. aureus, C. albicans | 2.5–40.0 a 2.0–14.0 b | [59] |
Orange peels of Citrus senensis | S. aureus, L. monocytogenes, P. aeruginosa | 15–92 a | [60] |
Grape seeds | E. coli, S. aureus | 9–21 b | [61] |
Grape pomace | S. aureus, E. coli, C. albicans | 0.195–100 a | [62] |
Lavender (Lavandula angustifolia) and melissa (Melissa Officinalis) waste | E. coli, Proteus vulgaris, P. aeruginosa, S. aureus, Enterococcus faecalis, L. monocytogenes, Candida utilis, B. subtilis, Aspergillus niger, Penicillium chrysogenum, S. cerevisiae | 8.00–12.00 a | [63] |
Mango seed kernel | Xanthomonas axonopodis pv. manihotis | 3.08–7.10 b | [64,65] |
E. coli, C. albicans | 1.10–2.23 a | ||
Vaccinium meridionale Swartz pomace | S. aureus, E. coli | 126–520 c | [66] |
Walnut green husk | Bacillus cereus, B. subtilis, S. aureus, Staphylococcus epidermis, E. coli, P. aeruginosa | 20–100 a | [67] |
Carya illinoinensis | L. monocytogenes, S. aureus, Vibrio parahaemolyticus, B. cereus | 0.075–1.870 a | [68] |
Garlic (Allium sativum L.) husk | P. aeruginosa, Klebsiella pneumoniae | 1–10 a | [69] |
Mangosteen bark, leaf, and fruit pericarp | L. monocytogenes, S. aureus | 0.03 > 10 a | [70] |
Newhall navel orange peel | E. coli, S. aureus, B. subtilis | 0.16–30.36 a | [71] |
Peel of Punica granatum Var. Bhagwa | S. aureus, E. coli, Streptococcus mutans mutans, C. albicans | 17–32 a | [72] |
Brewers’ spent grain | S. aureus L. monocytogenes, S. typhimurium, E. coli, P. aeruginosa, C. albicans | 0.00097–0.125 a | [73] |
Agave sisalana Perrine juice (waste) | E. faecalis, C. albicans, P. aeruginosa, Bacillus atrophaeus, Shigella dysenteriae | 24–31 b | [74] |
Orange, yellow lemon, and banana peel | P. aeruginosa, K. pneumoniae, Serratia marcescens, E. coli, P. vulgaris, Salmonella typhi, S. aureus, E. faecalis, Aeromonas hydrophila, Streptococcus pyogenes, L. monocytogenes, Lactobacillus casei | 9–35 b | [75] |
Guava bagasse (Psidium guajava), Cabernet Sauvignon, Pinot Noir (Vitis vinifera), Isabella grape marcs (Vitis labrusca), Petit Verdot grape seeds and red grapes fermentation lees (Vitis vinifera), tomato bagasse (Solanum lycopersicum), kale (Brassica oleracea), beet (Beta vulgaris), broccoli (Brassica oleracea), turnip stems (Brassica rapa), carrot (Daucus carota), radish leaves (Raphanus sativus), pumpkin (Cucurbita sp.), passion fruit hulls (Passiflora edulis), artichoke leaves (Cynara cardunculus), and peanut peels (Arachis hypogaea) | S. aureus, L. monocytogenes, S. Enteritidis, E. coli | 10.0–20.0 d 0.78–25.00 a | [76] |
Mango (Mangifera indica L.), | B. subtilis, S. aureus, P. aeruginosa, E. coli | 13–18 b | [77] |
Camu-camu (Myrciaria dubia (Kunth) McVaugh) | E. coli, K. pneumoniae, Morganella morganii, Proteus mirabilis, P. aeruginosa, E. faecalis, L. monocytogenes | 0.625 > 20 | [78] |
Olive mill wastewater | Campylobacter strains | 0.25–2.00 a | [79] |
Coffee pulp and husk | Salmonella cholerasus, S. aureus, P. aeruginosa, L. monocytogenes, E. coli | 0.000612–0.001225 a | [80] |
Nanofiber | Incorporated Species | Antimicrobial Activity Against | Applications | Ref. |
---|---|---|---|---|
Moringa leaf extracts | Staphylococcus aureus, Escherichia coli | Wound dressing | [92] | |
Polyacrylonitrile | Syzygium aromaticum oil | S. aureus, Bacillus subtilis, E. coli, Klebsiella pneumoniae | Wound dressing and tissue engineering scaffolds | [93] |
Polyacrylonitrile | Lavender essential oil | S. aureus, K. pneumoniae | Antimicrobial activity | [94] |
Poly (lactic acid) | Leptospermum scoparium and Melaleuca alternifolia essential oil | Staphylococcus epidermidis | Tissue engineering scaffolds | [95] |
Poly (d,l-lactide-co-glycolide) | Methanolic extract of Grewia mollis | S. aureus, E. coli | Wound dressing | [96] |
Poly (d,l-lactide-co-glycolide) | Human epidermal growth factor and Aloe vera extract | S. aureus, S. epidermidis | Wound dressing | [97] |
Polycaprolactone | Biophytum sensitivum extract | S. aureus, E. coli | Wound dressing | [98] |
Polycaprolactone | Gymnema sylvestre | Pseudomonas aeruginosa, E. coli | Wound dressing | [99] |
Polycaprolactone | Clerodendrum phlomidis | S. aureus, P. aeruginosa, Salmonella typhi, E. coli | Wound dressing | [100] |
Polycaprolactone, gelatin | Althea officinalis | − | Tissue engineering scaffolds | [101] |
Polycaprolactone, gelatin | Black pepper oleoresin | S. aureus | Antimicrobial activity | [102] |
Polycaprolactone, polyvinyl pyrrolidone | Tecomella undulate extract | P. aeruginosa, S. aureus, E. coli | Wound dressings | [103] |
Polycaprolactone, silver nanoparticles | Nepelium lappaceum extract | E. coli, S. aureus, P. aeruginosa | Wound dressings | [104] |
Polyurethane | Emu oil | B. subtilis, E. coli | Wound dressings and tissue engineering scaffolds | [105] |
Polyurethane | Propolis | E. coli | Wound dressings and tissue engineering scaffolds | [84] |
Polyurethane | Agrimonia eupatoria, Satureja hortensis, Hypericum perforatum herbal extract | S. aureus, P. aeruginosa | Wound dressings | [106] |
Polyurethane | Szygium aromaticum extract | S. aureus, E. coli | Wound dressings | [107] |
Polyurethane/polyethylene terephthalate | Juniperus chinensis extract | S. aureus, K. pneumoniae | Antimicrobial clothing materials, bedding materials | [108] |
Polyurethane/carboxymethyl cellulose | Malva sylvestris extract | S. aureus, E. coli | Wound dressings | [109] |
Poly (vinyl alcohol) | Lawsonia inermis leaves extract | S. aureus, E. coli | Wound dressings | [110] |
Poly (vinyl alcohol) | Tridax procumbens leaves extract | S. aureus, E. coli | Antimicrobial activity | [111] |
Poly (vinyl alcohol) | Coptis chinensis extract | S. aureus, S. epidermidis | Medical and cosmetics fields | [112] |
Poly (vinyl alcohol) | Rhodomyrtus tomentosa extract | E. coli, P. aeruginosa, B. subtilis, Enterococcu faecalis | Antimicrobial activity | [113] |
Poly (vinyl alcohol) | Coptidis rhizoma extract | S. aureus, S. epidermidis | Wound dressings | [114] |
Poly(vinyl alcohol)/nanocellulose from pineapple | Stryphodedron barbatimao extract | − | Antimicrobial activity | [115] |
Poly(vinyl alcohol)/guar gum | Acalypha indica extract | E. coli, B. subtilis, S. aureus, Pseudomonas fluorescens | Wound dressings | [116] |
Poly(vinyl alcohol)/sodium alginate | Cinnamon, clove, and lavender oils | S. aureus | Wound dressings | [117] |
Polyvinylpyrrolidone | Sophora flavescens extract | S. epidermidis | Antimicrobial air filtration | [118] |
Polyvinylpyrrolidone | Cinnamon essential oil | S. aureus, E. coli, P. aeruginosa, Candida albicans | Antimicrobial activity | [119] |
Nanofiber | Incorporated Species | Antimicrobial Activity Against | Applications | Ref. |
---|---|---|---|---|
Cellulose acetate | Lemongrass, cinnamon, and peppermint essential oils | Escherichia coli, Candida albicans | Tissue engineering scaffolds | [120] |
Cellulose acetate | Rosemary and oregano essential oils | Staphylococcus aureus, E. coli, C. albicans | Wound dressings | [121] |
Carboxymethyl cellulose/sodium alginate | Olive leaf extract | S. aureus, E. coli, Enterococcus faecalis, Pseudomonas aeruginosa | Wound dressings | [122] |
Cellulose | S. persica extract | S. aureus, E. coli | Antimicrobial activity | [123] |
Cellulose | Oryza sativa and Tinospora cordifolia extracts | E. coli, P. aeruginosa, Bacillus subtilis | Wound dressing and tissue engineering scaffolds | [124] |
Dandelion polysaccharide | Litsea cubeba essential oil | S. aureus | Antimicrobial activity | [125] |
Chitosan-ethylenediaminetetra acetic acid/poly(vinyl alcohol) | Garcinia mangostana fruit hull extract | S. aureus, E. coli | Wound dressings | [126] |
Chitosan/poly(vinyl alcohol) | Bidens pilosa extract | S. aureus, E. coli | Antimicrobial activity | [127] |
Chitosan/poly(vinyl alcohol)/honey | − | S. aureus, E. coli | Wound dressings | [128,129] |
Chitosan/poly(vinyl alcohol)/honey | Cleome droserifolia and Allium sativum extracts | Multidrug-resistant P. aeruginosa, E. coli, S. aureus, and methicillin-resistant S. aureus | Wound dressings | [130] |
Chitosan/poly(ethylene oxide) | Cinnamaldehyde essential oil | P. aeruginosa | Tissue engineering scaffolds | [131] |
Chitosan/poly(ethylene oxide) | Green tea extract | S. aureus, E. coli | Wound dressings | [132] |
Gelatin | Phaeodactylum tricornutuma extract | Multidrug-resistant P. aeruginosa, E. coli | Wound dressings | [133] |
Gelatin | Centella asiatca | S. aureus, E. coli, and P. aeruginosa | Wound dressings | [134] |
Gelatin | Curcuma comosa Roxb. extract | S. aureus, Staphylococcus epidermidis | Antimicrobial activity | [135] |
Gelatin | Chromolaena odorata crude extract | S. aureus | Antimicrobial activity | [136] |
Gelatin/polycaprolactone | Aloe vera extract | S. aureus, E. coli | Tissue engineering scaffolds | [137] |
Silk fibroin/poly(ethylene oxide) | Manuka honey | Methicillin-resistant S. aureus, P. aeruginosa, E. coli, S. aureus | Wound dressings | [138] |
Silk fibroin/polyvinylpyrrolidone | Baicalein | S. aureus | Wound dressings | [139] |
Silk fibroin/hyaluronic acid | Olive leaf extract | S. aureus, E. coli | Antimicrobial activity | [140] |
Zein/tragacanth gum | Saffron extract | − | Polymeric carrier | [141] |
Zein | Propolis extract | S. aureus, S. epidermidis, E. coli, Salmonella enterica, P. aeruginosa, C. albicans | Wound dressings | [142] |
Soy protein isolate | Raspberry extract | S. epidermidis | Antimicrobial activity | [143] |
Nanoparticle | Incorporated Species | Antimicrobial Activity Against | Applications | Ref. |
---|---|---|---|---|
Poly(d,l-lactide-co-glycolide)/poly(vinyl alcohol) | Cinnamon bark extract | Salmonella enterica serovar Typhimurium, Listeria monocytogenes | Antimicrobial activity | [181] |
Poly(d,l-lactide-co-glycolide)/poly(vinyl alcohol) | Acerola, guava, and passion fruit waste extracts | L. monocytogenes Scott A, Escherichia coli K12 | Improvement of physical texture | [182] |
Poly(d,l-lactide-co-glycolide)/poly(vinyl alcohol) | Passion fruit by-products | E. coli, Listeria innocua | Chemical disinfectants | [183] |
Poly(d,l-lactide-co-glycolide)/poly(vinyl alcohol) | Guabiroba extract | L. innocua | Delivery systems | [184,185] |
Silica mesoporous nanoparticles | Red propolis | Staphylococcus aureus | Antimicrobial activity | [191] |
Silica mesoporous nanoparticles | Salvia officinalis L. and Thymus serpyllum L. | S. enterica, Shigella flexneri serotype 2b, Enterococcus faecalis, E. coli, Pseudomonas aeruginosa, S. aureus, Streptococcus pneumoniae, Streptococcus pyogenes, Bacteroides fragilis, Candida albicans, Candida parapsilosis | Antimicrobial activity | [193] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spizzirri, U.G.; Aiello, F.; Carullo, G.; Facente, A.; Restuccia, D. Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics 2021, 13, 230. https://doi.org/10.3390/pharmaceutics13020230
Spizzirri UG, Aiello F, Carullo G, Facente A, Restuccia D. Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics. 2021; 13(2):230. https://doi.org/10.3390/pharmaceutics13020230
Chicago/Turabian StyleSpizzirri, Umile Gianfranco, Francesca Aiello, Gabriele Carullo, Anastasia Facente, and Donatella Restuccia. 2021. "Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties" Pharmaceutics 13, no. 2: 230. https://doi.org/10.3390/pharmaceutics13020230
APA StyleSpizzirri, U. G., Aiello, F., Carullo, G., Facente, A., & Restuccia, D. (2021). Nanotechnologies: An Innovative Tool to Release Natural Extracts with Antimicrobial Properties. Pharmaceutics, 13(2), 230. https://doi.org/10.3390/pharmaceutics13020230