Impact of Surface Properties of Core Material on the Stability of Hot Melt-Coated Multiparticulate Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Hot Melt Coating Process
2.2.2. In Vitro Release Profile of HCT and MET
2.2.3. Small-Angle X-ray Scattering
2.2.4. Monitoring Phase Separation of the Coating Mixture via Confocal Raman Spectroscopy
2.2.5. Investigation of the Surface Energy of APIs and Their Water Sorption Behavior via Tensiometry
2.2.6. Investigation of the Surface Tension of Liquid Coating Material via the Pendant Drop Method
2.2.7. Investigation of the Surface Energy of Solid Coating Material Using the Pendant Drop Method
3. Results and Discussion
3.1. In Vitro Release Profile of HCT and MET
3.2. Water Sorption Behavior
3.3. Small-Angle X-ray Scattering
3.4. Monitoring Phase Separation of the Coating Mixture via Confocal Raman Spectroscopy
3.5. The Free Surface Energy of API Core and Coating Material
3.6. Cleavage Theory
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becker, K.; Saurugger, E.M.; Kienberger, D.; Lopes, D.; Haack, D.; Köberle, M.; Stehr, M.; Lochmann, D.; Zimmer, A.; Salar-Behzadi, S. Advanced stable lipid-based formulations for a patient-centric product design. Int. J. Pharm. 2016, 497, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Becker, K.; Haack, D.; Salar-Behzadi, S.; Zimmer, A. Oral Pharmaceutical Composition Comprising Taste-Masked N-Acetylcysteine. EP 2,983,650,B1 28 June 2017. [Google Scholar]
- Lopes, D.G.; Koutsamanis, I.; Becker, K.; Scheibelhofer, O.; Laggner, P.; Haack, D.; Stehr, M.; Zimmer, A.; Salar-Behzadi, S. Microphase separation in solid lipid dosage forms as the cause of drug release instability. Int. J. Pharm. 2017, 517, 403–412. [Google Scholar] [CrossRef]
- Sato, K. Crystallization behaviour of fats and lipids—A review. Chem. Eng. Sci. 2001, 56, 2255–2265. [Google Scholar] [CrossRef]
- Lopes, D.G.; Becker, K.; Stehr, M.; Lochmann, D.; Haack, D.; Zimmer, A.; Salar-Behzadi, S. Role of Lipid Blooming and Crystallite Size in the Performance of Highly Soluble Drug-Loaded Microcapsules. J. Pharm. Sci. 2015, 104, 4257–4265. [Google Scholar] [CrossRef]
- Salar-Behzadi, S.; Corzo, C.; Schaden, L.; Laggner, P.; Zimmer, A. Correlation between the solid state of lipid coating and release profile of API from hot melt coated microcapsules. Int. J. Pharm. 2019, 565, 569–578. [Google Scholar] [CrossRef]
- Windbergs, M.; Strachan, C.J.; Kleinebudde, P. Understanding the solid-state behaviour of triglyceride solid lipid extrudates and its influence on dissolution. J. Pharm. Biopharm. 2009, 71, 80–87. [Google Scholar] [CrossRef]
- Jannin, V.; Rosiaux, Y.; Doucet, J. Exploring the possible relationship between the drug release of Compritol®-containing tablets and its polymorph forms using micro X-ray diffraction. J. Control. Release 2015, 197, 158–164. [Google Scholar] [CrossRef]
- Corzo, C.; Lopes, D.G.; Lochmann, D.; Reyer, S.; Stehr, M.; Salar-Behzadi, S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 1: Screening of solid-state and physical properties of polyglycerol esters of fatty acids as advanced pharmaceutical excipients. Eur. J. Pharm. Biopharm. 2020, 148, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Aronhime, J.S.; Sarig, S.; Garti, N. Mechanistic considerations of polymorphic transformations of tristearin in the presence of emulsifiers. J. Am. Oil Chem. Soc. 1987, 64, 529–533. [Google Scholar] [CrossRef]
- Pub Chem. Available online: https://pubchem.ncbi.nlm.nih.gov/ (accessed on 8 September 2020).
- Molinspiration Cheminformatics. Available online: https://www.molinspiration.com/ (accessed on 14 July 2020).
- Martini, S.; Awad, T.; Marangoni, A.G. Structure and Properties of Fat Crystal Networks; Taylor & Francis Group: Boca Raton, FL, USA, 2013. [Google Scholar]
- Sato, K. Crystallization of Lipids; John Wiley & Sons Ltd.: Higashi-Hiroshima, Japan, 2018. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies; John Wiley & Sons Ltd.: Chichester, UK, 2001. [Google Scholar]
- Renganayaki, V.; Srinivasan, S. HF, DFT computations and spectroscopic study of the vibrational and thermodynamic properties of metformin. Int. J. PharmTech Res. 2011, 3, 1350–1358. [Google Scholar]
- Steele, D.F.; Moreton, R.C.; Staniforth, J.N.; Young, P.M.; Tobyn, M.J.; Edge, S. Surface energy of microcrystalline cellulose determined by capillary intrusion and inverse gas chromatography. Am. Assoc. Pharm. Sci. 2008, 10, 494–503. [Google Scholar] [CrossRef] [Green Version]
- Good, R.J.; Girifalco, L.A. A theory for estimation of surface and interfacial energies. III. Estimation of surface energies of solids from contact angle data. J. Phys. Chem. 1960, 64, 561–565. [Google Scholar] [CrossRef]
- Packham, D.E. Surface energy, surface topography and adhesion. Int. J. Adhes. Adhes. 2003, 23, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Leite, F.L.; Bueno, C.C.; da Róz, A.L.; Ziemath, E.C.; Oliveira, O.N. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy. Int. J. Mol. Sci. 2012, 13, 12773–12856. [Google Scholar] [CrossRef]
- Bangham, D.H.; Razouk, R.I. Adsorption and the wettability of solid surfaces. Trans. Faraday Soc. 1937, 33, 1459–1464. [Google Scholar] [CrossRef]
- Chibowski, E.; Hołysz, L. On the use of washburn’s equation for contact angle determination. J. Adhes. Sci. Technol. 2012, 11, 1289–1301. [Google Scholar] [CrossRef]
- Shang, J.; Flury, M.; Harsh, J.B.; Zollars, R.L. Comparison of different methods to measure contact angles of soil colloids. J. Colloid Interface Sci. 2008, 328, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Owens, D.K.; Wendt, R.C. Estimation of the Surface Free Energy of Polymers. J. Appl. Polym. Sci. 1969, 13, 1741–1747. [Google Scholar] [CrossRef]
- Kaelble, D.H.; Cirlin, E.H. Dispersion and Polar Contributions. J. Polym. Sci. Part A-2 1971, 9, 363–368. [Google Scholar] [CrossRef]
- Good, R.J. Contact angle, wetting, and adhesion: A critical review. J. Adhes. Sci. Technol. 1992, 6, 1269–1302. [Google Scholar] [CrossRef]
- Brugnara, M.; Degasperi, E.; della Volpe, C.; Maniglio, D.; Penati, A.; Siboni, S. Wettability of porous materials, II: Can we obtain the contact angle from the Washburn equation? In Contact Angle Wettability Adhesion; CRC Press: Boca Raton, FL, USA, 2006; Volume 4, pp. 143–164. [Google Scholar]
- Tropea, C.; Yarin, A.L.; Foss, J.F. Handbook of Experimental Fluid Mechanics; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Israelachvili, J.N. Intermolecular and Surface Forces. In Intermolecular and Surface Forces, 3rd ed.; Elsevier Inc.: Santa Barbara, CA, USA, 2011; pp. 415–467. [Google Scholar]
- U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER), ‘Dissolution Testing of Immediate Release Solid Oral Dosage forms’, FDA Guidance for Industry. 1997. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/dissolution-testing-immediate-release-solid-oral-dosage-forms (accessed on 12 September 2020).
- Siepmann, J.; Siegel, R.A.; Rathbone, M.J. Fundamentals and Applications of Controlled Release Drug Delivery; Springer Science+Business Media LLC: New York, NY, USA, 2012. [Google Scholar]
- Paolino, D.; Tudose, A.; Celia, C.; di Marzio, L.; Cilurzo, F.; Mircioiu, C. Mathematical models as tools to predict the release kinetic of fluorescein from lyotropic colloidal liquid crystals. Materials 2019, 12, 693. [Google Scholar] [CrossRef] [Green Version]
- Merchant, H.A.; Shoaib, H.M.; Tazeen, J.; Yousuf, R.I. Once-daily tablet formulation and in vitro release evaluation of cefpodoxime using hydroxypropyl methylcellulose: A technical note. AAPS PharmSciTech 2006, 7, E178–E183. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, J.; Peppas, N.A. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv. Drug Deliv. Rev. 2012, 64, 163–174. [Google Scholar] [CrossRef]
- Alghunaim, A.; Kirdponpattara, S.; Newby, B.M.Z. Techniques for determining contact angle and wettability of powders. Powder Technol. 2016, 287, 201–215. [Google Scholar] [CrossRef]
- Stange, M.; Dreyer, M.E.; Rath, H.J. Capillary driven flow in circular cylindrical tubes. Phys. Fluids 2003, 15, 2587–2601. [Google Scholar] [CrossRef]
- Susana, L.; Campaci, F.; Santomaso, A.C. Wettability of mineral and metallic powders: Applicability and limitations of sessile drop method and Washburn’s technique. Powder Technol. 2012, 226, 68–77. [Google Scholar] [CrossRef]
- Dang-Vu, T.; Hupka, J. Characterization of Porous Materials. Physiochem. Probl. Miner. Process. 2005, 39, 47–65. [Google Scholar]
- Thakker, M.; Karde, V.; Shah, D.O.; Shukla, P.; Ghoroi, C. Wettability measurement apparatus for porous material using the modified Washburn method. Meas. Sci. Technol. 2013, 24, 125902. [Google Scholar] [CrossRef]
- Castro, J.; Bentz, D.; Weiss, J. Effect of sample conditioning on the water absorption of concrete. Cem. Concr. Compos. 2011, 33, 805–813. [Google Scholar] [CrossRef]
- Peršin, Z.; Stana-Kleinschek, K.; Kreže, T. Hydrophilic/hydrophobic characteristics of different cellulose fibres monitored by tensiometry. Croat. Chem. Acta 2002, 75, 271–280. [Google Scholar]
- Sato, K.; Bayés-García, L.; Calvet, T.; Cuevas-Diarte, M.À.; Ueno, S. External factors affecting polymorphic crystallization of lipids. Eur. J. Lipid Sci. Technol. 2013, 115, 1224–1238. [Google Scholar] [CrossRef]
- Smith, K.W.; Bhaggan, K.; Talbot, G.; van Malssen, K.F. Crystallization of fats: Influence of minor components and additives. JAOCS J. Am. Oil Chem. Soc. 2011, 88, 1085–1101. [Google Scholar] [CrossRef]
- Voorhees, P.W. Ostwald Ripening of Two-Phase Mixtures. Annu. Rev. Mater. Sci. 1992, 22, 197–215. [Google Scholar] [CrossRef]
- Ratke, L.; Voorhees, P.W. Growth and Coarsening: Ostwald Ripening in Material Processing; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Żenkiewicz, M. Methods for the calculation of surface free energy of solids. J. Achiev. Mater. Manuf. Eng. 2007, 24, 137–145. [Google Scholar]
- Packham, D.E. Work of adhesion: Contact angles and contact mechanics. Int. J. Adhes. Adhes. 1996, 16, 121–128. [Google Scholar] [CrossRef]
- Pérez-Díaz, J.L.; Álvarez-Valenzuela, M.A.; García-Prada, J.C. The effect of the partial pressure of water vapor on the surface tension of the liquid water-air interface. J. Colloid Interface Sci. 2012, 381, 180–182. [Google Scholar] [CrossRef]
- Chibowski, E.; Perea-Carpio, R. Problems of contact angle and solid surface free energy determination. Adv. Colloid Interface Sci. 2002, 98, 245–264. [Google Scholar] [CrossRef]
Reference Liquid | Surface Tension [mN·m−1] | Dispersive Part [mN·m−1] | Polar Part [mN·m−1] | Density [kg·m−3] | Viscosity [mPa·s] |
---|---|---|---|---|---|
Ethylene glycol 3 | 48.0 | 29.0 | 19.0 | 1113 | 15.4 |
α-Bromonaphthalene 1,4 | 44.6 | 44.6 | 0.0 | 1478 | 4.52 |
n-hexane 2,3 | 18.4 | 18.4 | 0.0 | 659 | 0.31 |
MPS | f2 T0/3M_25 °C/60% RH | p-Value (1 min) T0/3M_25 °C/60% RH | f2 T0/3M_40 °C/75% RH | p-Value (1 min) T0/3M_40 °C/75% RH |
---|---|---|---|---|
HCT1_25% PPP/PS 65 (90:10) | 87.79 | 59.55 | ||
HCT2_25% PPP/PS 65 (80:20) | 51.88 | 27.25 | ||
MET1_60% PPP/PS 65 (90:10) | 41.13 | 0.21 | 40.58 | 7.41 × 10−5 |
MET2_60% PPP/PS 65 (80:20) | 70.71 | 0.10 | 67.54 | 0.13 |
MPS | T0 | R2 | 3M_25 °C/60% RH | R2 | 3M_40 °C/75% RH | R2 |
---|---|---|---|---|---|---|
HCT1_25% PPP/PS 65 (90:10) | 9.96 ± 0.49 | 0.9951 | 10.31 ± 0.55 | 0.9943 | 9.12 ± 0.32 | 0.9969 |
HCT2_25% PPP/PS 65 (80:20) | 12.85 ± 1.11 | 0.9852 | 10.47 ± 0.83 | 0.9875 | 7.95 ± 0.28 | 0.9975 |
API Powder | (API/n-Hexane) | (API/α-Bromonaphthalene) [°] | (API/Ethylene Glycol) [°] |
---|---|---|---|
MET | 3.2 × 10−5 ± 5.1 × 10−6 | 34.8 ± 4.6 | 45.0 ± 2.3 |
NAC | 2.8 × 10−5 ± 2.7 × 10−6 | 59.0 ± 0.6 | 41.1 ± 1.6 |
ASA | 3.9 × 10−5 ± 4.0 × 10−6 | 46.0 ± 4.8 | 48.0 ± 0.9 |
Caffeine | 5.0 × 10−5 ± 2.9 × 10−6 | 41.6 ± 3.9 | 73.1 ± 2.9 |
HCT | 2.7 × 10−5 ± 1.8 × 10−6 | 54.2 ± 3.0 | 72.5 ± 1.4 |
Coating Material | Density [kg·m−3] | Surface Tension [mN·m−1] | Dispersive Part [mN·m−1] | Polar Part [mN·m−1] |
---|---|---|---|---|
PPP | 8467 ± 0.01 | 23.84 ± 2.37 | 21.19 ± 2.36 | 2.65 ± 0.80 |
PS 65 | 9350 ± 0.04 | 26.41 ± 2.55 | 21.65 ± 2.56 | 4.76 ± 1.89 |
PPP/PS 65 (90:10) | 8545 ± 0.00 | 26.84 ± 3.44 | 22.54 ± 0.98 | 4.30 ± 0.34 |
PPP/PS 65 (80:20) | 8654 ± 0.07 | 24.76 ± 1.90 | 19.57 ± 1.04 | 5.19 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schertel, S.; Salar-Behzadi, S.; Zimmer, A. Impact of Surface Properties of Core Material on the Stability of Hot Melt-Coated Multiparticulate Systems. Pharmaceutics 2021, 13, 366. https://doi.org/10.3390/pharmaceutics13030366
Schertel S, Salar-Behzadi S, Zimmer A. Impact of Surface Properties of Core Material on the Stability of Hot Melt-Coated Multiparticulate Systems. Pharmaceutics. 2021; 13(3):366. https://doi.org/10.3390/pharmaceutics13030366
Chicago/Turabian StyleSchertel, Sonja, Sharareh Salar-Behzadi, and Andreas Zimmer. 2021. "Impact of Surface Properties of Core Material on the Stability of Hot Melt-Coated Multiparticulate Systems" Pharmaceutics 13, no. 3: 366. https://doi.org/10.3390/pharmaceutics13030366
APA StyleSchertel, S., Salar-Behzadi, S., & Zimmer, A. (2021). Impact of Surface Properties of Core Material on the Stability of Hot Melt-Coated Multiparticulate Systems. Pharmaceutics, 13(3), 366. https://doi.org/10.3390/pharmaceutics13030366