Minicircles for Investigating and Treating Arthritic Diseases
Abstract
:1. Introduction
2. AC and Arthritic Diseases
2.1. OA and RA
2.2. Current Treatment Strategies for OA and RA
3. Minicircles
3.1. Minicircle Generation
3.2. Intracellular Felivery of Minicircles
4. Application of Minicircles in Arthritic Disease Research
4.1. Minicircles for Research on Arthritic Disease
4.2. Arthritis Induction Using Minicircles
4.3. Gene Therapy and Cartilage Regeneration using Minicircles
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kay, M.A. State-of-the-art gene-based therapies: The road ahead. Nat. Rev. Genet. 2011, 12, 316–328. [Google Scholar] [CrossRef] [PubMed]
- Eusébio, D.; Almeida, A.M.; Alves, J.M.; Maia, C.J.; Queiroz, J.A.; Sousa, F. The Performance of Minicircle DNA Versus Parental Plasmid in p53 Gene Delivery Into HPV-18-Infected Cervical Cancer Cells. Nucleic Acid Ther. 2021, 31, 82–91. [Google Scholar] [CrossRef] [PubMed]
- Bloquel, C.; Bourges, J.-L.; Touchard, E.; Berdugo, M.; Benezra, D.; Behar-Cohen, F. Non-viral ocular gene therapy: Potential ocular therapeutic avenues. Adv. Drug Deliv. Rev. 2006, 58, 1224–1242. [Google Scholar] [CrossRef]
- Chen, Z.Y.; He, C.Y.; Ehrhardt, A.; Kay, M.A. Minicircle DNA vectors devoid of bacterial DNA result in persistent and high-level transgene expression in vivo. Mol. Ther. 2003, 8, 495–500. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, W.; Chen, Y.; Liu, P.; Sheng, C.; Chen, S.; Zhang, H.; Pan, C.; Gao, S.; Huang, W. In vivo electroporation of minicircle DNA as a novel method of vaccine delivery to enhance HIV-1-specific immune responses. J. Virol. 2013, 88, 1924–1934. [Google Scholar] [CrossRef] [Green Version]
- Nam, Y.; Rim, Y.A.; Jung, S.M.; Ju, J.H. Cord blood cell-derived iPSCs as a new candidate for chondrogenic differentiation and cartilage regeneration. Stem Cell Res. Ther. 2017, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, C.H.; Ghivizzani, S.C.; Robbins, P.D. Arthritis gene therapy is becoming a reality. Nat. Rev. Rheumatol. 2018, 14, 381–382. [Google Scholar] [CrossRef]
- Krishnan, Y.; Grodzinsky, A.J. Cartilage diseases. Matrix Biol. 2018, 71-72, 51–69. [Google Scholar] [CrossRef]
- Sophia Fox, A.J.; Bedi, A.; Rodeo, S.A. The basic science of articular cartilage: Structure, composition, and function. Sports Health A Multidiscip. Approach 2009, 1, 461–468. [Google Scholar] [CrossRef]
- Mobasheri, A.; Batt, M. An update on the pathophysiology of osteoarthritis. Ann. Phys. Rehabil. Med. 2016, 59, 333–339. [Google Scholar] [CrossRef]
- Zhou, W.; Shen, Q.; Wang, H.; Yang, J.; Zhang, C.; Deng, Z.; Wu, K.; Zhou, Y.; Zeng, J.; Zhang, Y.; et al. Knockdown of YAP/TAZ Inhibits the Migration and Invasion of Fibroblast Synovial Cells in Rheumatoid Arthritis by Regulating Autophagy. J. Immunol. Res. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- Hwang, J.J.; Rim, Y.A.; Nam, Y.; Ju, J.H. Recent Developments in Clinical Applications of Mesenchymal Stem Cells in the Treatment of Rheumatoid Arthritis and Osteoarthritis. Front. Immunol. 2021, 12, 631291. [Google Scholar] [CrossRef] [PubMed]
- Bullock, J.; Rizvi, S.A.; Saleh, A.M.; Ahmed, S.S.; Do, D.P.; Ansari, R.A.; Ahmed, J. Rheumatoid Arthritis: A Brief Overview of the Treatment. Med Princ. Pract. 2018, 27, 501–507. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; Van Vollenhoven, R.F.; De Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rim, Y.A.; Nam, Y.; Ju, J.H. Application of Cord Blood and Cord Blood-Derived Induced Pluripotent Stem Cells for Cartilage Regeneration. Cell Transplant. 2018, 28, 529–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nam, Y.; Rim, Y.A.; Lee, J.; Ju, J.H. Current Therapeutic Strategies for Stem Cell-Based Cartilage Regeneration. Stem Cells Int. 2018, 2018, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Le, H.; Xu, W.; Zhuang, X.; Chang, F.; Wang, Y.; Ding, J. Mesenchymal stem cells for cartilage regeneration. J. Tissue Eng. 2020, 11. [Google Scholar] [CrossRef]
- Mairhofer, J.; Grabherr, R. Rational vector design for efficient non-viral gene delivery: Challenges facing the use of plasmid DNA. Mol. Biotechnol. 2008, 39, 97–104. [Google Scholar] [CrossRef]
- Tidd, N.; Michelsen, J.; Hilbert, B.; Quinn, J.C. Minicircle Mediated Gene Delivery to Canine and Equine Mesenchymal Stem Cells. Int. J. Mol. Sci. 2017, 18, 819. [Google Scholar] [CrossRef] [Green Version]
- Hardee, C.L.; Arevalo-Soliz, L.M.; Hornstein, B.D.; Zechiedrich, L. Advances in Non-Viral DNA Vectors for Gene Therapy. Genes 2017, 8, 65. [Google Scholar] [CrossRef]
- Darquet, A.-M.; Cameron, B.; Wils, P.; Scherman, D.; Crouzet, J. A new DNA vehicle for nonviral gene delivery: Supercoiled minicircle. Gene Ther. 1997, 4, 1341–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Serra, J.; Alves, C.P.A.; Cabral, J.M.S.; Monteiro, G.A.; da Silva, C.L.; Prazeres, D.M.F. Minicircle-based expression of vascular endothelial growth factor in mesenchymal stromal cells from diverse human tissues. J. Gene Med. 2021, e3342. [Google Scholar] [CrossRef]
- Bigger, B.W.; Tolmachov, O.; Collombet, J.-M.; Fragkos, M.; Palaszewski, I.; Coutelle, C. An araC-controlled bacterial cre expression system to produce DNA minicircle vectors for nuclear and mitochondrial gene therapy. J. Biol. Chem. 2001, 276, 23018–23027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jechlinger, W.; Azimpour Tabrizi, C.; Lubitz, W.; Mayrhofer, P. Minicircle DNA immobilized in bacterial ghosts: In vivo production of safe non-viral DNA delivery vehicles. J. Mol. Microbiol. Biotechnol. 2004, 8, 222–231. [Google Scholar] [CrossRef] [PubMed]
- Park, N.; Rim, Y.A.; Jung, H.; Kim, J.; Yi, H.; Kim, Y.; Jang, Y.; Jung, S.M.; Lee, J.; Kwok, S.-K.; et al. Etanercept-Synthesising Mesenchymal Stem Cells Efficiently Ameliorate Collagen-Induced Arthritis. Sci. Rep. 2017, 7, 39593. [Google Scholar] [CrossRef] [Green Version]
- Mun, J.Y.; Shin, K.K.; Kwon, O.; Lim, Y.T.; Oh, D.B. Minicircle microporation-based non-viral gene delivery improved the targeting of mesenchymal stem cells to an injury site. Biomaterials 2016, 101, 310–320. [Google Scholar] [CrossRef]
- Hyun, J.; Grova, M.; Nejadnik, H.; Lo, D.; Morrison, S.; Montoro, D.; Chung, M.; Zimmermann, A.; Walmsley, G.G.; Lee, M.; et al. Enhancing in vivo survival of adipose-derived stromal cells through Bcl-2 overexpression using a minicircle vector. Stem Cells Transl. Med. 2013, 2, 690–702. [Google Scholar] [CrossRef]
- Chao, C.; Joyce-Shaikh, B.; Grein, J.; Moshrefi, M.; Raoufi, F.; LaFace, D.M.; McClanahan, T.K.; Bourne, P.A.; Pierce, R.H.; Gorman, D.M.; et al. C17 prevents inflammatory arthritis and associated joint destruction in mice. PLoS ONE 2011, 6, e22256. [Google Scholar] [CrossRef]
- Begley, L.A.; Kasina, S.; MacDonald, J.; Macoska, J.A. The inflammatory microenvironment of the aging prostate facilitates cellular proliferation and hypertrophy. Cytokine 2008, 43, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.S.; Ryoo, Z.Y.; Chun, J.S. Cytokine-like 1 (Cytl1) regulates the chondrogenesis of mesenchymal cells. J. Biol. Chem. 2007, 282, 29359–29367. [Google Scholar] [CrossRef] [Green Version]
- Lefebvre, V.; Dvir-Ginzberg, M. SOX9 and the many facets of its regulation in the chondrocyte lineage. Connect. Tissue Res. 2017, 58, 2–14. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Lee, K.; Jung, H.; Park, N.; Kang, J.; Nam, K.-H.; Kim, E.-K.; Ju, J.H.; Kang, K.Y. Kruppel-Like Factor 4 Positively Regulates Autoimmune Arthritis in Mouse Models and Rheumatoid Arthritis in Patients via Modulating Cell Survival and Inflammation Factors of Fibroblast-Like Synoviocyte. Front. Immunol. 2018, 9, 1339. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Chen, J.; Ruan, J.; Chen, Y.; Mo, X.; Xie, J.; Lv, G. Kruppel-Like Factor 4 Is a Regulator of Proinflammatory Signaling in Fibroblast-Like Synoviocytes through Increased IL-6 Expression. Mediat. Inflamm. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiekowski, M.T.; Leach, M.W.; Evans, E.W.; Sullivan, L.; Chen, S.-C.; Vassileva, G.; Bazan, J.F.; Gorman, D.M.; Kastelein, R.A.; Narula, S.; et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J. Immunol. 2001, 166, 7563–7570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamopoulos, I.E.; Tessmer, M.; Chao, C.-C.; Adda, S.; Gorman, D.; Petro, M.; Chou, C.-C.; Pierce, R.H.; Yao, W.; Lane, N.E.; et al. IL-23 is critical for induction of arthritis, osteoclast formation, and maintenance of bone mass. J. Immunol. 2011, 187, 951–959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rim, Y.A.; Yi, H.; Kim, Y.; Park, N.; Jung, H.; Kim, J.; Jung, S.M.; Park, S.-H.; Ju, J.H. Self in vivo production of a synthetic biological drug CTLA4Ig using a minicircle vector. Sci. Rep. 2014, 4, 6935. [Google Scholar] [CrossRef] [Green Version]
- Rim, Y.A.; Nam, Y.; Park, N.; Jung, H.; Lee, K.; Lee, J.; Ju, J.H. Chondrogenic Differentiation from Induced Pluripotent Stem Cells Using Non-Viral Minicircle Vectors. Cells 2020, 9, 582. [Google Scholar] [CrossRef]
- Yi, H.; Kim, Y.; Kim, J.; Jung, H.; Rim, Y.A.; Jung, S.M.; Park, S.-H.; Ju, J.H. A new strategy to deliver synthetic protein drugs: Self-reproducible biologics using minicircles. Sci. Rep. 2014, 4, 5961. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Yi, H.; Jung, H.; Rim, Y.A.; Park, N.; Kim, J.; Jung, S.M.; Park, S.-H.; Park, Y.W.; Ju, J.H. A Dual Target-directed Agent against Interleukin-6 Receptor and Tumor Necrosis Factor alpha ameliorates experimental arthritis. Sci. Rep. 2016, 6, 20150. [Google Scholar] [CrossRef] [Green Version]
- Smits, P.; Dy, P.; Mitra, S.; Lefebvre, V. Sox5 and Sox6 are needed to develop and maintain source, columnar, and hypertrophic chondrocytes in the cartilage growth plate. J. Cell Biol. 2004, 164, 747–758. [Google Scholar] [CrossRef]
- Im, G.I.; Kim, H.J. Electroporation-mediated gene transfer of SOX trio to enhance chondrogenesis in adipose stem cells. Osteoarthr. Cartil. 2011, 19, 449–457. [Google Scholar] [CrossRef] [Green Version]
- Im, G.I.; Kim, H.J.; Lee, J.H. Chondrogenesis of adipose stem cells in a porous PLGA scaffold impregnated with plasmid DNA containing SOX trio (SOX-5,-6 and -9) genes. Biomaterials 2011, 32, 4385–4392. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.Y.; Kang, M.L.; Park, J.W.; Im, G.I. Dual functional nanoparticles containing SOX duo and ANGPT4 shRNA for osteoarthritis treatment. J. Biomed. Mater. Res. Part B Appl. Biomater. 2020, 108, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Knowles, H.J.; Cleton-Jansen, A.M.; Korsching, E.; Athanasou, N.A. Hypoxia-inducible factor regulates osteoclast-mediated bone resorption: Role of angiopoietin-like 4. FASEB J. 2010, 24, 4648–4659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murata, M.; Yudo, K.; Nakamura, H.; Chiba, J.; Okamoto, K.; Suematsu, N.; Nishioka, K.; Beppu, M.; Inoue, K.; Kato, T.; et al. Hypoxia upregulates the expression of angiopoietin-like-4 in human articular chondrocytes: Role of angiopoietin-like-4 in the expression of matrix metalloproteinases and cartilage degradation. J. Orthop. Res. 2009, 27, 50–57. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, M.; Iampietro, M.; Chuchana, P.; Guérit, D.; Djouad, F.; Noël, D.; Jorgensen, C. Involvement of angiopoietin-like 4 in matrix remodeling during chondrogenic differentiation of mesenchymal stem cells. J. Biol. Chem. 2014, 289, 8402–8412. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.F.; Lefebvre, V. The transcription factors SOX9 and SOX5/SOX6 cooperate genome-wide through super-enhancers to drive chondrogenesis. Nucleic Acids Res. 2015, 43, 8183–8203. [Google Scholar] [CrossRef] [Green Version]
Authors | Year | Insert Gene | Target Animal Model or Cell Type | Delivery or Transfection Method |
---|---|---|---|---|
Chao et al. [28] | 2011 | C17 | CAIA mice | Intravenous injection |
Choi et al. [32] | 2018 | KLF4 | CIA mice | Intravenous injection |
Authors | Year | Insert Gene | Target Animal Model or Cell Type | Delivery or Transfection Method |
---|---|---|---|---|
Adamopoulos et al. [35] | 2011 | IL-23 | C57BL/6 mice | Intravenous injection |
Authors | Year | Insert Gene | Target Animal Model or Cell Type | Delivery or Transfection Method | Purpose of Minicircle-Based Experiment |
---|---|---|---|---|---|
Yi et al. [38] | 2014 | TNFR2 and anti-IL-6 receptor antibody | CIA mice | Intravenous injection | Therapeutic effect confirmation |
Rim et al. [36] | 2014 | CTLA4Ig | CIA mice | Intravenous injection | Therapeutic effect confirmation |
Park et al. [25] | 2016 | TNFR2 | hMSCs CIA mice | Lipofectamine Intravenous injection | Therapeutic effect confirmation |
Kim et al. [39] | 2016 | TNFR2 and anti-IL-6 receptor antibody hybrid | CIA mice | Intravenous injection | Therapeutic effect confirmation |
Tidd et al. [19] | 2017 | SOX9 | Canine MSCs | Lipofectamine | Chondrogenic gene delivery |
Jeong et al. [43] | 2019 | SOX9, SOX6, and ANGPTL4 siRNA | ADSCs | Dexamethasone-conjugated polyethylenimine nanoparticle complexs | Chondrogenesis enhancement and cartilage regeneration |
Rim et al. [37] | 2020 | BMP2 and TGFβ3 | hiPSCs | Lipofectamine | Chondrogenesis enhancement and cartilage regeneration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rim, Y.A.; Nam, Y.; Park, N.; Ju, J.H. Minicircles for Investigating and Treating Arthritic Diseases. Pharmaceutics 2021, 13, 736. https://doi.org/10.3390/pharmaceutics13050736
Rim YA, Nam Y, Park N, Ju JH. Minicircles for Investigating and Treating Arthritic Diseases. Pharmaceutics. 2021; 13(5):736. https://doi.org/10.3390/pharmaceutics13050736
Chicago/Turabian StyleRim, Yeri Alice, Yoojun Nam, Narae Park, and Ji Hyeon Ju. 2021. "Minicircles for Investigating and Treating Arthritic Diseases" Pharmaceutics 13, no. 5: 736. https://doi.org/10.3390/pharmaceutics13050736
APA StyleRim, Y. A., Nam, Y., Park, N., & Ju, J. H. (2021). Minicircles for Investigating and Treating Arthritic Diseases. Pharmaceutics, 13(5), 736. https://doi.org/10.3390/pharmaceutics13050736