Engineering Genetic Systems for Treating Mitochondrial Diseases
Abstract
:1. Introduction
2. Regulations of Expression of Mitochondrial Genes
2.1. mtDNA Replication
2.1.1. Overview of mtDNA Replication
2.1.2. Mutations of the Replication Regulatory Elements Encoded in mtDNA
2.1.3. Mutations of the Nuclear Genes Involved in mtDNA Replication
2.2. Mitochondrial Transcription
2.2.1. Overview of mtDNA Transcription
2.2.2. Mutations of mtDNA Transcription Regulatory Elements
2.2.3. Mutations of Nuclear Genes Involved in mtDNA Transcription
3. Methods to Treat Non-Ideal Mitochondrial Gene Expression
3.1. Reduction of mtDNAs Harboring Mutations
3.1.1. Use of Zinc Fingers and Transcription Activator-Like Effectors (TALEs) as Sequence Targeting Modules
3.1.2. Use of CRISPR Cas9 to Target Mutated Sequences
3.2. Delivery of Genetic Components to Mitochondria
3.2.1. DNA Import into Mitochondria
Physical Methods
Biological and Chemical Methods
3.2.2. RNA Import into Mitochondria
4. Concluding Remarks
Funding
Conflicts of Interest
Abbreviation
ATP | adenosine triphosphate |
AAV | adeno-associated virus |
AD | Alzheimer’s disease |
adPEO | autosomal dominant PEO |
AHS | Alpers–Huttenlocher syndrome |
ANS | ataxia neuropathy spectrum |
arPEO | autosomal recessive PEO |
ASO | antisense RNA oligonucleotide |
cap | capsid |
COX | cytochrome oxidase |
CPEO | chronic PEO |
CPEO | chronic progressive external ophthalmoplegia |
CRISPR | clustered regularly interspaced short palindromic repeats |
CSBI | conserved sequence block I |
DdCBE | DddA-derived cytosine base editor |
DddA | double-stranded deaminase A |
DEAF | deafness or aminoglycoside-induced deafness |
DF-MITO-Porter | dual function MITO-Porter |
DOPE | 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine |
DQAplexes | DQAsome-DNA complexes |
ELAC2 | elaC ribonuclease Z 2 |
GAPDH | glyceraldehyde 3-phosphate dehydrogenase |
gRNA | guide RNA |
HLV | hydrodynamic limb vein |
HSP1 | heavy strand promoter 1 |
ITRs | inverted terminal repeats |
LHON | Leber’s hereditary optic neuropathy |
LSP | light strand promoter |
MCHS | myocerebrohepatopathy spectrum |
MELAS | mitochondrial encephalopathy, lactic acidosis, stroke-like episodes |
MEMSA | myopathy sensory ataxia |
MERRF | myoclonic epilepsy with ragged red fibers |
MI | myocardial infarction |
MILS | maternally inherited Leigh syndrome |
MIRAS | Mitochondrial recessive ataxia syndrome |
MIRAS | mitochondrial recessive ataxia syndrome |
mRNAs | messenger RNAs |
MRP | mitochondrial RNA processing |
MRPS12 | mitochondrial ribosomal protein S12 |
mtDNA | mitochondrial DNA |
MTS | mitochondrial targeting sequence ( |
mtTALENs | mitochondria-targeted TALE nucleases |
mtZFN | mitochondria-targeted zinc-finger nuclease |
NARP | neurogenic muscle weakness, ataxia, and retinitis pigmentosa |
nDNA | nuclear DNA |
nt | nucleotides |
OH | origin of the H-strand |
PEI | polyethyleneimine |
PEO | progressive external ophthalmoplegia |
PNAs | peptide nucleic acids |
PNPASE | polynucleotide phosphorylase |
POLRMT | mitochondrial RNA polymerase |
POLγ | DNA polymerase gamma |
rep | replicase |
RMRP | RNase MRP |
rRNAs | ribosomal RNAs |
SSBP1 | single-stranded DNA-binding protein |
TALEs | transcription activator-like effectors |
TEFM | mitochondrial transcription elongation factor |
TFAM | mitochondrial transcription factor A |
TFB2M | mitochondrial transcription factor B2 |
TPA | tetraphenylarsonium |
TPMP | triphenylmethylphosphonium |
TPP | tetraphenylphosphonium |
tRNAs | transfer RNAs |
UTR | untranslated region |
References
- Chinnery, P.F.; Hudson, G. Mitochondrial genetics. Brit. Med. Bull. 2013, 106, 135–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazzini, F.; Schöpf, B.; Blatzer, M.; Coassin, S.; Hicks, A.A.; Kronenberg, F.; Fendt, L. Plasmid-normalized quantification of relative mitochondrial DNA copy number. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef]
- Lightowlers, R.N.; Chinnery, P.F.; Turnbull, D.M.; Howell, N. Mammalian mitochondrial genetics: Heredity, heteroplasmy and disease. Trends Genet. 1997, 13, 450–455. [Google Scholar] [CrossRef]
- Tuppen, H.A.; Blakely, E.L.; Turnbull, D.M.; Taylor, R.W. Mitochondrial DNA mutations and human disease. Biochim. Biophys. Acta Bioenerg. 2010, 1797, 113–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, J.B.; Chinnery, P.F. The dynamics of mitochondrial DNA heteroplasmy: Implications for human health and disease. Nat. Rev. Genet. 2015, 16, 530–542. [Google Scholar] [CrossRef]
- Maeda, R.; Kami, D.; Maeda, H.; Shikuma, A.; Gojo, S. High throughput single cell analysis of mitochondrial heteroplasmy in mitochondrial diseases. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef]
- Brown, M.D.; Trounce, I.A.; Jun, A.S.; Allen, J.C.; Wallace, D.C. Functional analysis of lymphoblast and cybrid mitochondria containing the 3460, 11778, or 14484 Leber’s hereditary optic neuropathy mitochondrial DNA mutation. J. Biol. Chem. 2000, 275, 39831–39836. [Google Scholar] [CrossRef] [Green Version]
- Mattiazzi, M.; Vijayvergiya, C.; Gajewski, C.D.; DeVivo, D.C.; Lenaz, G.; Wiedmann, M.; Manfredi, G. The mtDNA T8993G (NARP) mutation results in an impairment of oxidative phosphorylation that can be improved by antioxidants. Hum. Molecul. Genet. 2004, 13, 869–879. [Google Scholar] [CrossRef] [PubMed]
- Wong, L.J.C. Pathogenic mitochondrial DNA mutations in protein-coding genes. Muscle Nerve 2007, 36, 279–293. [Google Scholar] [CrossRef]
- Barthélémy, C.; de Baulny, H.; Lombès, A. D-loop mutations in mitochondrial DNA: Link with mitochondrial DNA depletion? Hum. Genet. 2002, 110, 479–487. [Google Scholar] [PubMed]
- Smith, P.M.; Elson, J.L.; Greaves, L.C.; Wortmann, S.B.; Rodenburg, R.J.T.; Lightowlers, R.N.; Chrzanowska-Lightowlers, Z.M.A.; Taylor, R.W.; Vila-Sanjurjo, A. The role of the mitochondrial ribosome in human disease: Searching for mutations in 12S mitochondrial rRNA with high disruptive potential. Hum. Molecul. Genet. 2014, 23, 949–967. [Google Scholar] [CrossRef] [Green Version]
- Ding, Y.; Ye, Y.; Li, M.; Xia, B.; Leng, J. Mitochondrial tRNAAla 5601C> T variant may affect the clinical expression of the LHON-related ND4 11778G> A mutation in a family. Molecul. Med. Rep. 2020, 21, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, T.; Osaka, H.; Shimbo, H.; Tajika, M.; Yamazaki, M.; Ueda, A.; Murayama, K.; Yamagata, T. Mitochondrial DNA 3243A> T mutation in a patient with MELAS syndrome. Hum. Genome Variat 2018, 5, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Rusecka, J.; Kaliszewska, M.; Bartnik, E.; Tońska, K. Nuclear genes involved in mitochondrial diseases caused by instability of mitochondrial DNA. J. Appl. Genet. 2018, 59, 43–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pearce, S.F.; Rebelo-Guiomar, P.; D’Souza, A.R.; Powell, C.A.; Van Haute, L.; Minczuk, M. Regulation of mammalian mitochondrial gene expression: Recent advances. Trends Bioc. Sci. 2017, 42, 625–639. [Google Scholar] [CrossRef] [Green Version]
- Yahata, N.; Matsumoto, Y.; Omi, M.; Yamamoto, N.; Hata, R. TALEN-mediated shift of mitochondrial DNA heteroplasmy in MELAS-iPSCs with m. 13513G> A mutation. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Koilkonda, R.D.; Chou, T.; Porciatti, V.; Ozdemir, S.S.; Chiodo, V.; Boye, S.L.; Boye, S.E.; Hauswirth, W.W.; Lewin, A.S. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc. Natl. Acad. Sci. USA 2012, 109, E1238–E1247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolesnikova, O.A.; Entelis, N.S.; Jacquin-Becker, C.; Goltzene, F.; Chrzanowska-Lightowlers, Z.M.; Lightowlers, R.N.; Martin, R.P.; Tarassov, I. Nuclear DNA-encoded tRNAs targeted into mitochondria can rescue a mitochondrial DNA mutation associated with the MERRF syndrome in cultured human cells. Hum. Molecul. Genet. 2004, 13, 2519–2534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, Y.; Somiya, K.; Miyauchi, A.; Osaka, H.; Harashima, H. Validation of a mitochondrial RnA therapeutic strategy using fibroblasts from a Leigh syndrome patient with a mutation in the mitochondrial ND3 gene. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Tyynismaa, H.; Sembongi, H.; Bokori-Brown, M.; Granycome, C.; Ashley, N.; Poulton, J.; Jalanko, A.; Spelbrink, J.N.; Holt, I.J.; Suomalainen, A. Twinkle helicase is essential for mtDNA maintenance and regulates mtDNA copy number. Hum. Molecul. Genet. 2004, 13, 3219–3227. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.B.; Turnbull, D.M.; Minczuk, M.; Gammage, P.A. Therapeutic manipulation of mtDNA heteroplasmy: A shifting perspective. Trends Molecul. Med. 2020, 26, 698–709. [Google Scholar] [CrossRef] [Green Version]
- Crimi, M.; Rigolio, R. The mitochondrial genome, a growing interest inside an organelle. Internat. J. Nanomed. 2008, 3, 51–57. [Google Scholar]
- Garone, C.; Minczuk, M.; D’Souza, A.R. Mitochondrial transcription and translation: Overview. Essays Biochem. 2018, 62, 309–320. [Google Scholar] [CrossRef] [Green Version]
- Garone, C.; Minczuk, M.; Boczonadi, V.; Ricci, G.; Horvath, R. Mitochondrial DNA transcription and translation: Clinical syndromes. Essays Biochem 2018, 62, 321–340. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.T.; Boehme, L.; Carbajosa, G.; Seitan, V.C.; Small, K.S.; Hodgkinson, A. Nuclear genetic regulation of the human mitochondrial transcriptome. Elife 2019, 8, e41927. [Google Scholar] [CrossRef]
- Taanman, J.-W. The mitochondrial genome: Structure, transcription, translation and replication. Biochim. Biophys. Acta Bioenerget. 1999, 1410, 103–123. [Google Scholar] [CrossRef] [Green Version]
- Garone, C.; Minczuk, M.; Falkenberg, M. Mitochondrial DNA replication in mammalian cells: Overview of the pathway. Essays Biochem. 2018, 62, 287–296. [Google Scholar] [CrossRef]
- Bogenhagen, D.F.; Clayton, D.A. The mitochondrial DNA replication bubble has not burst. Trends Biochem. Sci. 2003, 28, 357–360. [Google Scholar] [CrossRef]
- Hsieh, C.-L. Novel lines of evidence for the asymmetric strand displacement model of mitochondrial DNA replication. Molecul. Cell. Biol. 2019, 39, e00406–e00418. [Google Scholar] [CrossRef] [Green Version]
- Moraes, C.T. What regulates mitochondrial DNA copy number in animal cells? Trends Genet. 2001, 17, 199–205. [Google Scholar] [CrossRef]
- Wanrooij, P.H.; Hodgkinson, A.P.; Simonsson, T.; Falkenberg, M.; Gustafsson, C.M. G-quadruplex structures in RNA stimulate mitochondrial transcription termination and primer formation. Proc. Natl. Acad. Sci. USA 2010, 107, 16072–16077. [Google Scholar] [CrossRef] [Green Version]
- Posse, V.; Al-Behadili, A.; Uhler, J.P.; Clausen, A.R.; Reyes, A.; Zeviani, M.; Falkenberg, M.; Gustafsson, C.M. RNase H1 directs origin-specific initiation of DNA replication in human mitochondria. PLoS Genet. 2019, 15, e1007781. [Google Scholar] [CrossRef] [Green Version]
- Milenkovic, D.; Matic, S.; Kühl, I.; Ruzzenente, B.; Freyer, C.; Jemt, E.; Park, C.B.; Falkenberg, M.; Larsson, N. TWINKLE is an essential mitochondrial helicase required for synthesis of nascent D-loop strands and complete mtDNA replication. Hum. Molecul. Genet. 2013, 22, 1983–1993. [Google Scholar] [CrossRef]
- Ciesielski, G.L.; Bermek, O.; Rosado-Ruiz, F.A.; Hovde, S.L.; Neitzke, O.J.; Griffith, J.D.; Kaguni, L.S. Mitochondrial single-stranded DNA-binding proteins stimulate the activity of DNA polymerase γ by organization of the template DNA. J. Biol. Chem. 2015, 290, 28697–28707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fusté, J.M.; Wanrooij, S.; Jemt, E.; Granycome, C.E.; Cluett, T.J.; Shi, Y.; Atanassova, N.; Holt, I.J.; Gustafsson, C.M.; Falkenberg, M. Mitochondrial RNA polymerase is needed for activation of the origin of light-strand DNA replication. Molecul. Cell. 2010, 37, 67–78. [Google Scholar] [CrossRef]
- Falkenberg, M.; Gustafsson, C.M. Mammalian mitochondrial DNA replication and mechanisms of deletion formation. Crit. Rev. Biochem. Molecul. Biol. 2020, 55, 509–524. [Google Scholar] [CrossRef]
- Tanaka, N.; Goto, Y.; Akanuma, J.; Kato, M.; Kinoshita, T.; Yamashita, F.; Tanaka, M.; Asada, T. Mitochondrial DNA variants in a Japanese population of patients with Alzheimer’s disease. Mitochondrion 2010, 10, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Mousavizadeh, K.; Rajabi, P.; Alaee, M.; Dadgar, S.; Houshmand, M. Usage of mitochondrial D-loop variation to predict risk for Huntington disease. Mitochondrial DNA 2015, 26, 579–582. [Google Scholar] [CrossRef]
- Ebner, S.; Lang, R.; Mueller, E.E.; Eder, W.; Oeller, M.; Moser, A.; Koller, J.; Paulweber, B.; Mayr, J.A.; Sperl, W. Mitochondrial haplogroups, control region polymorphisms and malignant melanoma: A study in middle European Caucasians. PLoS ONE 2011, 6, e27192. [Google Scholar]
- Coskun, P.E.; Beal, M.F.; Wallace, D.C. Alzheimer’s brains harbor somatic mtDNA control-region mutations that suppress mitochondrial transcription and replication. Proc. Natl. Acad. Sci. USA 2004, 101, 10726–10731. [Google Scholar] [CrossRef] [Green Version]
- Umbria, M.; Ramos, A.; Aluja, M.P.; Santos, C. The role of control region mitochondrial DNA mutations in cardiovascular disease: Stroke and myocardial infarction. Sci. Rep. 2020, 10, 1–10. [Google Scholar]
- Jemt, E.; Persson, Ö.; Shi, Y.; Mehmedovic, M.; Uhler, J.P.; Dávila López, M.; Freyer, C.; Gustafsson, C.M.; Samuelsson, T.; Falkenberg, M. Regulation of DNA replication at the end of the mitochondrial D-loop involves the helicase TWINKLE and a conserved sequence element. Nucl. Acids Res. 2015, 43, 9262–9275. [Google Scholar] [CrossRef] [Green Version]
- Pereira, F.; Soares, P.; Carneiro, J.; Pereira, L.; Richards, M.B.; Samuels, D.C.; Amorim, A. Evidence for variable selective pressures at a large secondary structure of the human mitochondrial DNA control region. Molecul. Biol. Evol. 2008, 25, 2759–2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Pesini, E.; Lott, M.T.; Procaccio, V.; Poole, J.C.; Brandon, M.C.; Mishmar, D.; Yi, C.; Kreuziger, J.; Baldi, P.; Wallace, D.C. An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucl. Acids Res. 2007, 35, D823–D828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, Y.; Schon, E.A.; Wilichowski, E.; Vazquez-Memije, M.E.; Davidson, E.; King, M.P. Rearrangements of human mitochondrial DNA (mtDNA): New insights into the regulation of mtDNA copy number and gene expression. Molecul. Biol. Cell. 2000, 11, 1471–1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapman, J.; Ng, Y.S.; Nicholls, T.J. The maintenance of mitochondrial DNA integrity and dynamics by mitochondrial membranes. Life 2020, 10, 164. [Google Scholar] [CrossRef]
- Hudson, G.; Chinnery, P.F. Mitochondrial DNA polymerase-γ and human disease. Hum. Mol. Genet. 2006, 15, R244–R252. [Google Scholar] [CrossRef] [Green Version]
- Hedberg-Oldfors, C.; Macao, B.; Basu, S.; Lindberg, C.; Peter, B.; Erdinc, D.; Uhler, J.P.; Larsson, E.; Falkenberg, M.; Oldfors, A. Deep sequencing of mitochondrial DNA and characterization of a novel POLG mutation in a patient with arPEO. Neurol. Genet. 2020, 6, e391. [Google Scholar] [CrossRef] [Green Version]
- Peter, B.; Falkenberg, M. TWINKLE and other human mitochondrial DNA helicases: Structure, function and disease. Genes 2020, 11, 408. [Google Scholar] [CrossRef] [Green Version]
- Del Dotto, V.; Ullah, F.; Di Meo, I.; Magini, P.; Gusic, M.; Maresca, A.; Caporali, L.; Palombo, F.; Tagliavini, F.; Baugh, E.H. SSBP1 mutations cause mtDNA depletion underlying a complex optic atrophy disorder. J. Clin. Invest. 2020, 130, 108–125. [Google Scholar] [CrossRef] [Green Version]
- Young, M.J.; Copeland, W.C. Human mitochondrial DNA replication machinery and disease. Curr. Opin. Genet. Dev. 2016, 38, 52–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longley, M.J.; Clark, S.; Man, C.Y.W.; Hudson, G.; Durham, S.E.; Taylor, R.W.; Nightingale, S.; Turnbull, D.M.; Copeland, W.C.; Chinnery, P.F. Mutant POLG2 disrupts DNA polymerase γ subunits and causes progressive external ophthalmoplegia. Am. J. Hum. Genet. 2006, 78, 1026–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carreño-Gago, L.; Blázquez-Bermejo, C.; Díaz-Manera, J.; Cámara, Y.; Gallardo, E.; Martí, R.; Torres-Torronteras, J.; García-Arumí, E. Identification and characterization of new RNASEH1 mutations associated with PEO syndrome and multiple mitochondrial DNA deletions. Front. Genet. 2019, 10, 576. [Google Scholar] [CrossRef]
- Kornblum, C.; Nicholls, T.J.; Haack, T.B.; Schöler, S.; Peeva, V.; Danhauser, K.; Hallmann, K.; Zsurka, G.; Rorbach, J.; Iuso, A. Loss-of-function mutations in MGME1 impair mtDNA replication and cause multisystemic mitochondrial disease. Nat. Genet. 2013, 45, 214. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, T.J.; Nadalutti, C.A.; Motori, E.; Sommerville, E.W.; Gorman, G.S.; Basu, S.; Hoberg, E.; Turnbull, D.M.; Chinnery, P.F.; Larsson, N.-G. Topoisomerase 3α is required for decatenation and segregation of human mtDNA. Molecul. Cell. 2018, 69, 9–23.e6. [Google Scholar] [CrossRef] [Green Version]
- Stiles, A.R.; Simon, M.T.; Stover, A.; Eftekharian, S.; Khanlou, N.; Wang, H.L.; Magaki, S.; Lee, H.; Partynski, K.; Dorrani, N. Mutations in TFAM, encoding mitochondrial transcription factor A, cause neonatal liver failure associated with mtDNA depletion. Mol. Genet. Metab. 2016, 119, 91–99. [Google Scholar] [CrossRef]
- Barshad, G.; Marom, S.; Cohen, T.; Mishmar, D. Mitochondrial DNA transcription and its regulation: An evolutionary perspective. Trends Genet. 2018, 34, 682–692. [Google Scholar] [CrossRef]
- Bonawitz, N.D.; Clayton, D.A.; Shadel, G.S. Initiation and beyond: Multiple functions of the human mitochondrial transcription machinery. Molecul. Cell. 2006, 24, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Posse, V.; Shahzad, S.; Falkenberg, M.; Hällberg, B.M.; Gustafsson, C.M. TEFM is a potent stimulator of mitochondrial transcription elongation in vitro. Nucl. Acids Res. 2015, 43, 2615–2624. [Google Scholar] [CrossRef]
- Lopez Sanchez, M.I.; Mercer, T.R.; Davies, S.M.; Shearwood, A.-M.J.; Nygård, K.K.; Richman, T.R.; Mattick, J.S.; Rackham, O.; Filipovska, A. RNA processing in human mitochondria. Cell Cycle 2011, 10, 2904–2916. [Google Scholar] [CrossRef]
- Van Haute, L.; Pearce, S.F.; Powell, C.A.; D’Souza, A.R.; Nicholls, T.J.; Minczuk, M. Mitochondrial transcript maturation and its disorders. J. Inherit. Metabol. Dis. 2015, 38, 655–680. [Google Scholar] [CrossRef] [Green Version]
- Powell, C.A.; Nicholls, T.J.; Minczuk, M. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front. Genet. 2015, 6, 79. [Google Scholar] [CrossRef] [Green Version]
- Clayton, D.A. Transcription and replication of mitochondrial DNA. Hum. Reprod. 2000, 15, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Connor, T.M.; Hoer, S.; Mallett, A.; Gale, D.P.; Gomez-Duran, A.; Posse, V.; Antrobus, R.; Moreno, P.; Sciacovelli, M.; Frezza, C. Mutations in mitochondrial DNA causing tubulointerstitial kidney disease. PLoS Genet. 2017, 13, e1006620. [Google Scholar] [CrossRef]
- Florentz, C.; Sohm, B.; Tryoen-Toth, P.; Pütz, J.; Sissler, M. Human mitochondrial tRNAs in health and disease. Cell. Molecul. Life Sci. 2003, 60, 1356–1375. [Google Scholar] [CrossRef]
- Yarham, J.W.; Elson, J.L.; Blakely, E.L.; McFarland, R.; Taylor, R.W. Mitochondrial tRNA mutations and disease. Wiley Interdisc. Rev. RNA 2010, 1, 304–324. [Google Scholar] [CrossRef]
- Gorman, G.S.; Schaefer, A.M.; Ng, Y.; Gomez, N.; Blakely, E.L.; Alston, C.L.; Feeney, C.; Horvath, R.; Yu-Wai-Man, P.; Chinnery, P.F. Prevalence of nuclear and mitochondrial DNA mutations related to adult mitochondrial disease. Annal. Neurol. 2015, 77, 753–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühl, I.; Miranda, M.; Posse, V.; Milenkovic, D.; Mourier, A.; Siira, S.J.; Bonekamp, N.A.; Neumann, U.; Filipovska, A.; Polosa, P.L. POLRMT regulates the switch between replication primer formation and gene expression of mammalian mtDNA. Sci. Adv. 2016, 2, e1600963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, S.; Koolmeister, C.; Misic, J.; Siira, S.; Kühl, I.; Silva Ramos, E.; Miranda, M.; Jiang, M.; Posse, V.; Lytovchenko, O. TEFM regulates both transcription elongation and RNA processing in mitochondria. EMBO Rep. 2019, 20, e48101. [Google Scholar] [CrossRef] [PubMed]
- Haack, T.B.; Kopajtich, R.; Freisinger, P.; Wieland, T.; Rorbach, J.; Nicholls, T.J.; Baruffini, E.; Walther, A.; Danhauser, K.; Zimmermann, F.A. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am. J. Hum. Genet. 2013, 93, 211–223. [Google Scholar] [CrossRef] [Green Version]
- Peeva, V.; Blei, D.; Trombly, G.; Corsi, S.; Szukszto, M.J.; Rebelo-Guiomar, P.; Gammage, P.A.; Kudin, A.P.; Becker, C.; Altmüller, J. Linear mitochondrial DNA is rapidly degraded by components of the replication machinery. Nat. Commun. 2018, 9, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srivastava, S.; Moraes, C.T. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum. Molecul. Genet. 2001, 10, 3093–3099. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, M.; Borgeld, H.-J.; Zhang, J.; Muramatsu, S.-i.; Gong, J.-S.; Yoneda, M.; Maruyama, W.; Naoi, M.; Ibi, T.; Sahashi, K. Gene therapy for mitochondrial disease by delivering restriction endonucleaseSmaI into mitochondria. J. Biomed. Sci. 2002, 9, 534–541. [Google Scholar] [CrossRef]
- Reddy, P.; Ocampo, A.; Suzuki, K.; Luo, J.; Bacman, S.R.; Williams, S.L.; Sugawara, A.; Okamura, D.; Tsunekawa, Y.; Wu, J. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 2015, 161, 459–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammage, P.A.; Rorbach, J.; Vincent, A.I.; Rebar, E.J.; Minczuk, M. Mitochondrially targeted ZFN s for selective degradation of pathogenic mitochondrial genomes bearing large-scale deletions or point mutations. EMBO Molecul. Med. 2014, 6, 458–466. [Google Scholar] [CrossRef]
- Sun, N.; Zhao, H. Transcription activator-like effector nucleases (TALENs): A highly efficient and versatile tool for genome editing. Biotechnol. Bioeng. 2013, 110, 1811–1821. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, M.; Bacman, S.R.; Peralta, S.; Falk, M.J.; Chomyn, A.; Chan, D.C.; Williams, S.L.; Moraes, C.T. MitoTALEN: A general approach to reduce mutant mtDNA loads and restore oxidative phosphorylation function in mitochondrial diseases. Molecul. Ther. 2015, 23, 1592–1599. [Google Scholar] [CrossRef] [Green Version]
- Bacman, S.R.; Williams, S.L.; Pinto, M.; Peralta, S.; Moraes, C.T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med. 2013, 19, 1111–1113. [Google Scholar] [CrossRef] [PubMed]
- Gammage, P.A.; Viscomi, C.; Simard, M.-L.; Costa, A.S.; Gaude, E.; Powell, C.A.; Van Haute, L.; McCann, B.J.; Rebelo-Guiomar, P.; Cerutti, R. Genome editing in mitochondria corrects a pathogenic mtDNA mutation in vivo. Nat. Med. 2018, 24, 1691–1695. [Google Scholar] [CrossRef]
- Bacman, S.R.; Kauppila, J.H.; Pereira, C.V.; Nissanka, N.; Miranda, M.; Pinto, M.; Williams, S.L.; Larsson, N.-G.; Stewart, J.B.; Moraes, C.T. MitoTALEN reduces mutant mtDNA load and restores tRNA Ala levels in a mouse model of heteroplasmic mtDNA mutation. Nat. Med. 2018, 24, 1696–1700. [Google Scholar] [CrossRef] [PubMed]
- Minczuk, M.; Kolasinska-Zwierz, P.; Murphy, M.P.; Papworth, M.A. Construction and testing of engineered zinc-finger proteins for sequence-specific modification of mtDNA. Nat. Prot. 2010, 5, 342. [Google Scholar] [CrossRef] [PubMed]
- Hussain, S.-R.A.; Yalvac, M.E.; Khoo, B.; Eckardt, S.; McLaughlin, K.J. Adapting CRISPR/Cas9 system for targeting mitochondrial genome. bioRxiv 2020. [Google Scholar] [CrossRef] [Green Version]
- Jo, A.; Ham, S.; Lee, G.H.; Lee, Y.-I.; Kim, S.; Lee, Y.-S.; Shin, J.-H.; Lee, Y. Efficient mitochondrial genome editing by CRISPR/Cas9. BioMed Res. Internat 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Mok, B.Y.; de Moraes, M.H.; Zeng, J.; Bosch, D.E.; Kotrys, A.V.; Raguram, A.; Hsu, F.; Radey, M.C.; Peterson, S.B.; Mootha, V.K. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature 2020, 583, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Jang, Y.-h.; Lim, K.-i. Recent advances in mitochondria-targeted gene delivery. Molecules 2018, 23, 2316. [Google Scholar] [CrossRef] [Green Version]
- Yasuzaki, Y.; Yamada, Y.; Kanefuji, T.; Harashima, H. Localization of exogenous DNA to mitochondria in skeletal muscle following hydrodynamic limb vein injection. J. Control. Rel. 2013, 172, 805–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collombet, J.-M.; Wheeler, V.C.; Vogel, F.; Coutelle, C. Introduction of plasmid DNA into isolated mitochondria by electroporation: A novel approach toward gene correction for mitochondrial disorders. J. Biol. Chem. 1997, 272, 5342–5347. [Google Scholar] [CrossRef] [Green Version]
- Yoon, Y.G.; Koob, M.D. Efficient cloning and engineering of entire mitochondrial genomes in Escherichia coli and transfer into transcriptionally active mitochondria. Nucl. Acids Res. 2003, 31, 1407–1415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patananan, A.N.; Wu, T.-H.; Chiou, P.-Y.; Teitell, M.A. Modifying the mitochondrial genome. Cell Metabol. 2016, 23, 785796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kitani, T.; Kami, D.; Matoba, S.; Gojo, S. Internalization of isolated functional mitochondria: Involvement of macropinocytosis. J. Cell. Molecul. Med. 2014, 18, 1694–1703. [Google Scholar] [CrossRef] [PubMed]
- Kitani, T.; Kami, D.; Kawasaki, T.; Nakata, M.; Matoba, S.; Gojo, S. Direct human mitochondrial transfer: A novel concept based on the endosymbiotic theory. Transplant. Proc. 2014. [Google Scholar] [CrossRef]
- Von Heijne, G. Mitochondrial targeting sequences may form amphiphilic helices. EMBO J. 1986, 5, 1335–1342. [Google Scholar] [CrossRef]
- Mukhopadhyay, A.; Heard, T.S.; Wen, X.; Hammen, P.K.; Weiner, H. Location of the actual signal in the negatively charged leader sequence involved in the import into the mitochondrial matrix space. J. Biol. Chem. 2003, 278, 13712–13718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, Y.G.; Koob, M.D.; Yoo, Y.H. Re-engineering the mitochondrial genomes in mammalian cells. Anat. Cell. Biol. 2010, 43, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Vestweber, D.; Schatz, G. DNA-protein conjugates can enter mitochondria via the protein import pathway. Nature 1989, 338, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Beavis, A.D. Effect of leader peptides on the permeability of mitochondria. J. Biol. Chem. 1997, 272, 13555–13561. [Google Scholar] [CrossRef] [Green Version]
- Seibel, P.; Trappe, J.; Villani, G.; Klopstock, T.; Papa, S.; Reichmann, H. Transfection of mitochondria: Strategy towards a gene therapy of mitochondrial DNA diseases. Nucleic Acids Res. 1995, 23, 10–17. [Google Scholar] [CrossRef] [Green Version]
- Chinnery, P.; Taylor, R.; Diekert, K.; Lill, R.; Turnbull, D.; Lightowlers, R. Peptide nucleic acid delivery to human mitochondria. Gene Ther. 1999, 6, 1919–1928. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flierl, A.; Jackson, C.; Cottrell, B.; Murdock, D.; Seibel, P.; Wallace, D. Targeted delivery of DNA to the mitochondrial compartment via import sequence-conjugated peptide nucleic acid. Mol. Ther. 2003, 7, 550–557. [Google Scholar] [CrossRef]
- Naso, M.F.; Tomkowicz, B.; Perry, W.L.; Strohl, W.R. Adeno-associated virus (AAV) as a vector for gene therapy. BioDrugs 2017, 31, 317–334. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Tai, P.W.; Gao, G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat. Rev. Drug Discov. 2019, 18, 358–378. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Samulski, R.J. Engineering adeno-associated virus vectors for gene therapy. Nat. Rev. Genet. 2020, 21, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Kimura, T.; Ferran, B.; Tsukahara, Y.; Shang, Q.; Desai, S.; Fedoce, A.; Pimentel, D.R.; Luptak, I.; Adachi, T.; Ido, Y. Production of adeno-associated virus vectors for in vitro and in vivo applications. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Mehta, A.; Wang, G.; Hauswirth, W.W.; Chiodo, V.; Boye, S.L.; Guy, J. Next-generation sequencing of mitochondrial targeted AAV transfer of human ND4 in mice. Mol. Vis. 2013, 19, 1482. [Google Scholar]
- Rottenberg, H. Membrane potential and surface potential in mitochondria: Uptake and binding of lipophilic cations. J. Membr. Biol. 1984, 81, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Mao, X.; Wu, X.; Liew, S.S.; Li, L.; Yao, S.Q. Mitochondria-targeting, intracellular delivery of native proteins using biodegradable silica nanoparticles. Angewandte Chemie 2019, 131, 7739–7743. [Google Scholar] [CrossRef]
- Marrache, S.; Dhar, S. Engineering of blended nanoparticle platform for delivery of mitochondria-acting therapeutics. Proc. Natl. Acad. Sci. USA 2012, 109, 16288–16293. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.; Dodwadkar, N.S.; Piroyan, A.; Torchilin, V.P. Surface conjugation of triphenylphosphonium to target poly (amidoamine) dendrimers to mitochondria. Biomaterials 2012, 33, 4773–4782. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.A.; Porteous, C.M.; Gane, A.M.; Murphy, M.P. Delivery of bioactive molecules to mitochondria in vivo. Proc. Natl. Acad. Sci. USA 2003, 100, 5407–5412. [Google Scholar] [CrossRef] [Green Version]
- Muratovska, A.; Lightowlers, R.N.; Taylor, R.W.; Turnbull, D.M.; Smith, R.A.; Wilce, J.A.; Martin, S.W.; Murphy, M.P. Targeting peptide nucleic acid (PNA) oligomers to mitochondria within cells by conjugation to lipophilic cations: Implications for mitochondrial DNA replication, expression and disease. Nucl. Acids Res. 2001, 29, 1852–1863. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Shao, N.; Zhang, Q.; Cheng, Y. Mitochondrial targeting dendrimer allows efficient and safe gene delivery. J. Mat. Chem. B. 2014, 2, 2546–2553. [Google Scholar] [CrossRef]
- Weissig, V.; Lasch, J.; Erdos, G.; Meyer, H.W.; Rowe, T.C.; Hughes, J. DQAsomes: A novel potential drug and gene delivery system made from dequalinium™. Pharmaceut. Res. 1998, 15, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Weissig, V.; Lizano, C.; Torchilin, V.P. Selective DNA release from DQAsome/DNA complexes at mitochondria-like membranes. Drug Del. 2000, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, G.G.; Rammohan, R.; Cheng, S.-M.; Torchilin, V.P.; Weissig, V. DQAsome-mediated delivery of plasmid DNA toward mitochondria in living cells. J. Control. Rel. 2003, 92, 189–197. [Google Scholar] [CrossRef]
- Weissig, V.; D’Souza, G.; Torchilin, V. DQAsome/DNA complexes release DNA upon contact with isolated mouse liver mitochondria. J. Control. Rel. 2001, 75, 401–408. [Google Scholar] [CrossRef]
- Lyrawati, D.; Trounson, A.; Cram, D. Expression of GFP in the mitochondrial compartment using DQAsome-mediated delivery of an artificial mini-mitochondrial genome. Pharmaceut. Res. 2011, 28, 2848–2862. [Google Scholar] [CrossRef] [PubMed]
- Boddapati, S.V.; D’Souza, G.G.; Erdogan, S.; Torchilin, V.P.; Weissig, V. Organelle-targeted nanocarriers: Specific delivery of liposomal ceramide to mitochondria enhances its cytotoxicity in vitro and in vivo. Nano Lett. 2008, 8, 2559–2563. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Akita, H.; Kamiya, H.; Kogure, K.; Yamamoto, T.; Shinohara, Y.; Yamashita, K.; Kobayashi, H.; Kikuchi, H.; Harashima, H. MITO-Porter: A liposome-based carrier system for delivery of macromolecules into mitochondria via membrane fusion. Biochim. Biophys. Acta Biomem. 2008, 1778, 423–432. [Google Scholar] [CrossRef]
- Yamada, Y.; Furukawa, R.; Yasuzaki, Y.; Harashima, H. Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery. Molecul. Ther. 2011, 19, 1449–1456. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Harashima, H. Delivery of bioactive molecules to the mitochondrial genome using a membrane-fusing, liposome-based carrier, DF-MITO-Porter. Biomaterials 2012, 33, 1589–1595. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, E.; Yamada, Y.; Harashima, H. Mitochondrial targeting functional peptides as potential devices for the mitochondrial delivery of a DF-MITO-Porter. Mitochondrion 2013, 13, 610–614. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Kawamura, E.; Harashima, H. Mitochondrial-targeted DNA delivery using a DF-MITO-Porter, an innovative nano carrier with cytoplasmic and mitochondrial fusogenic envelopes. J. Nanopart. Res. 2012, 14, 1013. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Ishikawa, T.; Harashima, H. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression. Biomaterials 2017, 136, 56–66. [Google Scholar] [CrossRef] [Green Version]
- Jeandard, D.; Smirnova, A.; Tarassov, I.; Barrey, E.; Smirnov, A.; Entelis, N. Import of non-coding RNAs into human mitochondria: A critical review and emerging approaches. Cells 2019, 8, 286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Entelis, N.S.; Kolesnikova, O.A.; Dogan, S.; Martin, R.P.; Tarassov, I.A. 5 S rRNA and tRNA import into human mitochondria: Comparison of in vitro requirements. J. Biol. Chem. 2001, 276, 45642–45653. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Comte, C.; Mager-Heckel, A.-M.; Addis, V.; Krasheninnikov, I.A.; Martin, R.P.; Entelis, N.; Tarassov, I. Mitochondrial enzyme rhodanese is essential for 5 S ribosomal RNA import into human mitochondria. J. Biol. Chem. 2010, 285, 30792–30803. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, A.; Entelis, N.; Martin, R.P.; Tarassov, I. Biological significance of 5S rRNA import into human mitochondria: Role of ribosomal protein MRP-L18. Genes. Develop. 2011, 25, 1289–1305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Chen, H.-W.; Oktay, Y.; Zhang, J.; Allen, E.L.; Smith, G.M.; Fan, K.C.; Hong, J.S.; French, S.W.; McCaffery, J.M. PNPASE regulates RNA import into mitochondria. Cell 2010, 142, 456–467. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Shimada, E.; Koehler, C.M.; Teitell, M.A. PNPASE and RNA trafficking into mitochondria. Biochim. Biophys. Acta Gene Regulat. Mechan. 2012, 1819, 998–1007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.; Shimada, E.; Zhang, J.; Hong, J.S.; Smith, G.M.; Teitell, M.A.; Koehler, C.M. Correcting human mitochondrial mutations with targeted RNA import. Proc. Natl. Acad. Sci. USA 2012, 109, 4840–4845. [Google Scholar] [CrossRef] [Green Version]
- Rubio, M.A.T.; Rinehart, J.J.; Krett, B.; Duvezin-Caubet, S.; Reichert, A.S.; Söll, D.; Alfonzo, J.D. Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import. Proc. Natl. Acad. Sci. USA 2008, 105, 9186–9191. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawamura, E.; Maruyama, M.; Abe, J.; Sudo, A.; Takeda, A.; Takada, S.; Yokota, T.; Kinugawa, S.; Harashima, H.; Yamada, Y. Validation of gene therapy for mutant mitochondria by delivering mitochondrial RNA using a MITO-Porter, a liposome-based nano device. Molecul. Ther. Nucl. Acids 2020, 20, 687–698. [Google Scholar] [CrossRef] [PubMed]
- Kawamura, E.; Hibino, M.; Harashima, H.; Yamada, Y. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene silencing. Mitochondrion 2019, 49, 178–188. [Google Scholar] [CrossRef] [PubMed]
Gene | Function | Disease | References |
---|---|---|---|
POLG | POLγ catalytic subunit | MIRAS, Parkinsonism, AHS, MCHS, MEMSA, ANS, ad/ar PEO, male infertility, testicular cancer | [47,51] |
POLG2 | POLγ accessory subunit | adPEO | [52] |
TWINKLE | mtDNA helicase | PEO, hepatopathy, spinocerebellar ataxia, epileptic encephalopathy | [49] |
RNASE H1 | Endoribonuclease of the RNA-DNA hybrid | CPEO, exercise intolerance | [53] |
SSBP1 | Subunit of ssDNA-binding complex | optic atrophy | [50] |
MGME1 | Metal dependent ssDNA exonuclease | recessive multi-systemic mitochondrial disorder | [54] |
TOP3A | Topoisomerase | CPEO plus syndrome | [55] |
TFAM | Transcription factor | neonatal failure | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jang, Y.-h.; Ahn, S.R.; Shim, J.-y.; Lim, K.-i. Engineering Genetic Systems for Treating Mitochondrial Diseases. Pharmaceutics 2021, 13, 810. https://doi.org/10.3390/pharmaceutics13060810
Jang Y-h, Ahn SR, Shim J-y, Lim K-i. Engineering Genetic Systems for Treating Mitochondrial Diseases. Pharmaceutics. 2021; 13(6):810. https://doi.org/10.3390/pharmaceutics13060810
Chicago/Turabian StyleJang, Yoon-ha, Sae Ryun Ahn, Ji-yeon Shim, and Kwang-il Lim. 2021. "Engineering Genetic Systems for Treating Mitochondrial Diseases" Pharmaceutics 13, no. 6: 810. https://doi.org/10.3390/pharmaceutics13060810
APA StyleJang, Y. -h., Ahn, S. R., Shim, J. -y., & Lim, K. -i. (2021). Engineering Genetic Systems for Treating Mitochondrial Diseases. Pharmaceutics, 13(6), 810. https://doi.org/10.3390/pharmaceutics13060810