The Novel Use of PVP K30 as Templating Agent in Production of Porous Lactose
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Materials
2.2.1. Porous Lactose
2.2.2. Raw Lactose and Non-Porous Lactose
2.3. Physical Characterizations
2.3.1. Surface Morphology
2.3.2. Surface Areas, Pore Volumes, and Pore Diameter
2.3.3. Particle Size (d0.5) and Size Distribution (Span), and Uniformity (Un)
2.3.4. Carr’s Index (CI) and Hausner Ratio (HR)
2.3.5. X-ray Diffraction (XRD)
2.3.6. Fourier Transform Infrared Spectrometer (FTIR)
2.3.7. Thermal Gravity (TG) and Differential Thermal Gravity (DTG) Analysis
2.4. Drug Loading and In Vitro Dissolution Behavior
2.4.1. Drug Loading
2.4.2. In Vitro Dissolution Behavior
3. Results and Discussion
3.1. Yield and Surface Morphology of Materials
3.2. Physical Characterization of Materials
3.2.1. Powder Properties
3.2.2. XRD
3.2.3. FTIR
3.2.4. TG and DTG
3.3. In Vitro Dissolution Behavior
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, J.; Wang, J.P.; Zhao, Y.L.; Chen, T.Q. Scare Behavior Diffusion Model of Health Food Safety Based on Complex Network. Complexity 2018, 2018, 14. [Google Scholar] [CrossRef]
- Ikegami, S. Effectiveness and Safety of “Food for Specified Health Uses” and Health Foods. Food Hyg. Saf. Sci. 2010, 51, J404–J407. [Google Scholar]
- Li, Z.; Wu, F.; Zhao, L.; Lin, X.; Shen, L.; Feng, Y. Evaluation of fundamental and functional properties of natural plant product powders for direct compaction based on multivariate statistical analysis. Adv. Powder Technol. 2018, 29, 2881–2894. [Google Scholar] [CrossRef]
- Fazlzadeh, M.; Rahmani, K.; Zarei, A.; Abdoallahzadeh, H.; Nasiri, F.; Khosravi, R. A novel green synthesis of zero valent iron nanoparticles (NZVI) using three plant extracts and their efficient application for removal of Cr(VI) from aqueous solutions. Adv. Powder Technol. 2017, 28, 122–130. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, Y.; Wu, W.; Huang, L.; Guo, D.; Liu, C. Approaches to establish Q-markers for the quality standards of traditional Chinese medicines. Acta Pharm. Sin. B 2017, 7, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Jiang, H.; Han, L.; Xiong, X.; He, Y.; Fu, C.; Xu, R.; Zhang, D.; Lin, J.; Yang, M. A novel quantified bitterness evaluation model for traditional Chinese herbs based on an animal ethology principle. Acta Pharm. Sin. B 2018, 8, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Ma, B.C.; Zhao, Y.L.; Chen, T.Q. Evolution Model of Health Food Safety Risk Based on Prospect Theory. J. Healthc. Eng. 2018, 2018, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katan, M.B. Health claims for functional foods—Regulations vary between countries and often permit vague claims. BMJ Br. Med. J. 2004, 328, 180–181. [Google Scholar] [CrossRef]
- Sanchez-Garcia, Y.I.; Gutierrez-Mendez, N.; Orozco-Mena, R.E.; Ramos-Sanchez, V.H.; Leal-Ramos, M.Y. Individual and combined effect of pH and whey proteins on lactose crystallization. Food Res. Int. 2019, 116, 455–461. [Google Scholar] [CrossRef] [PubMed]
- Fan, F.; Roos, Y.H. X-ray diffraction analysis of lactose crystallization in freeze-dried lactose-whey protein systems. Food Res. Int. 2015, 67, 1–11. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Saffari, M.; Dehghani, F.; Langrish, T. Incorporation of acetaminophen as an active pharmaceutical ingredient into porous lactose. Int. J. Pharm. 2016, 499, 217–227. [Google Scholar] [CrossRef]
- Weerapol, Y.; Limmatvapirat, S.; Takeuchi, H.; Sriamornsak, P. Fabrication of spontaneous emulsifying powders for improved dissolution of poorly water-soluble drugs. Powder Technol. 2015, 271, 100–108. [Google Scholar] [CrossRef]
- Bhattachar, S.N.; Wesley, J.A.; Fioritto, A.; Martin, P.J.; Babu, S.R. Dissolution testing of a poorly soluble compound using the flow-through cell dissolution apparatus. Int. J. Pharm. 2002, 236, 135–143. [Google Scholar] [CrossRef]
- Macheras, P.; Iliadis, A.; Melagraki, G. A reaction limited in vivo dissolution model for the study of drug absorption: Towards a new paradigm for the biopharmaceutic classification of drugs. Eur. J. Pharm. Sci. 2018, 117, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Ebrahimi, A.; Liu, X.; Langrish, T. Hollow flower-like lactose particles as potential drug carriers: Effect of particle size and feed concentration. Powder Technol. 2017, 320, 1–6. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Saffari, M.; Langrish, T. Improving the dissolution rate of hydrophobic drugs through encapsulation in porous lactose as a new biocompatible porous carrier. Int. J. Pharm. 2017, 521, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Ebrahimi, A.; Liu, X.; Langrish, T. Role of templating agents in the spray drying and postcrystallization of lactose for the production of highly porous powders. Dry. Technol. 2018, 36, 1882–1891. [Google Scholar] [CrossRef]
- Jiang, N.; Wang, S.; Cheng, Z.; Liu, W. In vitro and in vivo evaluation of porous lactose/mannitol carriers for solubility enhancement of poorly water-soluble drugs. Dry. Technol. 2020, 38, 889–902. [Google Scholar] [CrossRef]
- Tan, S.; Jiang, T.; Ebrahimi, A.; Langrish, T. Effect of spray-drying temperature on the formation of flower-like lactose for griseofulvin loading. Eur. J. Pharm. Sci. 2018, 111, 534–539. [Google Scholar] [CrossRef]
- Tan, S.; Ebrahimi, A.; Langrish, T. Template-directed flower-like lactose with micro-meso-macroporous structure. Mater. Des. 2017, 117, 178–184. [Google Scholar] [CrossRef]
- Saffari, M.; Ebrahimi, A.; Langrish, T. A novel formulation for solubility and content uniformity enhancement of poorly water-soluble drugs using highly-porous mannitol. Eur. J. Pharm. Sci. 2016, 83, 52–61. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, A.; Saffari, M.; Langrish, T. Spray drying and post-processing production of highly-porous lactose particles using sugars as templating agents. Powder Technol. 2015, 283, 171–177. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, L.; Lin, X.; Shen, L.; Feng, Y. Direct compaction: An update of materials, trouble-shooting, and application. Int. J. Pharm. 2017, 529, 543–556. [Google Scholar] [CrossRef] [PubMed]
- Ito, V.C.; Lacerda, L.G. Black rice (Oryza sativa L.): A review of its historical aspects, chemical composition, nutritional and functional properties, and applications and processing technologies. Food Chem. 2019, 301, 125304. [Google Scholar]
- Li, Z.; Lin, X.; Shen, L.; Hong, Y.; Feng, Y. Composite particles based on particle engineering for direct compaction. Int. J. Pharm. 2017, 519, 272–286. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xian, J.; Wu, F.; Lin, X.; Shen, L.; Feng, Y. Development of TCM-based composite particles for direct compaction by particle design. Powder Technol. 2018, 338, 481–492. [Google Scholar] [CrossRef]
- Vromans, H.; Boer, A.H.D.; Bolhuis, G.K.; Lerk, C.F.; Bosch, H.J.P.W. Studies on tableting properties of lactose. Pharm. Weekbl. 1985, 7, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alderborn, G.; Nystrom, C. Pharmaceutical Powder Compaction Technology; Marcel Dekker, Inc.: New York, NY, USA, 1996; Volume 42, p. 302. [Google Scholar]
- Li, Z.; Zhou, M.; Wu, F.; Shen, L.; Lin, X.; Feng, Y. Direct compaction properties of Zingiberis Rhizoma extracted powders coated with various shell materials: Improvements and mechanism analysis. Int. J. Pharm. 2019, 564, 10–21. [Google Scholar] [CrossRef]
- Li, Z.; Wu, F.; Hong, Y.; Shen, L.; Lin, X.; Feng, Y. The Fundamental and Functional Property Differences Between HPMC and PVP Co-Processed Herbal Particles Prepared by Fluid Bed Coating. AAPS Pharm. Sci. Tech. 2020, 21, 1–7. [Google Scholar] [CrossRef]
- Maghsoodi, M.; Taghizadeh, O.; Martin, G.R.; Nokhodchi, A. Particle design of naproxen-disintegrant agglomerates for direct compression by a crystallo-co-agglomeration technique. Int. J. Pharm. 2008, 351, 45–54. [Google Scholar] [CrossRef]
- Kaialy, W.; Maniruzzaman, M.; Shojaee, S.; Nokhodchi, A. Antisolvent precipitation of novel xylitol-additive crystals to engineer tablets with improved pharmaceutical performance. Int. J. Pharm. 2014, 477, 282–293. [Google Scholar] [CrossRef]
- Dong, Q.; Zhou, M.; Lin, X.; Shen, L.; Feng, Y. Differences in fundamental and functional properties of HPMC co-processed fillers prepared by fluid-bed coating and spray drying. Eur. J. Pharm. Sci. 2018, 119, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, A.; Saffari, M.; Langrish, T. Developing a new production process for high-porosity lactose particles with high degrees of crystallinity. Powder Technol. 2015, 272, 45–53. [Google Scholar] [CrossRef]
- Swaminathan, V.; Kildsig, D.O. The effect of particle morphology on the physical stability of pharmaceutical powder mixtures: The effect of surface roughness of the carrier on the stability of ordered mixtures. Drug Dev. Ind. Pharm. 2000, 26, 365–373. [Google Scholar] [CrossRef]
- Takahashi, H.; Chen, R.; Okamoto, H.; Danjo, K.J.C.; Bulletin, P. Acetaminophen particle design using chitosan and a spray-drying technique. Chem. Pharm. Bull. 2005, 53, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Sadeghi, F.; Torab, M.; Khattab, M.; Homayouni, A.; Garekani, H.A. Improvement of Physico-mechanical Properties of Partially Amorphous Acetaminophen Developed from Hydroalcoholic Solution Using Spray Drying Technique. Iran. J. Basic Med. Sci. 2013, 16, 1100–1108. [Google Scholar] [PubMed]
- Li, J.; Zeng, X.-A.; Brennan, C.S.; Chen, X.-D. Micron-size lactose manufactured under high shear and its dispersion efficiency as carrier for Salbutamol Sulphate. Powder Technol. 2019, 358, 39–45. [Google Scholar] [CrossRef]
- McDonagh, A.F.; Tajber, L. Crystallo-co-spray drying as a new approach to manufacturing of drug/excipient agglomerates: Impact of processing on the properties of paracetamol and lactose mixtures. Int. J. Pharm. 2020, 577, 119051. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.B.; Liu, D.X.; Liu, D.K.; Wu, G. Application of Solid Dispersion Technique to Improve Solubility and Sustain Release of Emamectin Benzoate. Molecules 2019, 24, 4315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, M.; Wang, Y.; Wu, F.; Shen, L.; Lin, X.; Feng, Y. Development on porous particles of Pueraria lobatae Radix for improving its compactibility and dissolution. RSC Adv. 2018, 8, 24250–24260. [Google Scholar] [CrossRef] [Green Version]
- Yokoyama, R.; Kimura, G.; Schlepuetz, C.M.; Huwyler, J.; Puchkov, M. Modeling of Disintegration and Dissolution Behavior of Mefenamic Acid Formulation Using Numeric Solution of Noyes-Whitney Equation with Cellular Automata on Microtomographic and Algorithmically Generated Surfaces. Pharmaceutics 2018, 10, 259. [Google Scholar] [CrossRef] [Green Version]
- Hattori, Y.; Haruna, Y.; Otsuka, M. Dissolution process analysis using model-free Noyes-Whitney integral equation. Colloids Surf. B Biointerfaces 2013, 102, 227–231. [Google Scholar] [CrossRef] [PubMed]
Materials | Yield (%) | ρb (g/mL) | ρt (g/mL) | CI | HR | AR (°) | d (0.5) (μm) | Span | Uniformity | SA-BET (m2/g) | SA-BJH (m2/g) | PV (cm3/g) | PD (nm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Lactose | 0.458 ± 0.007 | 0.864 ± 0.004 | 47.0 ± 1.0 | 1.89 ± 0.04 | 56.7 ± 0.7 | 42.5 ± 0.5 | 2.69 ± 0.07 | 0.927 ± 0.202 | 1.11 ± 0.02 | 1.25 | 0.00133 | 42.5 | |
Lactose-0 | 69.0 | 0.329 ± 0.003 | 0.558 ± 0.005 | 41.0 ± 0.0 | 1.70 ± 0.00 | 45.3 ± 1.7 | 45.9 ± 0.2 | 3.40 ± 0.03 | 1.010 ± 0.011 | 3.44 ± 0.01 | 3.62 | 0.00447 | 49.4 |
Lactose-P1 | 85.3 | 0.398 ± 0.008 | 0.583 ± 0.007 | 31.7 ± 1.5 | 1.46 ± 0.03 | 42.2 ± 1.4 | 30.3 ± 0.1 | 2.21 ± 0.02 | 0.710 ± 0.012 | 1.58 ± 0.28 | 2.11 | 0.03010 | 570.0 |
Lactose-P2 | 85.5 | 0.397 ± 0.003 | 0.557 ± 0.011 | 28.7 ± 1.2 | 1.40 ± 0.02 | 40.5 ± 0.8 | 34.8 ± 0.1 | 2.11 ± 0.01 | 0.657 ± 0.007 | 1.56 ± 0.43 | 2.12 | 0.01720 | 323.0 |
Lactose-P3 | 89.1 | 0.376 ± 0.004 | 0.555 ± 0.007 | 32.3 ± 0.6 | 1.48 ± 0.01 | 40.0 ± 1.3 | 27.1 ± 0.1 | 2.04 ± 0.00 | 0.615 ± 0.002 | 2.03 ± 0.29 | 2.94 | 0.01870 | 254.0 |
f2 | Lactose | Lactose-0 | Lactose-P1 | Lactose-P2 | Lactose-P3 |
---|---|---|---|---|---|
Lactose | 100.0 | ||||
Lactose-0 | 77.9 | 100.0 | |||
Lactose-P1 | 12.6 | 13.6 | 100.0 | ||
Lactose-P2 | 10.3 | 11.2 | 51.5 | 100.0 | |
Lactose-P3 | 9.3 | 10.0 | 44.1 | 50.3 | 100.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, W.-F.; Zhu, L.; Li, Z.; Wu, W.-T.; Guan, Y.-M.; Chen, L.-H.; Mao, Z.-X.; Ming, L.-S. The Novel Use of PVP K30 as Templating Agent in Production of Porous Lactose. Pharmaceutics 2021, 13, 814. https://doi.org/10.3390/pharmaceutics13060814
Zhu W-F, Zhu L, Li Z, Wu W-T, Guan Y-M, Chen L-H, Mao Z-X, Ming L-S. The Novel Use of PVP K30 as Templating Agent in Production of Porous Lactose. Pharmaceutics. 2021; 13(6):814. https://doi.org/10.3390/pharmaceutics13060814
Chicago/Turabian StyleZhu, Wei-Feng, Lin Zhu, Zhe Li, Wen-Ting Wu, Yong-Mei Guan, Li-Hua Chen, Zhi-Xuan Mao, and Liang-Shan Ming. 2021. "The Novel Use of PVP K30 as Templating Agent in Production of Porous Lactose" Pharmaceutics 13, no. 6: 814. https://doi.org/10.3390/pharmaceutics13060814
APA StyleZhu, W. -F., Zhu, L., Li, Z., Wu, W. -T., Guan, Y. -M., Chen, L. -H., Mao, Z. -X., & Ming, L. -S. (2021). The Novel Use of PVP K30 as Templating Agent in Production of Porous Lactose. Pharmaceutics, 13(6), 814. https://doi.org/10.3390/pharmaceutics13060814