Development of an Age-Appropriate Mini Orally Disintegrating Carvedilol Tablet with Paediatric Biopharmaceutical Considerations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. HPLC Analytical Method Development
2.3. Compatibility Using Differential Scanning Calorimetry (DSC)
2.4. Particle Size Analysis
2.5. Powder Flow Measurements
2.6. Optimising the Process of Blending for Carvedilol to Improve Content Uniformity
2.7. Orally Disintegrating Mini Tablet (ODMT) Production
2.8. ODMT Physical Evaluation
2.8.1. Hardness
2.8.2. Friability
2.8.3. Disintegration
2.9. Adult and Paediatric Biorelevant Media Design and Development
2.10. ODMT Evaluation–Biorelevant Solubility and Dissolution Studies
2.11. Statistical Analysis
3. Results and Discussion
3.1. Compatibility Using Differential Scanning Calorimetry (DSC)
3.2. Pre-Compression Material Characterisation
3.3. Optimising the Process of Blending for Carvedilol to Improve Content Uniformity
3.4. ODMT Evaluation
3.5. ODMT Evaluation–Biorelevant Dissolution Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aronson, J.K.; Ferner, R.E. Unlicensed and off-label uses of medicines: Definitions and clarification of terminology. Br. J. Clin. Pharmacol. 2017, 83, 2615–2625. [Google Scholar] [CrossRef]
- Heitman, T.; Day, A.J.; Bassani, A.S. Pediatric Compounding Pharmacy: Taking on the Responsibility of Providing Quality Customized Prescriptions. Childern 2019, 6, 66. [Google Scholar] [CrossRef] [Green Version]
- USP Global Public Policy Position. Ensuring Patient Safety in Compounding of Medicines. 2017. Available online: https://www.usp.org/sites/default/files/usp/document/about/public-policy/safety-in-compounding-of-medicines-policy-position.pdf (accessed on 12 March 2021).
- CRS. Compounded Drugs. 2013. Available online: https://fas.org/sgp/crs/misc/R43082.pdf (accessed on 12 March 2021).
- Ranmal, S.R.; Cram, A.; Tuleu, C. Age-appropriate and acceptable paediatric dosage forms: Insights into end-user perceptions, preferences and practices from the Children’s Acceptability of Oral Formulations (CALF) Study. Int. J. Pharm. 2016, 514, 296–307. [Google Scholar] [CrossRef] [PubMed]
- Klingmann, V.; Spomer, N.; Lerch, C.; Stoltenberg, I.; Frömke, C.; Bosse, H.M.; Breitkreutz, J.; Meissner, T. Favorable Acceptance of Mini-Tablets Compared with Syrup: A Randomized Controlled Trial in Infants and Preschool Children. J. Pediatr. 2013, 163, 1728.e1–1732.e1. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, H.G. WHO guideline development of paediatric medicines: Points to consider in pharmaceutical development. Int. J. Pharm. 2012, 435, 134–135. [Google Scholar] [CrossRef]
- Nunn, T.; Williams, J. Formulation of medicines for children. Br. J. Clin. Pharmacol. 2005, 59, 674–676. [Google Scholar] [CrossRef]
- Evropean Medicines Agency. Paediatric Regulation. Available online: https://www.ema.europa.eu/en/human-regulatory/overview/paediatric-medicines/paediatric-regulation (accessed on 13 March 2021).
- European Medicines Agency. 10-Year Report to the European Commission. Available online: https://ec.europa.eu/health/sites/health/files/files/paediatrics/2016_pc_report_2017/ema_10_year_report_for_consultation.pdf (accessed on 14 March 2021).
- Hamed, R.; Awadallah, A.; Sunoqrot, S.; Tarawneh, O.; Nazzal, S.; AlBaraghthi, T.; Al Sayyad, J.; Abbas, A. pH-Dependent Solubility and Dissolution Behavior of Carvedilol—Case Example of a Weakly Basic BCS Class II Drug. AAPS PharmSciTech 2016, 17, 418–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruns, L.A.; Chrisant, M.K.; Lamour, J.M.; Shaddy, R.E.; Pahl, E.; Blume, E.D.; Hallowell, S.; Addonizio, L.J.; Canter, C.E. Carvedilol as therapy in pediatric heart failure: An initial multicenter experience. J. Pediatr. 2001, 138, 505–511. [Google Scholar] [CrossRef]
- Giardini, A.; Formigari, R.; Bronzetti, G.; Prandstraller, D.; Donti, A.; Bonvicini, M.; Picchio, F.M. Modulation of neurohormonal activity after treatment of children in heart failure with carvedilol. Cardiol. Young 2003, 13, 333–336. [Google Scholar] [CrossRef]
- Maunoury, C.; Acar, P.; Sidi, D. Use of 123 I-MIBG scintigraphy to assess the impact of carvedilol on cardiac adrenergic neuronal function in childhood dilated cardiomyopathy. Eur. J. Nucl. Med. Mol. Imaging 2003, 30, 1651–1656. [Google Scholar] [CrossRef]
- Bajcetic, M.; Nikolic-Kokic, A.; Djukic, M.; Kosutic, J.; Mitrovic, J.; Mijalkovic, D.; Jovanovic, I.; Simeunovic, S.; Spasić, M.; Samardzic, R. Effects of Carvedilol on Left Ventricular Function and Oxidative Stress in Infants and Children with Idiopathic Dilated Cardiomyopathy: A 12-Month, Two-Center, Open-Label Study. Clin. Ther. 2008, 30, 702–714. [Google Scholar] [CrossRef]
- Williams, R.V.; Tani, L.Y.; Shaddy, R.E. Intermediate effects of treatment with metoprolol or carvedilol in children with left ventricular systolic dysfunction. J. Heart Lung Transplant. 2002, 21, 906–909. [Google Scholar] [CrossRef]
- Blume, E.; Canter, C.; Spicer, R.; Gauvreau, K.; Colan, S.; Jenkins, K. Prospective Single-Arm Protocol of Carvedilol in Children with Ventricular Dysfunction. Pediatr. Cardiol. 2006, 27, 336–342. [Google Scholar] [CrossRef]
- European Medicines Agency. Needs for Paediatric Medicines: EMA. Available online: https://www.ema.europa.eu/en/human-regulatory/research-development/paediatric-medicines/needs-paediatric-medicines#cardiovascular-section (accessed on 13 March 2021).
- USP Global Public Policy Position. Powder Flow: USP. 2004. Available online: https://www.usp.org/sites/default/files/usp/document/harmonization/gen-chapter/g05_pf_30_6_2004.pdf (accessed on 13 March 2021).
- USP Global Public Policy Position. Bulk Density and Tapped Density of Powders: USP. 2015. Available online: https://www.usp.org/sites/default/files/usp/document/harmonization/gen-chapter/bulk_density.pdf (accessed on 14 March 2021).
- Jantratid, E.; Janssen, N.; Reppas, C.; Dressman, J.B. Dissolution Media Simulating Conditions in the Proximal Human Gastrointestinal Tract: An Update. Pharm. Res. 2008, 25, 1663–1676. [Google Scholar] [CrossRef] [PubMed]
- Maharaj, A.R.; Edginton, A.N.; Fotaki, N. Assessment of Age-Related Changes in Pediatric Gastrointestinal Solubility. Pharm. Res. 2015, 33, 52–71. [Google Scholar] [CrossRef]
- Phillips, D.J.; Pygall, S.R.; Cooper, V.B.; Mann, J.C. Overcoming sink limitations in dissolution testing: A review of traditional methods and the potential utility of biphasic systems. J. Pharm. Pharmacol. 2012, 64, 1549–1559. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.; Petiraksakul, P.; Mathieson, I. Characterisation of stearatestearic acid coated fillers. Mater. Sci. Technol. 2001, 17, 1472–1478. [Google Scholar] [CrossRef] [Green Version]
- Rowe, R.C.; Sheskey, P.J.; Quinn, M.E. Handbook of Pharmaceutical Excipients; Pharmaceutical Press: London, UK, 2009. [Google Scholar]
- Freire, F.D.; Aragão, C.F.S.; de Lima e Moura, T.; Raffin, F.N. Compatibility study between chlorpropamide and excipients in their physical mixtures. J. Therm. Anal. Calorim. 2009, 97, 355–357. [Google Scholar] [CrossRef]
- Castillo, L.; Madrigal, G.; Vargas Zuñiga, R.; Carazo, G. Combined use of DSC, TGA, XDR and NIR in the compatibility study of preformulation mixtures for the development of 10 mg tablets of Rupatadine Fumarate. J. Drug Deliv. Ther. 2018, 8, 42–54. [Google Scholar]
- Delaney, S.P.; Nethercott, M.J.; Mays, C.J.; Winquist, N.T.; Arthur, D.; Calahan, J.L.; Sethi, M.; Pardue, D.S.; Kim, J.; Amidon, G.; et al. Characterization of Synthesized and Commercial Forms of Magnesium Stearate Using Differential Scanning Calorimetry, Thermogravimetric Analysis, Powder X-Ray Diffraction, and Solid-State NMR Spectroscopy. J. Pharm. Sci. 2017, 106, 338–347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangal, S.; Meiser, F.; Morton, D.; Larson, I. Particle Engineering of Excipients for Direct Compression: Understanding the Role of Material Properties. Curr. Pharm. Des. 2015, 21, 5877–5889. [Google Scholar] [CrossRef]
- Alyami, H.; Dahmash, E.; Bowen, J.; Mohammed, A.R. An investigation into the effects of excipient particle size, blending techniques and processing parameters on the homogeneity and content uniformity of a blend containing low-dose model drug. PLoS ONE 2017, 12, e0178772. [Google Scholar] [CrossRef]
- Dahmash, E.Z.; Mohammed, A.-U.-R. Functionalised particles using dry powder coating in pharmaceutical drug delivery: Promises and challenges. Expert Opin. Drug Deliv. 2015, 12, 1867–1879. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.; Marziano, I.; Bentham, A.; Litster, J.; White, E.T.; Howes, T. Effect of particle properties on the flowability of ibuprofen powders. Int. J. Pharm. 2008, 362, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Morin, G.; Briens, L. The Effect of Lubricants on Powder Flowability for Pharmaceutical Application. AAPS PharmSciTech 2013, 14, 1158–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Gesenberg, C.; Zheng, W. Chapter 17—Oral Formulations for Preclinical Studies: Principle, Design, and Development Considerations. In Developing Solid Oral Dosage Forms, 2nd ed.; Qiu, Y., Chen, Y., Zhang, G.G.Z., Yu, L., Mantri, R.V., Eds.; Academic Press: Boston, MA, USA, 2017; pp. 455–495. [Google Scholar]
- Müller, A.-K.; Ruppel, J.; Drexel, C.-P.; Zimmermann, I. Precipitated silica as flow regulator. Eur. J. Pharm. Sci. 2008, 34, 303–308. [Google Scholar] [CrossRef]
- Li, Q.; Rudolph, V.; Weigl, B.; Earl, A. Interparticle van der Waals force in powder flowability and compactibility. Int. J. Pharm. 2004, 280, 77–93. [Google Scholar] [CrossRef]
- Harding, D.; Sashiwa, H. Advances in Marine Chitin and Chitosan; MDPI AG: Basel, Switzerland, 2018. [Google Scholar]
- Schomberg, A.K.; Kwade, A.; Finke, J.H. The Challenge of Die Filling in Rotary Presses—A Systematic Study of Material Properties and Process Parameters. Pharmaceutics 2020, 12, 248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badawy, S.I.F.; Narang, A.S.; LaMarche, K.R.; Subramanian, G.A.; Varia, S.A. Chapter 3—Mechanistic Basis for the Effects of Process Parameters on Quality Attributes in High Shear Wet Granulation. In Handbook of Pharmaceutical Wet Granulation; Narang, A.S., Badawy, S.I.F., Eds.; Academic Press: Boston, MA, USA, 2019; pp. 89–118. [Google Scholar]
- Muselík, J.; Franc, A.; Doležel, P.; Goněc, R.; Krondlová, A.; Lukášová, I. Influence of Process Parameters on Content Uniformity of a Low Dose Active Pharmaceutical Ingredient in a Tablet Formulation According to GMP. Acta Pharm. 2014, 64, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Tang, P.; Puri, V.M. Methods for Minimizing Segregation: A Review. Part. Sci. Technol. 2004, 22, 321–337. [Google Scholar] [CrossRef]
- Liao, Z.; Zhang, N.; Zhao, G.; Zhang, J.; Liang, X.; Zhong, S.; Wang, G.; Chen, X. Multivariate analysis approach for correlations between material properties and tablet tensile strength of microcrystalline cellulose. Die Pharm. 2012, 67, 774–780. [Google Scholar]
- Wilson, R.; Dini, D.; Van Wachem, B. The influence of surface roughness and adhesion on particle rolling. Powder Technol. 2017, 312, 321–333. [Google Scholar] [CrossRef]
- U.S. Food and Drug Administration (FDA). Guidance for Industry Orally Disintegrating Tablets. 2008. Available online: http://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm070578.pdf (accessed on 15 January 2021).
- European Directorate for the Quality of Medicines. European Pharmacopoeia (Ph Eur); Council of Europe: Strasbourg, France, 2013. [Google Scholar]
- British Pharmacopoeia. Carvedilol Tablets: BP. 2020. Available online: https://www.pharmacopoeia.com/bp-2020/formulated-specific/carvedilol-tablets.html%3fdate%3d2020-01-01 (accessed on 14 March 2021).
- Boyd, B.J.; Bergström, C.A.S.; Vinarov, Z.; Kuentz, M.; Brouwers, J.; Augustijns, P.; Brandlf, M.; Bernkop-Schnürchg, A.; Shresthah, N.; Préat, V.; et al. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur. J. Pharm. Sci. 2019, 137, 104967. [Google Scholar] [CrossRef] [PubMed]
- Stafylas, P.C.; Sarafidis, P.A. Carvedilol in hypertension treatment. Vasc. Health Risk Manag. 2008, 4, 23–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EMC. Carvedilol 6.25 mg Film-Coated Tablets. Datapharm. 2018. Available online: https://www.medicines.org.uk/emc/product/3108 (accessed on 15 March 2021).
- Pavlović, N.; Goločorbin-Kon, S.; Ðanić, M.; Stanimirov, B.; Al-Salami, H.; Stankov, K.; Mikov, M. Bile Acids and Their Derivatives as Potential Modifiers of Drug Release and Pharmacokinetic Profiles. Front. Pharmacol. 2018, 9, 1283. [Google Scholar] [CrossRef]
- Mooij, M.G.; de Koning, B.A.; Huijsman, M.L.; de Wildt, S.N. Ontogeny of oral drug absorption processes in children. Expert Opin. Drug Metab. Toxicol. 2012, 8, 1293–1303. [Google Scholar] [CrossRef] [Green Version]
- Van der Vossen, A.C.; Hanff, L.M.; Vulto, A.G.; Fotaki, N. Potential prediction of formulation performance in paediatric patients using biopharmaceutical tools and simulation of clinically relevant administration scenarios of nifedipine and lorazepam. Br. J. Clin. Pharmacol. 2019, 85, 1728–1739. [Google Scholar] [CrossRef]
Ingredient | F1 (0.5 mg Tablet) Concentration% w/w | F2 (2 mg Tablet) Concentration% w/w |
---|---|---|
Mannitol | 83.25 | 80.25 |
MCC | 15 | 15 |
Carvedilol | 1 | 4 |
Colloidal silica dioxide | 0.25 | 0.25 |
Magnesium stearate | 0.5 | 0.5 |
Pre-Prandial Biorelevant Gastric Media Composition | ||||
---|---|---|---|---|
Composition | Adult (FaSSGF) | Infant (i-FaSSGF) | Neonate (n-FaSSGF) | |
Sodium chloride (mM) | 34.2 | 34.2 | 34.2 | |
Sodium taurocholate (μM) | 80 | 60 | 20 | |
Lecithin (μM) | 20 | 15 | 5 | |
Pepsin (mg/mL) | 0.1 | 0.025 | 0.015 | |
HCl/NaOH qs | pH 1.6 | pH 1.6 | pH 1.6 | |
pH | 1.6 | 1.6 | 1.6 | |
Osmolarity (mOsm/kg) | 120.7 ± 2.5 | 120.7 ± 2.5 | 120.7 ± 2.5 | |
Post-prandial biorelevant gastric media composition | ||||
Composition | Adult (FeSSGF) | Neonate-Cow (nc-FeSSGF) | Neonate-Soy (ns-FeSSGF) | |
Sodium chloride (mM) | 34.2 | 34.2 | 34.2 | |
Acetic acid (mM) | 17.12 | 7.25 | 7.25 | |
Sodium acetate (mM) | 29.75 | 64.65 | 64.65 | |
Milk:buffer | 1:1 | 1:1 | 1:1 | |
HCl/NaOH qs | pH 5 | pH 5.7 | pH 5.7 | |
pH | 5 | 5.7 | 5.7 | |
Osmolarity (mOsm/kg) | 400 | 340 | 240 | |
Buffering capacity (mmol/L/pH) | 25 | 15 | 15 | |
Pre-prandial biorelevant intestinal media composition | ||||
Composition | Adult (FaSSIF-V2) | FaSSIF-50% | FaSSIF-150% | |
Sodium hydroxide (mM) | 34.8 | 34.8 | 34.8 | |
Sodium taurocholate (mM) | 3 | 1.5 | 4.5 | |
Lecithin (mM) | 0.2 | 0.1 | 0.3 | |
Sodium chloride (mM) | 68.62 | 68.62 | 68.62 | |
Maleic acid (mM) | 19.12 | 19.12 | 19.12 | |
HCl/NaOH qs | pH 6.5 | pH 6.5 | pH 6.5 | |
Osmolarity (mOsm/kg) | 180 ± 10 | 180 ± 10 | 180 ± 10 | |
Buffering capacity (mmol/L/ph) | 10 | 10 | 10 | |
Post-prandial biorelevant intestinal media composition | ||||
Composition | Adult (FeSSIF-V2) | Neonate-breast fed (nb-FeSSIF) | Neonate-cow formula (nc-FeSSIF) | Infant-cow formula (i-FeSSIF) |
Sodium hydroxide (mM) | 81.65 | 81.65 | 81.65 | 81.65 |
Sodium taurocholate (mM) | 10 | 2.5 | 2.5 | 7.5 |
Lecithin (mM) | 2 | 0.5 | 0.5 | 1.5 |
Sodium chloride (mM) | 125.5 | 95 | 111.73 | 107.35 |
Maleic acid (mM) | 55.02 | 55.02 | 55.02 | 55.02 |
Glyceryl monooleate (mM) | 5 | 5 | 6.65 | 5 |
Sodium monooleate (mM) | 0.8 | 0.8 | 1.06 | 0.8 |
HCl/NaOH qs | pH 5.8 | pH 5.8 | pH 5.8 | pH 5.8 |
Osmolarity (mOsm/kg) | 300 ± 10 | 330 ± 10 | 330 ± 10 | 390 ± 10 |
Buffering capacity (mmol/L/ph) | 25 | 25 | 25 | 25 |
Sample | VMD (μm) |
---|---|
Mannitol | 70.92 ± 3.27 |
MCC | 84.20 ± 0.40 |
Carvedilol | 24.68 ± 1.97 |
Magnesium stearate | 17.49 ± 1.96 |
F1 | 77.50 ± 0.60 |
F2 | 77.18 ± 1.17 |
Sample | AOR (°) | CI (%) | HR | Evaluation Based on CI and HR |
---|---|---|---|---|
Mannitol | 32.97 | 33.33 | 1.50 | Very, very poor |
MCC | 23.73 | 23.08 | 1.30 | Passable |
Carvedilol | 46.47 | 57.89 | 2.38 | Very, very poor |
Magnesium stearate | 40.33 | 44.41 | 1.80 | Very, very poor |
F1 | 15.97 | 27.78 | 1.38 | Poor |
F2 | 16.36 | 27.78 | 1.38 | Poor |
Blend | % Carvedilol Recovery | RSD |
---|---|---|
1 | 111.8 ± 7.4 | 6.61 |
2 | 102.4 ± 7.4 | 7.27 |
3 | 104.9 ± 8.2 | 7.85 |
4 | 93.7 ± 5.9 | 6.31 |
5 | 148.6 ± 12.3 | 8.31 |
6 | 140.6 ± 9.2 | 6.56 |
7 | 103.5 ± 3.2 | 3.06 |
8 | 104.4 ± 5.3 | 5.05 |
Formulation | Hardness (N) | Friability (% Loss) | Disintegration (s) | Content Uniformity (%) |
---|---|---|---|---|
F1 (0.5 mg ODMT) | 35.20 ± 11.72 N | 0.22 | 11.2 ± 3.2 | 102.2 ± 2.9 |
F1 (2 mg ODMT) | 33.62 ± 7.39 N | 0.23 | 10.6 ± 2.4 | 101.7 ± 3.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, D.; Kirby, D.; Bryson, S.; Shah, M.; Mohammed, A.R. Development of an Age-Appropriate Mini Orally Disintegrating Carvedilol Tablet with Paediatric Biopharmaceutical Considerations. Pharmaceutics 2021, 13, 831. https://doi.org/10.3390/pharmaceutics13060831
Khan D, Kirby D, Bryson S, Shah M, Mohammed AR. Development of an Age-Appropriate Mini Orally Disintegrating Carvedilol Tablet with Paediatric Biopharmaceutical Considerations. Pharmaceutics. 2021; 13(6):831. https://doi.org/10.3390/pharmaceutics13060831
Chicago/Turabian StyleKhan, Dilawar, Daniel Kirby, Simon Bryson, Maryam Shah, and Afzal Rahman Mohammed. 2021. "Development of an Age-Appropriate Mini Orally Disintegrating Carvedilol Tablet with Paediatric Biopharmaceutical Considerations" Pharmaceutics 13, no. 6: 831. https://doi.org/10.3390/pharmaceutics13060831
APA StyleKhan, D., Kirby, D., Bryson, S., Shah, M., & Mohammed, A. R. (2021). Development of an Age-Appropriate Mini Orally Disintegrating Carvedilol Tablet with Paediatric Biopharmaceutical Considerations. Pharmaceutics, 13(6), 831. https://doi.org/10.3390/pharmaceutics13060831