Spray Freeze Dried Lyospheres® for Nasal Administration of Insulin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Spray Freeze-Dried Particles
2.3. SFD Particle Characterization
2.3.1. Scanning Electron Microscopy
2.3.2. Confocal Microscope Imaging
2.3.3. Particle Size and Distribution
2.3.4. Specific Surface Area
2.3.5. Aerodynamic Properties and Particle Deposition
2.3.6. Insulin Analytics
2.4. In Vivo Experiments
2.5. Statistical Analysis
3. Results
3.1. Physicochemical Characteristics of Spray Freeze-Dried Particles
3.2. In Vivo Experiments
3.2.1. In Vivo Testing of Insulin Loaded Particles
3.2.2. In Vivo Testing of FITC-Labeled Dextran Containing SFD Particles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Fisher, A.N.; Illum, L.; Davis, S.S.; Schacht, E.H. Di-iodo-l-tyrosine-labelled Dextrans as Molecular Size Markers of Nasal Absorption in the Rat. J. Pharm. Pharmacol. 2011, 44, 550–554. [Google Scholar] [CrossRef] [PubMed]
- Marttin, E.; Schipper, N.G.; Verhoef, J.; Merkus, F.W. Nasal mucociliary clearance as a factor in nasal drug delivery. Adv. Drug Deliv. Rev. 1998, 29, 13–38. [Google Scholar] [CrossRef]
- Özsoy, Y.; Güngör, S.; Cevher, E. Nasal Delivery of High Molecular Weight Drugs. Molecules 2009, 14, 3754–3779. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Zhao, Y.; Wu, F.; Zhang, X.; Lü, W.; Zhang, H.; Zhang, Q. Nasal insulin delivery in the chitosan solution: In vitro and in vivo studies. Int. J. Pharm. 2004, 281, 11–23. [Google Scholar] [CrossRef]
- Cho, W.; Kim, M.-S.; Jung, M.-S.; Park, J.; Cha, K.-H.; Kim, J.-S.; Park, H.J.; Alhalaweh, A.; Velaga, S.P.; Hwang, S.-J. Design of salmon calcitonin particles for nasal delivery using spray-drying and novel supercritical fluid-assisted spray-drying processes. Int. J. Pharm. 2015, 478, 288–296. [Google Scholar] [CrossRef]
- Labrude, P.; Rasolomanana, M.; Vigneron, C.; Thirion, C.; Chaillot, B. Protective Effect of Sucrose on Spray Drying of Oxyhemoglobin. J. Pharm. Sci. 1989, 78, 223–229. [Google Scholar] [CrossRef]
- Ståhl, K.; Claesson, M.; Lilliehorn, P.; Lindén, H.; Bäckström, K. The effect of process variables on the degradation and physical properties of spray dried insulin intended for inhalation. Int. J. Pharm. 2002, 233, 227–237. [Google Scholar] [CrossRef]
- Broadhead, J.; Rouan, S.K.E.; Hau, I.; Rhodes, C.T. The Effect of Process and Formulation Variables on the Properties of Spray-dried β-Galactosidase. J. Pharm. Pharmacol. 2011, 46, 458–467. [Google Scholar] [CrossRef]
- Tafaghodi, M.; Tabassi, S.S.; Jaafari, M.-R.; Zakavi, S.R.; Momen-Nejad, M. Evaluation of the clearance characteristics of various microspheres in the human nose by gamma-scintigraphy. Int. J. Pharm. 2004, 280, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Eggerstedt, S.N.; Dietzel, M.; Sommerfeld, M.; Süverkrüp, R.; Lamprecht, A. Protein spheres prepared by drop jet freeze drying. Int. J. Pharm. 2012, 438, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.E.; Lamprecht, A. Spray freeze drying for dry powder inhalation of nanoparticles. Eur. J. Pharm. Biopharm. 2014, 87, 510–517. [Google Scholar] [CrossRef]
- Wanning, S.; Süverkrüp, R.; Lamprecht, A. Jet-vortex spray freeze drying for the production of inhalable lyophilisate powders. Eur. J. Pharm. Sci. 2017, 96, 1–7. [Google Scholar] [CrossRef]
- Wanning, S.; Süverkrüp, R.; Lamprecht, A. Pharmaceutical spray freeze drying. Int. J. Pharm. 2015, 488, 136–153. [Google Scholar] [CrossRef] [PubMed]
- Maa, Y.; Ameri, M.; Shu, C.; Payne, L.G.; Chen, D. Influenza Vaccine Powder Formulation Development: Spray-Freeze-Drying and Stability Evaluation. J. Pharm. Sci. 2004, 93, 1912–1923. [Google Scholar] [CrossRef] [PubMed]
- Garmise, R.J.; Staats, H.; Hickey, A.J. Novel dry powder preparations of whole inactivated influenza virus for nasal vaccination. AAPS PharmSciTech 2007, 8, 2–10. [Google Scholar] [CrossRef]
- Hjorth, C.F.; Hubálek, F.; Andersson, J.; Poulsen, C.; Otzen, D.; Naver, H. Purification and Identification of High Molecular Weight Products Formed During Storage of Neutral Formulation of Human Insulin. Pharm. Res. 2015, 32, 2072–2085. [Google Scholar] [CrossRef] [PubMed]
- Darrington, R.T.; Anderson, B.D. Evidence for a Common Intermediate in Insulin Deamidation and Covalent Dimer Formation: Effects of pH and Aniline Trapping in Dilute Acidic Solutions. J. Pharm. Sci. 1995, 84, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Holmes, K.; Lantz, L.M.; Fowlkes, B.; Schmid, I.; Giorgi, J.V. Preparation of Cells and Reagents for Flow Cytometry. Curr. Protoc. Immunol. 2001, 44, 5.3.1–5.3.24. [Google Scholar] [CrossRef]
- Han, L.; Zhao, Y.; Yin, L.; Li, R.; Liang, Y.; Huang, H.; Pan, S.; Wu, C.; Feng, M. Insulin-Loaded pH-Sensitive Hyaluronic Acid Nanoparticles Enhance Transcellular Delivery. AAPS PharmSciTech 2012, 13, 836–845. [Google Scholar] [CrossRef] [Green Version]
- Copley Scientific Home Page. Available online: https://www.copleyscientific.com (accessed on 5 April 2021).
- Scherließ, R. Abstracts from The Aerosol Society Drug Delivery to the Lungs 21Edinburgh International Conference Centre Edinburgh, Scotland, UK December 9–11, 2010. J. Aerosol Med. Pulm. Drug Deliv. 2011, 24, 303–334. [Google Scholar]
- Viehof, A.; Javot, L.; Béduneau, A.; Pellequer, Y.; Lamprecht, A. Oral insulin delivery in rats by nanoparticles prepared with non-toxic solvents. Int. J. Pharm. 2013, 443, 169–174. [Google Scholar] [CrossRef]
- Bhatnagar, B.S.; Bogner, R.H.; Pikal, M.J. Protein Stability During Freezing: Separation of Stresses and Mechanisms of Protein Stabilization. Pharm. Dev. Technol. 2007, 12, 505–523. [Google Scholar] [CrossRef]
- Allison, S.; Chang, B.; Randolph, T.W.; Carpenter, J.F. Hydrogen Bonding between Sugar and Protein Is Responsible for Inhibition of Dehydration-Induced Protein Unfolding. Arch. Biochem. Biophys. 1999, 365, 289–298. [Google Scholar] [CrossRef]
- Schipper, N.G.M.; Verhoef, J.C.; Merkus, F.W.H.M. The Nasal Mucociliary Clearance: Relevance to Nasal Drug Delivery. Pharm. Res. 1991, 8, 807–814. [Google Scholar] [CrossRef]
- Davis, S.S.; Illum, L. Absorption Enhancers for Nasal Drug Delivery. Clin. Pharmacokinet. 2003, 42, 1107–1128. [Google Scholar] [CrossRef]
- Casettari, L.; Illum, L. Chitosan in nasal delivery systems for therapeutic drugs. J. Control. Release 2014, 190, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Rassu, G.; Ferraro, L.; Pavan, B.; Giunchedi, P.; Gavini, E.; Dalpiaz, A. The Role of Combined Penetration Enhancers in Nasal Microspheres on In Vivo Drug Bioavailability. Pharmaceutics 2018, 10, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salzman, R.; Manson, J.E.; Griffing, G.T.; Kimmerle, R.; Ruderman, N.; McCall, A.; Stoltz, E.I.; Mullin, C.; Small, D.; Armstrong, J.; et al. Intranasal Aerosolized Insulin. N. Engl. J. Med. 1985, 312, 1078–1084. [Google Scholar] [CrossRef] [PubMed]
- Frauman, A.G.; E Cooper, M.; Parsons, B.J.; Jerums, G.; Louis, W.J. Long-Term Use of Intranasal Insulin in Insulin-Dependent Diabetic Patients. Diabetes Care 1987, 10, 573–578. [Google Scholar] [CrossRef]
- Leary, A.C.; Stote, R.M.; Cussen, K.; O’Brien, J.; Leary, W.P.; Buckley, B. Pharmacokinetics and Pharmacodynamics of Intranasal Insulin Administered to Patients with Type 1 Diabetes: A Preliminary Study. Diabetes Technol. Ther. 2006, 8, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Illum, L. Nasal drug delivery—Recent developments and future prospects. J. Control. Release 2012, 161, 254–263. [Google Scholar] [CrossRef]
- Leary, A.C.; Dowling, M.; Cussen, K.; O’Brien, J.; Stote, R.M. Pharmacokinetics and Pharmacodynamics of Intranasal Insulin Spray (Nasulin™) Administered to Healthy Male Volunteers: Influence of the Nasal Cycle. J. Diabetes Sci. Technol. 2008, 2, 1054–1060. [Google Scholar] [CrossRef] [Green Version]
- Merkus, F.W.; Schipper, N.G.; Verhoef, J. The influence of absorption enhancers on intranasal insulin absorption in normal and diabetic subjects. J. Control. Release 1996, 41, 69–75. [Google Scholar] [CrossRef]
- Hinchcliffe, M.; Illum, L. Intranasal insulin delivery and therapy. Adv. Drug Deliv. Rev. 1999, 35, 199–234. [Google Scholar] [CrossRef]
- Harkema, J.R.; Carey, S.A.; Wagner, J.G. The Nose Revisited: A Brief Review of the Comparative Structure, Function, and Toxicologic Pathology of the Nasal Epithelium. Toxicol. Pathol. 2006, 34, 252–269. [Google Scholar] [CrossRef]
- Inthavong, K.; Tian, Z.F.; Li, H.F.; Tu, J.Y.; Yang, W.; Xue, C.; Li, C.G. A Numerical Study of Spray Particle Deposition in a Human Nasal Cavity. Aerosol Sci. Technol. 2006, 40, 1034–1045. [Google Scholar] [CrossRef]
- Ali, M.E.; Lamprecht, A. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles. Int. J. Pharm. 2017, 516, 170–177. [Google Scholar] [CrossRef]
- Craft, S.; Baker, L.D.; Montine, T.J.; Minoshima, S.; Watson, S.; Claxton, A.; Arbuckle, M.; Callaghan, M.; Tsai, E.; Plymate, S.R.; et al. Intranasal Insulin Therapy for Alzheimer Disease and Amnestic Mild Cognitive Impairment. Arch. Neurol. 2012, 69, 29. [Google Scholar] [CrossRef] [Green Version]
- Tashima, T. Shortcut Approaches to Substance Delivery into the Brain Based on Intranasal Administration Using Nanodelivery Strategies for Insulin. Molecules 2020, 25, 5188. [Google Scholar] [CrossRef]
SFD Formulation | Median Diameter ± SD (µm) | SPAN ± SD |
---|---|---|
w/o penetration enhancer | 208.0 ± 6.0 | 0.5 ± 0.03 |
+ sodium taurocholate | 249.0 ± 15.2 | 0.6 ± 0.3 |
+ β-cyclodextrin | 209.0 ± 2.3 | 0.5 ± 0.01 |
FD 4 w/o PE | 209.5 ± 8.6 | 1.5 ± 0.01 |
FD 4 | 200.1 ± 0.6 | 1.1 ± 0.2 |
FD 10 | 222.6 ± 2.6 | 0.9 ± 0.02 |
FD 20 | 190.4 ± 2.4 | 1.2 ± 0.05 |
FD 40 | 221.2 ± 2.9 | 0.9 ± 0.02 |
FD 70 | 213.9 ± 5.0 | 0.8 ± 0.01 |
Insulin Formulation | Emitted Fraction (%) | Nasal Fraction (%) | Nasal Fraction as % of the Emitted Dose | FPF (%) |
---|---|---|---|---|
Formulation without penetration enhancer | 99.2 ± 0.1 | 93.5 ± 0.5 | 94.3 ± 0.5 | 4.1 ± 0.3 |
Formulation with Sodium taurocholate | 98.9 ± 0.1 | 89.7 ± 1.0 | 90.7 ± 1.0 | 6.1 ± 0.3 |
Formulation with β-cyclodextrin | 98.5 ± 0.2 | 91.3 ± 0.9 | 92.7 ± 0.9 | 4.7 ± 0.5 |
Insulin Formulation | RP-HPLC (%) | SEC (%) |
---|---|---|
w/o penetration enhancer | 97.6 ± 0.8 | 98.1 ± 1.3 |
+ sodium taurocholate | 90.4 ± 0.2 | 91.9 ± 3.3 |
+ β-cyclodextrin | 97.1 ± 2.6 | 98.7 ± 2.6 |
Insulin Formulation | Insulin Dose (IU/kg) | Cmin (%) | Tmin (min) | AAC (% min) | F (%) |
---|---|---|---|---|---|
Insulin solution (IV) | 1 | 59 ± 3 | 20 | 2234 ± 579 | - |
w/o penetration enhancer (nasal) | 30 | 98 ± 6 | 20 | −531 ± 577 | −0.8 ± 0.9 |
+ sodium taurocholate (nasal) | 30 | 56 ± 10 | 40 | 4659 ± 1886 | 7.0 ± 2.8 * |
+ β-cyclodextrin (nasal) | 30 | 61 ± 2 | 40 | 2940 ± 468 | 4.4 ± 0.7 * |
FD Formulation | FD Dose (mg/kg) | Cmax (ng/mL) | Tmax (min) | AUC (min·ng/mL) | F (%) |
---|---|---|---|---|---|
FD 4 kDa solution (IV) | 1 | 7483 ± 2474 | 0 | 81,834 ± 24,418 | - |
FD 4 kDa Formulation w/o PE (Nasal) | 7.5 | 533 ± 366 | 2 | 8891 ± 7880 | 1.5 ± 1.3 |
FD 4 kDa Formulation (Nasal) | 7.5 | 1938 ± 102 | 2 | 61,495 ± 19,258 | 10.0 ± 3.1 * |
FD 10 kDa solution (IV) | 1 | 10,639 ± 2818 | 0 | 115,023 ± 20,320 | - |
FD 10 kDa Formulation (Nasal) | 7.5 | 1593 ± 139 | 2 | 28,869 ± 7880 | 3.4 ± 1.0 |
FD 20 kDa solution (IV) | 1 | 14,536 ± 3256 | 0 | 144,103 ± 30,065 | - |
FD 20 kDa Formulation (Nasal) | 7.5 | 1892 ± 4 | 2 | 49,481 ± 28,330 | 4.6 ± 2.6 |
FD 40 kDa solution (IV) | 1 | 13,477 ± 2456 | 0 | 236,224 ± 75,785 | - |
FD 40 kDa Formulation (Nasal) | 7.5 | 1388 ± 207 | 2 | 22,367 ± 11,008 | 1.3 ± 0.6 |
FD 70 kDa solution (IV) | 1 | 10,934 ± 3194 | 0 | 369,050 ± 69,265 | - |
FD 70 kDa Formulation (Nasal) | 7.5 | 1059 ± 342 | 2 | 18,521 ± 7695 | 0.7 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Serim, T.M.; Kožák, J.; Rautenberg, A.; Özdemir, A.N.; Pellequer, Y.; Lamprecht, A. Spray Freeze Dried Lyospheres® for Nasal Administration of Insulin. Pharmaceutics 2021, 13, 852. https://doi.org/10.3390/pharmaceutics13060852
Serim TM, Kožák J, Rautenberg A, Özdemir AN, Pellequer Y, Lamprecht A. Spray Freeze Dried Lyospheres® for Nasal Administration of Insulin. Pharmaceutics. 2021; 13(6):852. https://doi.org/10.3390/pharmaceutics13060852
Chicago/Turabian StyleSerim, Tuğrul Mert, Jan Kožák, Annika Rautenberg, Ayşe Nurten Özdemir, Yann Pellequer, and Alf Lamprecht. 2021. "Spray Freeze Dried Lyospheres® for Nasal Administration of Insulin" Pharmaceutics 13, no. 6: 852. https://doi.org/10.3390/pharmaceutics13060852
APA StyleSerim, T. M., Kožák, J., Rautenberg, A., Özdemir, A. N., Pellequer, Y., & Lamprecht, A. (2021). Spray Freeze Dried Lyospheres® for Nasal Administration of Insulin. Pharmaceutics, 13(6), 852. https://doi.org/10.3390/pharmaceutics13060852