Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria
Abstract
:1. Introduction
2. Methods
2.1. Dataset Curation and Labelling
2.2. Data Preprocessing
2.3. Feature Generation and Importance
2.4. Development of Machine Learning Models
2.4.1. Measuring Baseline Performances
2.4.2. Hyperparameter Tuning
2.4.3. Final Model Selection
2.5. Data Analysis and Statistics
3. Results and Discussion
3.1. Baseline Model Scores
3.2. Hyperparameter Tuning
3.3. Final Model Selection
3.4. Feature Importance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Verges, M.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef] [PubMed]
- Huttenhower, C.; Gevers, D.; Knight, R.; Abubucker, S.; Badger, J.H.; Chinwalla, A.T.; Creasy, H.H.; Earl, A.M.; FitzGerald, M.G.; Fulton, R.S.; et al. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Liang, G.; Bushman, F.D. The human virome: Assembly, composition and host interactions. Nat. Rev. Microbiol. 2021. [Google Scholar] [CrossRef]
- Strati, F.; Di Paola, M.; Stefanini, I.; Albanese, D.; Rizzetto, L.; Lionetti, P.; Calabro, A.; Jousson, O.; Donati, C.; Cavalieri, D.; et al. Age and Gender Affect the Composition of Fungal Population of the Human Gastrointestinal Tract. Front. Microbiol. 2016, 7, 1227. [Google Scholar] [CrossRef] [PubMed]
- Franzosa, E.A.; Huang, K.; Meadow, J.F.; Gevers, D.; Lemon, K.P.; Bohannan, B.J.M.; Huttenhower, C. Identifying personal microbiomes using metagenomic codes. Proc. Natl. Acad. Sci. USA 2015, 112, E2930–E2938. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, C.; Dollive, S.; Grunberg, S.; Chen, J.; Li, H.; Wu, G.D.; Lewis, J.D.; Bushman, F.D. Archaea and fungi of the human gut microbiome: Correlations with diet and bacterial residents. PLoS ONE 2013, 8, e66019. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, D.S.; Dhotre, D.P.; Agarwal, D.M.; Gaike, A.H.; Bhalerao, D.; Jadhav, P.; Mongad, D.; Lubree, H.; Sinkar, V.P.; Patil, U.K.; et al. Gut, oral and skin microbiome of Indian patrilineal families reveal perceptible association with age. Sci. Rep. 2020, 10, 5685. [Google Scholar] [CrossRef] [Green Version]
- Manor, O.; Dai, C.L.; Kornilov, S.A.; Smith, B.; Price, N.D.; Lovejoy, J.C.; Gibbons, S.M.; Magis, A.T. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 2020, 11, 5206. [Google Scholar] [CrossRef]
- Keohane, D.M.; Ghosh, T.S.; Jeffery, I.B.; Molloy, M.G.; O’Toole, P.W.; Shanahan, F. Microbiome and health implications for ethnic minorities after enforced lifestyle changes. Nat. Med. 2020, 26, 1089–1095. [Google Scholar] [CrossRef]
- Deaver, J.A.; Eum, S.Y.; Toborek, M. Circadian Disruption Changes Gut Microbiome Taxa and Functional Gene Composition. Front. Microbiol. 2018, 9, 737. [Google Scholar] [CrossRef] [PubMed]
- Ahmadmehrabi, S.; Tang, W.H.W. Gut microbiome and its role in cardiovascular diseases. Curr. Opin. Cardiol. 2017, 32, 761–766. [Google Scholar] [CrossRef] [PubMed]
- Pleguezuelos-Manzano, C.; Puschhof, J.; Rosendahl Huber, A.; van Hoeck, A.; Wood, H.M.; Nomburg, J.; Gurjao, C.; Manders, F.; Dalmasso, G.; Stege, P.B.; et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature 2020, 580, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Markle, J.G.M.; Frank, D.N.; Mortin-Toth, S.; Robertson, C.E.; Feazel, L.M.; Rolle-Kampczyk, U.; von Bergen, M.; McCoy, K.D.; Macpherson, A.J.; Danska, J.S. Sex Differences in the Gut Microbiome Drive Hormone-Dependent Regulation of Autoimmunity. Science 2013, 339, 1084–1088. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Han, Y.; Dy, A.B.C.; Hagerman, R.J. The Gut Microbiota and Autism Spectrum Disorders. Front. Cell. Neurosci. 2017, 11, 120. [Google Scholar] [CrossRef] [PubMed]
- Ryan, F.J.; Ahern, A.M.; Fitzgerald, R.S.; Laserna-Mendieta, E.J.; Power, E.M.; Clooney, A.G.; O’Donoghue, K.W.; McMurdie, P.J.; Iwai, S.; Crits-Christoph, A.; et al. Colonic microbiota is associated with inflammation and host epigenomic alterations in inflammatory bowel disease. Nat. Commun. 2020, 11, 1512. [Google Scholar] [CrossRef] [Green Version]
- Ghyselinck, J.; Verstrepen, L.; Moens, F.; Van Den Abbeele, P.; Bruggeman, A.; Said, J.; Smith, B.; Barker, L.A.; Jordan, C.; Leta, V.; et al. Influence of probiotic bacteria on gut microbiota composition and gut wall function in an in-vitro model in patients with Parkinson’s disease. Int. J. Pharm. X 2021. [Google Scholar] [CrossRef]
- Oliphant, K.; Allen-Vercoe, E. Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome 2019, 7, 91. [Google Scholar] [CrossRef]
- Fung, T.C.; Vuong, H.E.; Luna, C.D.G.; Pronovost, G.N.; Aleksandrova, A.A.; Riley, N.G.; Vavilina, A.; McGinn, J.; Rendon, T.; Forrest, L.R.; et al. Intestinal serotonin and fluoxetine exposure modulate bacterial colonization in the gut. Nat Microbiol. 2019, 4, 2064–2073. [Google Scholar] [CrossRef]
- Ghyselinck, J.; Verstrepen, L.; Moens, F.; Van den Abbeele, P.; Said, J.; Smith, B.; Bjarnason, I.; Basit, A.W.; Gaisford, S. A 4-strain Probiotic Supplement Influences Gut Microbiota Composition and Gut Wall Function in Patients with Ulcerative Colitis. Int. J. Pharm. 2020, 587, 119648. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, R.; Zhu, L.; Hou, X.; Zou, K. Bidirectional Regulation of Circadian Disturbance and Inflammation in Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2017, 23, 1741–1751. [Google Scholar] [CrossRef] [PubMed]
- Oancea, I.; Movva, R.; Das, I.; Aguirre de Cárcer, D.; Schreiber, V.; Yang, Y.; Purdon, A.; Harrington, B.; Proctor, M.; Wang, R.; et al. Colonic microbiota can promote rapid local improvement of murine colitis by thioguanine independently of T lymphocytes and host metabolism. Gut 2017, 66, 59. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial sweeteners induce glucose intolerance by altering the gut microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Janssens, Y.; Nielandt, J.; Bronselaer, A.; Debunne, N.; Verbeke, F.; Wynendaele, E.; Van Immerseel, F.; Vandewynckel, Y.P.; De Tré, G.; De Spiegeleer, B. Disbiome database: Linking the microbiome to disease. BMC Microbiol. 2018, 18, 50. [Google Scholar] [CrossRef]
- Norman, J.M.; Handley, S.A.; Baldridge, M.T.; Droit, L.; Liu, C.Y.; Keller, B.C.; Kambal, A.; Monaco, C.L.; Zhao, G.; Fleshner, P.; et al. Disease-specific alterations in the enteric virome in inflammatory bowel disease. Cell 2015, 160, 447–460. [Google Scholar] [CrossRef] [Green Version]
- Sokol, H.; Leducq, V.; Aschard, H.; Pham, H.-P.; Jegou, S.; Landman, C.; Cohen, D.; Liguori, G.; Bourrier, A.; Nion-Larmurier, I.; et al. Fungal microbiota dysbiosis in IBD. Gut 2017, 66, 1039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kigerl, K.A.; Mostacada, K.; Popovich, P.G. Gut Microbiota Are Disease-Modifying Factors After Traumatic Spinal Cord Injury. Neurotherapeutics 2018, 15, 60–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proctor, L.M.; Creasy, H.H.; Fettweis, J.M.; Lloyd-Price, J.; Mahurkar, A.; Zhou, W.; Buck, G.A.; Snyder, M.P.; Strauss, J.F.; Weinstock, G.M.; et al. The Integrative Human Microbiome Project. Nature 2019, 569, 641–648. [Google Scholar] [CrossRef] [Green Version]
- Fouhy, F.; Guinane, C.M.; Hussey, S.; Wall, R.; Ryan, C.A.; Dempsey, E.M.; Murphy, B.; Ross, R.P.; Fitzgerald, G.F.; Stanton, C.; et al. High-throughput sequencing reveals the incomplete, short-term recovery of infant gut microbiota following parenteral antibiotic treatment with ampicillin and gentamicin. Antimicrob. Agents Chemother. 2012, 56, 5811–5820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dethlefsen, L.; Huse, S.; Sogin, M.L.; Relman, D.A. The Pervasive Effects of an Antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. PLoS Biol. 2008, 6, e280. [Google Scholar] [CrossRef]
- Uzan-Yulzari, A.; Turta, O.; Belogolovski, A.; Ziv, O.; Kunz, C.; Perschbacher, S.; Neuman, H.; Pasolli, E.; Oz, A.; Ben-Amram, H.; et al. Neonatal antibiotic exposure impairs child growth during the first six years of life by perturbing intestinal microbial colonization. Nat. Commun. 2021, 12, 443. [Google Scholar] [CrossRef]
- Mulder, M.; Radjabzadeh, D.; Kiefte-de Jong, J.C.; Uitterlinden, A.G.; Kraaij, R.; Stricker, B.H.; Verbon, A. Long-term effects of antimicrobial drugs on the composition of the human gut microbiota. Gut Microbes 2020, 12, 1795492. [Google Scholar] [CrossRef]
- Fadda, H.M. The Route to Palatable Fecal Microbiota Transplantation. AAPS PharmSciTech 2020, 21, 114. [Google Scholar] [CrossRef] [PubMed]
- Maier, L.; Pruteanu, M.; Kuhn, M.; Zeller, G.; Telzerow, A.; Anderson, E.E.; Brochado, A.R.; Fernandez, K.C.; Dose, H.; Mori, H.; et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018, 555, 623–628. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Esteve, E.; Tremaroli, V.; Khan, M.T.; Caesar, R.; Mannerås-Holm, L.; Ståhlman, M.; Olsson, L.M.; Serino, M.; Planas-Fèlix, M.; et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug. Nat. Med. 2017, 23, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Imhann, F.; Vich Vila, A.; Bonder, M.J.; Lopez Manosalva, A.G.; Koonen, D.P.Y.; Fu, J.; Wijmenga, C.; Zhernakova, A.; Weersma, R.K. The influence of proton pump inhibitors and other commonly used medication on the gut microbiota. Gut Microbes 2017, 8, 351–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vieira-Silva, S.; Falony, G.; Belda, E.; Nielsen, T.; Aron-Wisnewsky, J.; Chakaroun, R.; Forslund, S.K.; Assmann, K.; Valles-Colomer, M.; Nguyen, T.T.D.; et al. Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature 2020, 581, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Nayak, R.R.; Alexander, M.; Deshpande, I.; Stapleton-Gray, K.; Rimal, B.; Patterson, A.D.; Ubeda, C.; Scher, J.U.; Turnbaugh, P.J. Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation. Cell Host Microbe 2021, 29, 362–377.e311. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.A.; Verdi, S.; Maxan, M.E.; Shin, C.M.; Zierer, J.; Bowyer, R.C.E.; Martin, T.; Williams, F.M.K.; Menni, C.; Bell, J.T.; et al. Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nat. Commun. 2018, 9, 2655. [Google Scholar] [CrossRef] [Green Version]
- European Medicines Agency. ICH Guideline M3(R2) on Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorisation for Pharmaceuticals; EMA: London, UK, 2009. [Google Scholar]
- Buckley, L.A.; Dorato, M.A. High dose selection in general toxicity studies for drug development: A pharmaceutical industry perspective. Regul. Toxicol. Pharmacol. 2009, 54, 301–307. [Google Scholar] [CrossRef]
- Bhhatarai, B.; Walters, W.P.; Hop, C.E.C.A.; Lanza, G.; Ekins, S. Opportunities and challenges using artificial intelligence in ADME/Tox. Nat. Mater. 2019, 18, 418–422. [Google Scholar] [CrossRef]
- Elbadawi, M.; McCoubrey, L.E.; Gavins, F.K.H.; Jie Ong, J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Harnessing Artificial Intelligence for the Next Generation of 3D Printed Medicines. Adv. Drug Deliv. Rev. 2021, 175, 113805. [Google Scholar] [CrossRef] [PubMed]
- Elbadawi, M.; McCoubrey, L.E.; Gavins, F.K.H.; Ong, J.J.; Goyanes, A.; Gaisford, S.; Basit, A.W. Disrupting 3D printing of medicines with machine learning. Trends Pharmacol. Sci. 2021. [Google Scholar] [CrossRef]
- Wang, S.; Sun, H.; Liu, H.; Li, D.; Li, Y.; Hou, T. ADMET Evaluation in Drug Discovery. Predicting hERG Blockers by Combining Multiple Pharmacophores and Machine Learning Approaches. Mol. Pharm. 2016, 13, 2855–2866. [Google Scholar] [CrossRef]
- Rohani, N.; Eslahchi, C. Drug-Drug Interaction Predicting by Neural Network Using Integrated Similarity. Sci. Rep. 2019, 9, 13645. [Google Scholar] [CrossRef] [Green Version]
- Schuhmacher, A.; Gatto, A.; Hinder, M.; Kuss, M.; Gassmann, O. The upside of being a digital pharma player. Drug Discov. Today 2020, 25, 1569–1574. [Google Scholar] [CrossRef] [PubMed]
- Benjamens, S.; Dhunnoo, P.; Mesko, B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: An online database. NPJ Digit. Med. 2020, 3, 118. [Google Scholar] [CrossRef]
- Elbadawi, M.; Gaisford, S.; Basit, A.W. Advanced machine-learning techniques in drug discovery. Drug Discov. Today 2021, 26, 769–777. [Google Scholar] [CrossRef]
- Moriwaki, H.; Tian, Y.-S.; Kawashita, N.; Takagi, T. Mordred: A molecular descriptor calculator. J. Cheminform. 2018, 10, 4. [Google Scholar] [CrossRef] [Green Version]
- Weininger, D. SMILES, a Chemical Language and Information System: 1: Introduction to Methodology and Encoding Rules. J. Chem. Inf. Comput. Sci. 1988, 28, 31–36. [Google Scholar] [CrossRef]
- Jin, H.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–310. [Google Scholar] [CrossRef] [Green Version]
- Schrynemackers, M.; Kuffner, R.; Geurts, P. On protocols and measures for the validation of supervised methods for the inference of biological networks. Front. Genet. 2013, 4, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, Y. Multiple predicting K-fold cross-validation for model selection. J. Nonparametr. Stat. 2018, 30, 197–215. [Google Scholar] [CrossRef]
- Probst, P.; Wright, M.N.; Boulesteix, A.L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef] [Green Version]
- Elbadawi, M.; Muniz Castro, B.; Gavins, F.K.H.; Ong, J.J.; Gaisford, S.; Perez, G.; Basit, A.W.; Cabalar, P.; Goyanes, A. M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines. Int. J. Pharm. 2020, 590, 119837. [Google Scholar] [CrossRef]
- Badillo, S.; Banfai, B.; Birzele, F.; Davydov, I.I.; Hutchinson, L.; Kam-Thong, T.; Siebourg-Polster, J.; Steiert, B.; Zhang, J.D. An Introduction to Machine Learning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [Google Scholar] [CrossRef] [Green Version]
- Eschrich, S.; Hall, L.O. Soft partitions lead to better learned ensembles. In Proceedings of the Annual Conference of the North American Fuzzy Information Processing Society—NAFIPS, New Orleans, LA, USA, 27–29 June 2002; pp. 406–411. [Google Scholar]
- McCoubrey, L.E.; Elbadawi, M.; Orlu, M.; Gaisford, S.; Basit, A.W. Harnessing machine learning for development of microbiome therapeutics. Gut Microbes 2021, 13, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Chan, H.C.S.; Shan, H.; Dahoun, T.; Vogel, H.; Yuan, S. Advancing Drug Discovery via Artificial Intelligence. Trends Pharm. Sci 2019, 40, 592–604. [Google Scholar] [CrossRef]
- Van Norman, G.A. Drugs, Devices, and the FDA: Part 1: An Overview of Approval Processes for Drugs. JACC: Basic Transl. Sci. 2016, 1, 170–179. [Google Scholar] [CrossRef] [Green Version]
- Nava Lara, R.A.; Aguilera-Mendoza, L.; Brizuela, C.A.; Pena, A.; Del Rio, G. Heterologous Machine Learning for the Identification of Antimicrobial Activity in Human-Targeted Drugs. Molecules 2019, 24, 1258. [Google Scholar] [CrossRef] [Green Version]
- Zheng, S.; Chang, W.; Liu, W.; Liang, G.; Xu, Y.; Lin, F. Computational Prediction of a New ADMET Endpoint for Small Molecules: Anticommensal Effect on Human Gut Microbiota. J Chem. Inf. Model 2019, 59, 1215–1220. [Google Scholar] [CrossRef] [PubMed]
- Ong, S.A.K.; Lin, H.H.; Chen, Y.Z.; Li, Z.R.; Cao, Z. Efficacy of different protein descriptors in predicting protein functional families. BMC Bioinform. 2007, 8, 300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moriwaki, H. Descriptor List. Available online: https://mordred-descriptor.github.io/documentation/master/descriptors.html (accessed on 10 June 2021).
- Al-Adwani, S.; Wallin, C.; Balhuizen, M.D.; Veldhuizen, E.J.A.; Coorens, M.; Landreh, M.; Végvári, Á.; Smith, M.E.; Qvarfordt, I.; Lindén, A.; et al. Studies on citrullinated LL-37: Detection in human airways, antibacterial effects and biophysical properties. Sci. Rep. 2020, 10, 2376. [Google Scholar] [CrossRef]
- Kim, M.K.; Kang, H.K.; Ko, S.J.; Hong, M.J.; Bang, J.K.; Seo, C.H.; Park, Y. Mechanisms driving the antibacterial and antibiofilm properties of Hp1404 and its analogue peptides against multidrug-resistant Pseudomonas aeruginosa. Sci. Rep. 2018, 8, 1763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scorciapino, M.A.; D’Agostino, T.; Acosta-Gutierrez, S.; Malloci, G.; Bodrenko, I.; Ceccarelli, M. Exploiting the porin pathway for polar compound delivery into Gram-negative bacteria. Future Med. Chem. 2016, 8, 1047–1062. [Google Scholar] [CrossRef] [Green Version]
- Filimon, A.; Avram, E.; Dunca, S.; Stoica, I.; Ioan, S. Surface properties and antibacterial activity of quaternized polysulfones. J. Appl. Polym. Sci. 2009, 112, 1808–1816. [Google Scholar] [CrossRef]
Akkermansia muciniphila (NT5021) | Dorea formicigenerans (NT5076) |
Bacteroides caccae (NT5050) | Eggerthella lenta (NT5024) |
Bacteroides fragilis (ET) (NT5033) | Escherichia coli ED1a (NT5078) |
Bacteroides fragilis (NT) (NT5003) | Escherichia coli IAI1 (NT5077) |
Bacteroides ovatus (NT5054) | Eubacterium eligens (NT5075) |
Bacteroides thetaiotaomicron (NT5004) | Eubacterium rectale (NT5009) |
Bacteroides uniformis (NT5002) | Fusobacterium nucleatum (NT5025) |
Bacteroides vulgatus (NT5001) | Lactobacillus paracasei (NT5042) |
Bacteroides xylanisolvens (NT5064) | Odoribacter splanchnicus (NT5081) |
Bifidobacterium adolescentis (NT5022) | Parabacteroides distasonis (NT5074) |
Bifidobacterium longum (NT5028) | Parabacteroides merdae (NT5071) |
Bilophila wadsworthia (NT5036) | Prevotella copri (NT5019) |
Blautia obeum (NT5069) | Roseburia hominis (NT5079) |
Clostridium bolteae (NT5026) | Roseburia intestinalis (NT5011) |
Clostridium difficile (NT5083) | Ruminococcus bromii (NT5045) |
Clostridium perfringens (NT5032) | Ruminococcus gnavus (NT5046) |
Clostridium ramosum (NT5006) | Ruminococcus torques (NT5047) |
Clostridium saccharolyticum (NT5037) | Streptococcus parasanguinis (NT5072) |
Collinsella aerofaciens (NT5073) | Streptococcus salivarius (NT5038) |
Coprococcus comes (NT5048) | Veillonella parvula (NT5017) |
Model Ranking | AUROC | Weighted Recall | Weighted Precision | Weighted f1 |
---|---|---|---|---|
1 | Extra trees | Passive aggressive | SVM | Extra trees |
2 | Random forest | Perceptron | Random forest | MLP |
3 | Gradient boosting | MLP | Extra trees | Gradient boosting |
Best ranking models: extra trees (7 points), random forest (4 points), MLP (3 points) |
Bacterium | AUROC | Precision | Recall | F1 |
---|---|---|---|---|
Akkermansia muciniphila (NT5021) | 0.93 | 0.73 | 0.65 | 0.69 |
Bacteroides caccae (NT5050) | 0.88 | 0.74 | 0.54 | 0.62 |
Bacteroides fragilis (ET) (NT5033) | 0.84 | 0.61 | 0.50 | 0.55 |
Bacteroides fragilis (NT) (NT5003) | 0.82 | 0.72 | 0.58 | 0.64 |
Bacteroides ovatus (NT5054) | 0.87 | 0.76 | 0.55 | 0.64 |
Bacteroides thetaiotaomicron (NT5004) | 0.79 | 0.72 | 0.52 | 0.60 |
Bacteroides uniformis (NT5002) | 0.79 | 0.66 | 0.58 | 0.62 |
Bacteroides vulgatus (NT5001) | 0.77 | 0.69 | 0.69 | 0.69 |
Bacteroides xylanisolvens (NT5064) | 0.81 | 0.77 | 0.37 | 0.50 |
Bifidobacterium adolescentis (NT5022) | 0.86 | 0.88 | 0.58 | 0.70 |
Bifidobacterium longum (NT5028) | 0.86 | 0.94 | 0.64 | 0.76 |
Bilophila wadsworthia (NT5036) | 0.94 | 0.90 | 0.53 | 0.67 |
Blautia obeum (NT5069) | 0.84 | 0.79 | 0.68 | 0.73 |
Clostridium bolteae (NT5026) | 0.85 | 0.74 | 0.52 | 0.61 |
Clostridium difficile (NT5083) | 0.86 | 0.83 | 0.37 | 0.51 |
Clostridium perfringens (NT5032) | 0.89 | 0.78 | 0.79 | 0.78 |
Clostridium ramosum (NT5006) | 0.91 | 0.89 | 0.61 | 0.72 |
Clostridium saccharolyticum (NT5037) | 0.84 | 0.84 | 0.55 | 0.67 |
Collinsella aerofaciens (NT5073) | 0.82 | 0.77 | 0.69 | 0.73 |
Coprococcus comes (NT5048) | 0.80 | 0.81 | 0.66 | 0.73 |
Dorea formicigenerans (NT5076) | 0.84 | 0.73 | 0.67 | 0.70 |
Eggerthella lenta (NT5024) | 0.89 | 0.90 | 0.66 | 0.76 |
Escherichia coli ED1a (NT5078) | 0.91 | 1.00 | 0.53 | 0.69 |
Escherichia coli IAI1 (NT5077) | 0.95 | 1.00 | 0.61 | 0.76 |
Eubacterium eligens (NT5075) | 0.80 | 0.65 | 0.65 | 0.65 |
Eubacterium rectale (NT5009) | 0.81 | 0.69 | 0.75 | 0.72 |
Fusobacterium nucleatum (NT5025) | 0.87 | 0.79 | 0.60 | 0.68 |
Lactobacillus paracasei (NT5042) | 0.77 | 0.71 | 0.57 | 0.63 |
Odoribacter splanchnicus (NT5081) | 0.93 | 0.86 | 0.71 | 0.77 |
Parabacteroides distasonis (NT5074) | 0.81 | 0.72 | 0.57 | 0.64 |
Parabacteroides merdae (NT5071) | 0.70 | 0.59 | 0.47 | 0.52 |
Prevotella copri (NT5019) | 0.82 | 0.69 | 0.50 | 0.58 |
Roseburia hominis (NT5079) | 0.89 | 0.84 | 0.68 | 0.75 |
Roseburia intestinalis (NT5011) | 0.82 | 0.78 | 0.77 | 0.77 |
Ruminococcus bromii (NT5045) | 0.85 | 0.69 | 0.67 | 0.68 |
Ruminococcus gnavus (NT5046) | 0.83 | 0.75 | 0.63 | 0.69 |
Ruminococcus torques (NT5047) | 0.75 | 0.67 | 0.54 | 0.60 |
Streptococcus parasanguinis (NT5072) | 0.82 | 0.85 | 0.55 | 0.67 |
Streptococcus salivarius (NT5038) | 0.89 | 0.86 | 0.60 | 0.71 |
Veillonella parvula (NT5017) | 0.91 | 0.95 | 0.66 | 0.78 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
McCoubrey, L.E.; Elbadawi, M.; Orlu, M.; Gaisford, S.; Basit, A.W. Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria. Pharmaceutics 2021, 13, 1026. https://doi.org/10.3390/pharmaceutics13071026
McCoubrey LE, Elbadawi M, Orlu M, Gaisford S, Basit AW. Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria. Pharmaceutics. 2021; 13(7):1026. https://doi.org/10.3390/pharmaceutics13071026
Chicago/Turabian StyleMcCoubrey, Laura E., Moe Elbadawi, Mine Orlu, Simon Gaisford, and Abdul W. Basit. 2021. "Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria" Pharmaceutics 13, no. 7: 1026. https://doi.org/10.3390/pharmaceutics13071026
APA StyleMcCoubrey, L. E., Elbadawi, M., Orlu, M., Gaisford, S., & Basit, A. W. (2021). Machine Learning Uncovers Adverse Drug Effects on Intestinal Bacteria. Pharmaceutics, 13(7), 1026. https://doi.org/10.3390/pharmaceutics13071026