Formulation and Optimization of Butenafine-Loaded Topical Nano Lipid Carrier-Based Gel: Characterization, Irritation Study, and Anti-Fungal Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Screening of Solid and Liquid Lipid
2.2.2. Selection of Surfactant
2.2.3. Solid and Liquid Lipid Miscibility
2.2.4. Optimization
2.2.5. Formulation of BF-NLCs
2.2.6. BF-NLCs Characterization
2.2.7. Entrapment and Loading Efficiency
2.2.8. Formulation of BF-NLCs Gel
2.2.9. Gel Evaluation
2.2.10. In Vitro Release Study
2.2.11. In Vitro Permeation Study
2.2.12. Antifungal Activity
2.2.13. Irritation Study
2.2.14. Statistical Analysis
3. Result and Discussion
3.1. Screening of Lipids and Surfactant
3.2. Miscibility of Solid and Liquid Lipid
3.3. Optimization
3.4. Effect of Independent Variables on Particle Size (Y1)
3.5. Effect of Independent Variables on Entrapment Efficiency (Y2)
3.6. Point Prediction
3.7. Particle Characterization
3.8. Entrapment Efficiency
3.9. Formulation of BF-NLCopt Gel
3.10. BF-NLCs Gel Characterization
3.11. In Vitro Release Study
3.12. Permeation Study
3.13. Anti-Fungal Study
3.14. Irritation Study
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, S.; Barot, T.; Rajesh, K.S.; Jha, L.L. Formulation, optimization and evaluation of microemulsion based gel of Butenafine Hydrochloride for topical delivery by using simplex lattice mixture design. J. Pharm. Investig. 2016, 46, 1–12. [Google Scholar] [CrossRef]
- Bezerra-Souza, A.; de Jesus, J.A.; Laurenti, M.D.; Lalatsa, A.; Serrano, D.R.; Passero, L.F.D. Nanoemulsified Butenafine for Enhanced Performance against Experimental Cutaneous Leishmaniasis. J. Immunol. Res. 2021, 2021, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Porras, A.M.G.; Terra, B.S.; Braga, T.C.; Magalhães, T.F.F.; Martins, C.V.B.; Da Silva, D.L.; Baltazar, L.M.; Gouveia, L.F.; De Freitas, G.J.C.; Santos, D.A.; et al. Butenafine and analogues: An expeditious synthesis and cytotoxicity and antifungal activities. J. Adv. Res. 2018, 14, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Syed, T.A.; Hadi, S.M.; Qureshi, Z.A.; Ali, S.M.; Ahmad, S.A. Butenafine 1% versus terbinafine 1% in cream for the treatment of Tinea Pedis. Clin. Drug Investig. 2000, 196, 393–397. [Google Scholar] [CrossRef]
- Zhang, Z.; Tsai, P.-C.; Ramezanli, T.; Michniak-Kohn, B.B. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2013, 5, 205–218. [Google Scholar] [CrossRef] [Green Version]
- Dar, M.J.; Din, F.U.; Khan, G.M. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: Macrophage as a target cell. Drug Deliv. 2018, 25, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Riaz, A.; Hendrickx, S.; Elbrink, K.; Caljon, G.; Maes, L.; Ahmed, N.; Kiekens, F.; Khan, G.M. Preparation and Characterization of Nanostructured Lipid Carriers for Improved Topical Drug Delivery: Evaluation in Cutaneous Leishmaniasis and Vaginal Candidiasis Animal Models. AAPS PharmSciTech 2020, 21, 1–14. [Google Scholar] [CrossRef]
- Souto, E.B.; Baldim, I.; Oliveira, W.P.; Rao, R.; Yadav, N.; Gama, F.M.; Mahant, S. SLN and NLC for topical, dermal, and transdermal drug delivery. Expert Opin. Drug Deliv. 2020, 17, 357–377. [Google Scholar] [CrossRef]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef]
- Wissing, S.A.; Müller, R.H. A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. Int. J. Cosmet. Sci. 2001, 23, 233–243. [Google Scholar] [CrossRef]
- Joshi, M.; Patravale, V. Formulation and Evaluation of Nanostructured Lipid Carrier (NLC)—Based Gel of valdecoxib. Drug Dev. Ind. Pharm. 2006, 32, 911–918. [Google Scholar] [CrossRef]
- Patel, D.; Dasgupta, S.; Dey, S.; Ramani, Y.R.; Ray, S.; Mazumder, B. Nanostructured Lipid Carriers (NLC)—Based Gel for Topical Delivery of Aceclofenac: Preparation, Characterization and In Vivo Evaluation. Sci. Pharm. 2012, 80, 749–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madan, J.R.; Khobaragade, S.; Dua, K.; Awasthi, R. Formulation, optimization, and in vitro evaluation of nanostructured lipid carriers for topical delivery of Apremilast. Dermatol. Ther. 2020, 33, e13370. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Gupta, G.; Sharma, V. Topical gel: A novel approach for drug delivery. J. Chem. Biol. Phys. Sci. 2012, 2, 856–867. [Google Scholar]
- Singla, V.; Saini, S.; Joshi, B.; Rana, A. Emulgel: A new platform for topical drug delivery. Int. J. Pharma Biol. Sci. 2012, 3, 485–498. [Google Scholar]
- Mahmood, A.; Rapalli, V.K.; Gorantla, S.; Waghule, T.; Singhvi, G. Dermatokinetic assessment of luliconazole-loaded nanostructured lipid carriers (NLCs) for topical delivery: QbD-driven design, optimization, and in vitro and ex vivo evaluations. Drug Deliv. Transl. Res. 2021, 1–18. [Google Scholar] [CrossRef]
- Baghel, S.; Nair, V.S.; Pirani, A.; Sravani, A.B.; Bhemisetty, B.; Ananthamurthy, K.; Aranjani, J.M.; Lewis, S.A. Luliconazole-loaded nanostructured lipid carriers for topical treatment of superficial Tinea infections. Dermatol. Ther. 2020, 33, e13959. [Google Scholar] [CrossRef] [PubMed]
- Ranpise, H.A.; Gujar, K.N.; Mathure, D.; Satpute, P.P.; Awasthi, R.; Dua, K.; Madan, J. Skin Targeting of Oxiconazole Nitrate Loaded Nanostructured Lipid- Carrier Gel for Fungal Infections. Pharm. Nanotechnol. 2018, 6, 192–200. [Google Scholar] [CrossRef]
- Qumber, M.; Alruwaili, N.K.; Bukhari, S.N.A.; Alharbi, K.S.; Imam, S.S.; Afzal, M.; Alsuwayt, B.; Mujtaba, A.; Ali, A. BBD-Based Development of Itraconazole Loaded Nanostructured Lipid Carrier for Topical Delivery: In Vitro Evaluation and Antimicrobial Assessment. J. Pharm. Innov. 2021, 16, 85–98. [Google Scholar] [CrossRef]
- Gaba, B.; Fazil, M.; Ali, A.; Baboota, S.; Sahni, J.K.; Ali, J. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv. 2014, 22, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yasir, M.; Sara, U. Preparation and optimization of haloperidol loaded solid lipid nanoparticles by Box–Behnken design. J. Pharm. Res. 2013, 7, 551–558. [Google Scholar] [CrossRef]
- Ali, J.; Khan, N.; Ali, A. Development and Optimization of Carteolol Loaded Carboxymethyl Tamarind Kernel Polysaccharide Nanoparticles for Ophthalmic Delivery: Box-Behnken Design, In Vitro, Ex Vivo Assessment. Sci. Adv. Mater. 2014, 6, 63–75. [Google Scholar] [CrossRef]
- Muller, R.; Mader, K.; Gohla, S. Solid lipid nanoparticles (SLN) for controlled drug delivery—A review of the state of the art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Barot, B.S.; Parejiya, P.B.; Patel, H.K.; Gohel, H.C.; Shelat, P.K. Microemulsion-based gel of terbinafine for the treatment of onychomycosis: Optimization of formulation using D-optimal design. AAPS PharmSciTech 2012, 13, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Nautiyal, U.; Mohammed, J.; Kazmi, I. Preparation and Evaluation of Antifungal Micro-Emulsion/Gel using reduce Dose of Silver, Supported by Ciprofloxacin. Int. Pharm. Sci. 2012, 2, 72–87. [Google Scholar]
- Gaba, B.; Fazil, M.; Khan, S.; Ali, A.; Baboota, S.; Ali, J. Nanostructured lipid carrier system for topical delivery of terbinafine hydrochloride. Bull. Fac. Pharm. Cairo Univ. 2015, 53, 147–159. [Google Scholar] [CrossRef] [Green Version]
- Saleem, M.N.; Idris, M. Formulation Design and Development of a Unani Transdermal Patch for Antiemetic Therapy and Its Pharmaceutical Evaluation. Scientifica 2016, 2016, 7602347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, V.; Raval, S.; Peer, S.; Upadhyay, U.M. A comparative evaluation of different membranes for their diffusion efficiency: An in-vitro study. Pharma Sci. Monit. 2010, 1, 41–49. [Google Scholar]
- Ansari, M.J.; Ahmed, M.M.; Anwer, K.; Aldawsari, M.F.; Al Shahrani, S.M.; Ahmad, N. Development and Validation of Simple, Rapid and Sensitive High- Performance Liquid Chromatographic Method for the Determination of Butenafine Hydrochloride. J. Pharm. Res. Int. 2020, 32, 116–125. [Google Scholar] [CrossRef]
- Asmerom, D.; Kalay, T.H.; Tafere, G.G. Antibacterial and Antifungal Activities of the Leaf Exudate of Aloe megalacantha Baker. Int. J. Microbiol. 2020, 2020, 1–6. [Google Scholar] [CrossRef]
- Mehling, A.; Kleber, M.; Hensen, H. Comparative studies on the ocular and dermal irritation potential of surfactants. Food Chem. Toxicol. 2007, 45, 747–758. [Google Scholar] [CrossRef]
- Irimia, T.; Dinu-Pîrvu, C.-E.; Ghica, M.V.; Lupuleasa, D.; Muntean, D.-L.; Udeanu, D.I.; Popa, L. Chitosan-Based In Situ Gels for Ocular Delivery of Therapeutics: A State-of-the-Art Review. Mar. Drugs 2018, 16, 373. [Google Scholar] [CrossRef] [Green Version]
- Yasir, M.; Sara, U.V.S.; Som, I.; Gaur, P.; Singh, M. Bentham Science Publisher Ameeduzzafar Nose to Brain Drug Delivery: A Novel Approach Through Solid Lipid Nanoparticles. Curr. Nanomed. 2016, 6, 105–132. [Google Scholar] [CrossRef]
- Gupta, S.; Kesarla, R.; Omri, A. Formulation Strategies to Improve the Bioavailability of Poorly Absorbed Drugs with Special Emphasis on Self-Emulsifying Systems. ISRN Pharm. 2013, 2013, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenning, V.; Schafer-Korting, M.; Gohla, S. Vitamin aloaded solid lipid nanoparticles for topical use: Drug release properties. J. Control. Release 2000, 66, 115–126. [Google Scholar] [CrossRef]
- Abdel-Mottaleb, M.M.A.; Mortada, N.D.; El-Shamy, A.A.; A Awad, G. Physically Cross-Linked Polyvinyl Alcohol for the Topical Delivery of Fluconazole. Drug Dev. Ind. Pharm. 2009, 35, 311–320. [Google Scholar] [CrossRef] [PubMed]
- Adib, Z.M.; Ghanbarzadeh, S.; Kouhsoltani, M.; Khosroshahi, A.Y.; Hamishehkar, H. The Effect of Particle Size on the Deposition of Solid Lipid Nanoparticles in Different Skin Layers: A Histological Study. Adv. Pharm. Bull. 2016, 6, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.K.; Kesharwani, R.; Kumar, V. Etodolac loaded solid lipid nanoparticle based topical gel for enhanced skin delivery. Biocatal. Agric. Biotechnol. 2020, 29, 101810. [Google Scholar] [CrossRef]
- Koca, H.D.; Doganay, S.; Turgut, A.; Tavman, I.H.; Saidur, R.; Mahbubul, I.M. Effect of particle size on the viscosity of nanofluids: A review. Renew. Sustain. Energy Rev. 2018, 82, 1664–1674. [Google Scholar] [CrossRef] [Green Version]
- Motawea, T.B.; El-Gawad, A. Topical phenytoin nanostructured lipid carriers: Design and development. Drug Dev. Ind. Pharm. 2018, 44, 144–151. [Google Scholar] [CrossRef]
- Uprit, S.; Sahu, R.K.; Roy, A.; Pare, A. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharm. J. 2013, 21, 379–385. [Google Scholar] [CrossRef] [Green Version]
- Permanadewi, I.; Kumoro, A.C.; Wardhani, D.H.; Aryanti, N. Modelling of controlled drug release in gastrointestinal tract simulation. IOP Conf. Ser. J. Phys. Conf. Ser. 2019, 1295, 012063. [Google Scholar] [CrossRef]
- Sandeep, D.S.; Mahitha, M.; Meghna, S. Development, Characterization, and In vitro Evaluation of Aceclofenac Emulgel. Asian J. Pharm. 2020, 14, 330. [Google Scholar]
Parameters | Constraints | ||
---|---|---|---|
Lower Value | Medium Value | Upper Value | |
Independent variables | |||
Lipid concentration (A, %) | 2 | 3 | 4 |
Surfactant concentration (B, %) | 1 | 2 | 3 |
Homogenization cycle (C, n) | 2 | 4 | 6 |
Dependent variables | Goals | ||
Particle size (Y1, nm) | Minimize | ||
Entrapment efficiency (Y2, %) | Maximize |
Batch No. | Lipid (A, %) | Surfactant (B, %) | Homogenization Cycle (C, n) | Particle Size (nm) (Y1) | Entrapment Efficiency (%) (Y2) | ||
---|---|---|---|---|---|---|---|
Actual | Predicted | Actual | Predicted | ||||
BF1 | 2 | 3 | 4 | 182.55 | 179.48 | 66.74 | 69.31 |
BF2 | 3 | 1 | 2 | 302.77 | 299.76 | 69.82 | 71.65 |
BF3 | 4 | 3 | 4 | 276.36 | 276.57 | 76.44 | 76.60 |
BF4 | 3 | 2 | 4 | 118.14 | 117.81 | 83.91 | 84.85 |
BF5 | 2 | 2 | 6 | 146.23 | 143.44 | 77.76 | 78.02 |
BF6 | 3 | 2 | 4 | 118.37 | 117.81 | 83.38 | 84.85 |
BF7 | 4 | 2 | 6 | 124.25 | 127.23 | 82.51 | 84.15 |
BF8 | 4 | 1 | 4 | 311.75 | 311.97 | 77.81 | 75.24 |
BF9 | 3 | 2 | 4 | 117.85 | 117.81 | 84.42 | 83.85 |
BF10 | 3 | 3 | 6 | 190.44 | 193.45 | 75.65 | 73.82 |
BF11 | 3 | 2 | 4 | 119.47 | 117.81 | 85.65 | 84.85 |
BF12 | 3 | 3 | 2 | 268.28 | 271.18 | 76.59 | 75.66 |
BF13 | 2 | 2 | 2 | 200.69 | 197.71 | 78.70 | 76.06 |
BF14 | 3 | 2 | 4 | 117.21 | 117.81 | 83.89 | 84.85 |
BF15 | 3 | 1 | 6 | 274.38 | 276.14 | 76.61 | 77.54 |
BF16 | 2 | 1 | 4 | 240.78 | 246.76 | 70.59 | 70.39 |
BF17 | 4 | 2 | 2 | 176.78 | 179.57 | 81.33 | 82.07 |
Model | R2 | Adjusted R2 | Predicted R2 | SD | % CV | Remark |
---|---|---|---|---|---|---|
Particle size (Y1) | ||||||
Linear | 0.9147 | 0.8155 | 0.8465 | 7.14 | ||
2F1 | 0.9315 | 0.9295 | 0.9012 | 8.02 | ||
Quadratic | 0.9979 | 0.9951 | 0.9718 | 5.04 | 2.61 | Suggested |
Entrapment efficiency (Y2) | ||||||
Linear | 0.9031 | 0.8423 | 0.8391 | 5.90 | ||
2F1 | 0.9183 | 0.8305 | 0.8026 | 6.60 | ||
Quadratic | 0.9962 | 0.9312 | 0.9215 | 2.37 | 3.02 | Suggested |
ANOVA Results | Particle Size (Y1, nm) | Entrapment Efficiency (%) (Y2) |
---|---|---|
Regression | ||
Some of square | 83149.71 | 494.61 |
Degree of freedom | 9 | 9 |
Mean square | 9238.86 | 54.96 |
F-value | 363.48 | 9.75 |
P | <0.0001 | <0.0033 |
Influence | Significant | Significant |
Lack of fit-test | ||
Some of square | 143.43 | 28.23 |
Degree of freedom | 3 | 3 |
Mean square | 47.81 | 9.51 |
F-value | 5.54 | 3.36 |
P | 0.0658 | 0.1363 |
Influence | Non-significant | Non-significant |
Residual | ||
Some of square | 177.93 | 39.44 |
Degree of freedom | 7 | 7 |
Mean square | 25.42 | 5.63 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahdi, W.A.; Bukhari, S.I.; Imam, S.S.; Alshehri, S.; Zafar, A.; Yasir, M. Formulation and Optimization of Butenafine-Loaded Topical Nano Lipid Carrier-Based Gel: Characterization, Irritation Study, and Anti-Fungal Activity. Pharmaceutics 2021, 13, 1087. https://doi.org/10.3390/pharmaceutics13071087
Mahdi WA, Bukhari SI, Imam SS, Alshehri S, Zafar A, Yasir M. Formulation and Optimization of Butenafine-Loaded Topical Nano Lipid Carrier-Based Gel: Characterization, Irritation Study, and Anti-Fungal Activity. Pharmaceutics. 2021; 13(7):1087. https://doi.org/10.3390/pharmaceutics13071087
Chicago/Turabian StyleMahdi, Wael A., Sarah I. Bukhari, Syed Sarim Imam, Sultan Alshehri, Ameeduzzafar Zafar, and Mohd Yasir. 2021. "Formulation and Optimization of Butenafine-Loaded Topical Nano Lipid Carrier-Based Gel: Characterization, Irritation Study, and Anti-Fungal Activity" Pharmaceutics 13, no. 7: 1087. https://doi.org/10.3390/pharmaceutics13071087
APA StyleMahdi, W. A., Bukhari, S. I., Imam, S. S., Alshehri, S., Zafar, A., & Yasir, M. (2021). Formulation and Optimization of Butenafine-Loaded Topical Nano Lipid Carrier-Based Gel: Characterization, Irritation Study, and Anti-Fungal Activity. Pharmaceutics, 13(7), 1087. https://doi.org/10.3390/pharmaceutics13071087