Synthesis, Physicochemical Characterization, In Vitro 2D/3D Human Cell Culture, and In Vitro Aerosol Dispersion Performance of Advanced Spray Dried and Co-Spray Dried Angiotensin (1—7) Peptide and PNA5 with Trehalose as Microparticles/Nanoparticles for Targeted Respiratory Delivery as Dry Powder Inhalers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Solid Phase Peptide Synthesis (SPPS) Reagents
2.1.2. Advanced Spray Drying and Physicochemical Characterization Reagents
2.1.3. In Vitro Cell Culture Reagents
2.2. Methods
2.2.1. Solid Phase Peptide Synthesis (SPPS)
2.2.2. Computational Predictions of Physicochemical Parameters of Ang (1—7) Peptide and PNA5 Glycopeptide
2.2.3. Solubility Studies
2.2.4. Partitioning and LogP Experiments
2.2.5. HPLC for Solubility and LogP Experiments
2.2.6. Preparation of SD and co-SD Particles by Organic Solution Advanced Spray Drying in Closed-Mode
2.2.7. Scanning Electron Microscopy (SEM)
2.2.8. Particle Sizing and Size Distribution
2.2.9. X-ray Powder Diffraction (XRPD)
2.2.10. Differential Scanning Calorimetry (DSC)
2.2.11. Hot-Stage Microscopy (HSM) under Cross-Polarizers
2.2.12. Karl Fisher Titration (KFT)
2.2.13. Confocal Raman Spectroscopy (CRM)
2.2.14. Attenuated Total Reflectance (ATR)–Fourier-Transform Infrared (FTIR) Spectroscopy
2.2.15. In Vitro Aerosol Dispersion Performance
2.2.16. In Vitro 2D Cell Viability of Human Cells
2.2.17. In Vitro 2D Transepithelial Electrical Resistance (TEER) at the Air–Liquid Interface (ALI) of Human Lung Epithelial Cells
2.2.18. In Vitro Cell Viability of 3D Human Airway Epithelia at the Air–Liquid Interface (ALI)
2.2.19. In Vitro Transepithelial Electrical Resistance (TEER) of 3D Human Airway Epithelia at the ALI
3. Results
3.1. Solid Phase Peptide Synthesis (SPPS)
3.2. Computational Predictions of Physicochemical Parameters of Ang (1—7) Peptide and PNA5 Glycopeptide
3.3. Solubility
3.4. Partitioning Study (LogP)
3.5. Scanning Electron Microscopy (SEM)
3.6. X-ray Powder Diffraction (XRPD)
3.7. Differential Scanning Calorimetry (DSC)
3.8. HSM under Cross-Polarizer Lens
3.9. Karl Fisher Titration (KFT)
3.10. ATR-FTIR Spectroscopy
3.11. Confocal Raman Microspectroscopy (CRM)
3.12. In Vitro Aerosol Dispersion Performance
3.13. In Vitro 2D Cell Viability of Human Cells
3.14. In Vitro Cell Viability of 3D Human Airway Epithelia
3.15. In Vitro 2D TEER at the ALI
3.16. In Vitro TEER 3D Human Airway Epithelia at the Air–Liquid Interface (ALI)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Qaradakhi, T.; Apostolopoulos, V.; Zulli, A. Angiotensin (1—7) and alamandine: Similarities and differences. Pharmacol. Res. 2016, 111, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Santos, R.A.S.; Sampaio, W.O.; Alzamora, A.C.; Motta-Santos, D.; Alenina, N.; Bader, M.; Campagnole-Santos, M.J. The ACE2/angiotensin-(1—7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1—7). Physiol. Rev. 2018, 98, 505–553. [Google Scholar] [CrossRef] [Green Version]
- Tetzner, A.; Gebolys, K.; Meinert, C.; Klein, S.; Uhlich, A.; Trebicka, J.; Villacañas, Ó.; Walther, T. G-protein-coupled receptor MrgD is a receptor for angiotensin-(1—7) involving adenylyl cyclase, cAMP, and phosphokinase A. Hypertension 2016, 68, 185–194. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, J.; Carden, T.R.; Perez, M.J.; Taira, C.A.; Hocht, C.; Gironacci, M.M. Angiotensin-(1—7) protects from brain damage induced by Shiga toxin 2-producing enterohemorrhagic Escherichia coli. Am. J. Physiol. Integr. Comp. Physiol. 2016, 311, R1173–R1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karnik, S.S.; Singh, K.D.; Tirupula, K.; Unal, H. Significance of angiotensin 1–7 coupling with MAS1 receptor and other GPCRs to the renin-angiotensin system: IUPHAR review 22. Br. J. Pharmacol. 2017, 174, 737–753. [Google Scholar] [CrossRef] [PubMed]
- Forte, B.L.; Slosky, L.M.; Zhang, H.; Arnold, M.R.; Staatz, W.D.; Hay, M.; Largent-Milnes, T.; Vanderah, T.W. Angiotensin-(1—7)/Mas receptor as an antinociceptive agent in cancer-induced bone pain. Pain 2016, 157, 2709–2721. [Google Scholar] [CrossRef] [Green Version]
- Diz, D.I.; Chappell, M.C.; Tallant, E.A.; Ferrario, C.M. Angiotensin-(1—7). Hypertension 2005, 100–110. [Google Scholar] [CrossRef]
- Chen, Q.; Yang, Y.; Huang, Y.; Pan, C.; Liu, L.; Qiu, H. Angiotensin-(1—7) attenuates lung fibrosis by way of Mas receptor in acute lung injury. J. Surg. Res. 2013, 185, 740–747. [Google Scholar] [CrossRef]
- Magalhaes, G.; Rodrigues-Machado, M.D.G.; Motta-Santos, D.; Alenina, N.; Bader, M.; Santos, R.A.S.; Barcelos, L.S.; Campagnole-Santos, M.J. Chronic allergic pulmonary inflammation is aggravated in angiotensin-(1—7) Mas receptor knockout mice. Am. J. Physiol. Cell. Mol. Physiol. 2016, 311, L1141–L1148. [Google Scholar] [CrossRef]
- D’Ardes, D.; Boccatonda, A.; Rossi, I.; Guagnano, M.T.; Santilli, F.; Cipollone, F.; Bucci, M. COVID-19 and RAS: Unravelling an unclear relationship. Int. J. Mol. Sci. 2020, 21, 3003. [Google Scholar] [CrossRef] [PubMed]
- Gheblawi, M.; Wang, K.; Viveiros, A.; Nguyen, Q.; Zhong, J.-C.; Turner, A.J.; Raizada, M.K.; Grant, M.B.; Oudit, G.Y. Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system. Circ. Res. 2020, 126, 1456–1474. [Google Scholar] [CrossRef]
- Madsen, T.D.; Hansen, L.H.; Hintze, J.; Ye, Z.; Jebari, S.; Andersen, D.; Joshi, H.J.; Ju, T.; Goetze, J.P.; Martin, C.; et al. An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles. Nat. Commun. 2020, 11, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Erak, M.; Bellmann-Sickert, K.; Els-Heindl, S.; Beck-Sickinger, A.G. Peptide chemistry toolbox—Transforming natural peptides into peptide therapeutics. Bioorg. Med. Chem. 2018, 26, 2759–2765. [Google Scholar] [CrossRef] [PubMed]
- Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov. 2021, 20, 309–325. [Google Scholar] [CrossRef]
- Apostol, C.R.; Hay, M.; Polt, R. Glycopeptide drugs: A pharmacological dimension between “small molecules” and “biologics”. Peptides 2020, 131, 170369. [Google Scholar] [CrossRef]
- Moradi, S.V.; Hussein, W.M.; Varamini, P.; Simerska, P.; Toth, I. Glycosylation, an effective synthetic strategy to improve the bioavailability of therapeutic peptides. Chem. Sci. 2016, 7, 2492–2500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solá, R.J.; Griebenow, K. Glycosylation of therapeutic proteins. BioDrugs 2010, 24, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Louis, L.S.; Knapp, B.I.; Muthu, D.; Anglin, B.; Giuvelis, D.; Bidlack, J.M.; Bilsky, E.J.; Polt, R. Can amphipathic helices influence the CNS antinociceptive activity of glycopeptides related to β-endorphin? J. Med. Chem. 2014, 57, 2237–2246. [Google Scholar] [CrossRef] [PubMed]
- Lowery, J.J.; Yeomans, L.; Keyari, C.M.; Davis, P.; Porreca, F.; Knapp, B.I.; Bidlack, J.M.; Bilsky, E.J.; Polt, R. Glycosylation improves the central effects of DAMGO. Chem. Biol. Drug Des. 2007, 69, 41–47. [Google Scholar] [CrossRef]
- Albericio, F.; Kruger, H.G. Therapeutic peptides. Future Med. Chem. 2012, 4, 1527–1531. [Google Scholar] [CrossRef] [Green Version]
- Dhanasekaran, M.; Palian, M.M.; Alves, I.; Yeomans, L.; Keyari, C.M.; Davis, P.; Bilsky, E.J.; Egleton, R.D.; Yamamura, H.I.; Jacobsen, N.E.; et al. Glycopeptides related to β-endorphin adopt helical amphipathic conformations in the presence of lipid bilayers. J. Am. Chem. Soc. 2005, 127, 5435–5448. [Google Scholar] [CrossRef]
- Hay, M.; Polt, R.; Heien, M.L.; Vanderah, T.W.; Largent-Milnes, T.M.; Rodgers, K.; Falk, T.; Bartlett, M.J.; Doyle, K.P.; Konhilas, J. A Novel angiotensin-(1—7) glycosylated Mas receptor agonist for treating vascular cognitive impairment and inflammation-related memory dysfunction. J. Pharmacol. Exp. Ther. 2019, 369, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Eedara, B.B.; Alabsi, W.; Encinas-Basurto, D.; Polt, R.; Mansour, H.M. Spray-dried inhalable powder formulations of therapeutic proteins and peptides. AAPS PharmSciTech 2021, 22, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Al Absi, W.; Al-Obeidi, F.A.; Polt, R.; Mansour, H.M. Organic solution advanced spray-dried microparticulate/nanoparticulate dry powders of lactomorphin for respiratory delivery: Physicochemical characterization, in vitro aerosol dispersion, and cellular studies. Pharmaceutics 2020, 13, 26. [Google Scholar] [CrossRef]
- Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 2010, 392, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Eedara, B.; Alabsi, W.; Encinas-Basurto, D.; Polt, R.; Ledford, J.; Mansour, H. Inhalation delivery for the treatment and prevention of COVID-19 infection. Pharmaceutics 2021, 13, 1077. [Google Scholar] [CrossRef] [PubMed]
- Arpagaus, C.; John, P.; Collenberg, A.; Rütti, D. Nanocapsules formation by nano spray drying. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Jafari, S.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 346–401. [Google Scholar] [CrossRef]
- Mansour, H.; Duan, J.; Vogt, F.G.; Li, X.; Hayes, J.D. Design, characterization, and aerosolization of organic solution advanced spray-dried moxifloxacin and ofloxacin dipalmitoylphosphatidylcholine (DPPC) microparticulate/nanoparticulate powders for pulmonary inhalation aerosol delivery. Int. J. Nanomed. 2013, 8, 3489–3505. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Vogt, F.G.; Hayes, D.; Mansour, H.M. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried microparticulate/nanoparticulate antibiotic dry powders of tobramycin and azithromycin for pulmonary inhalation aerosol delivery. Eur. J. Pharm. Sci. 2014, 52, 191–205. [Google Scholar] [CrossRef]
- Li, X.; Vogt, F.G.; Hayes, D.; Mansour, H.M. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 81–93. [Google Scholar] [CrossRef]
- Mitchell, S.A.; Pratt, M.R.; Hruby, V.J.; Polt, R. Solid-phase synthesis of O-linked glycopeptide analogues of enkephalin. J. Org. Chem. 2001, 66, 2327–2342. [Google Scholar] [CrossRef]
- Acosta, M.F.; Abrahamson, M.D.; Encinas-Basurto, D.; Fineman, J.R.; Black, S.M.; Mansour, H.M. Inhalable nanoparticles/microparticles of an AMPK and Nrf2 activator for targeted pulmonary drug delivery as dry powder inhalers. AAPS J. 2020, 23, 1–14. [Google Scholar] [CrossRef]
- Acosta, M.F.; Muralidhran, P.; Abrahamson, M.D.; Grijalva, C.L.; Carver, M.; Tang, H.; Klinger, C.; Fineman, J.R.; Black, S.M.; Mansour, H.M. Comparison of l-carnitine and l-carnitine HCL salt for targeted lung treatment of pulmonary hypertension (PH) as inhalation aerosols: Design, comprehensive characterization, in vitro 2D/3D cell cultures, and in vivo MCT-rat model of PH. Pulm. Pharmacol. Ther. 2020, 65, 101998. [Google Scholar] [CrossRef]
- Acosta, M.F.; Muralidharan, P.; Grijalva, C.L.; Abrahamson, M.D.; Hayes, J.D.; Fineman, J.R.; Black, S.M.; Mansour, H.M. Advanced therapeutic inhalation aerosols of a Nrf2 activator and RhoA/Rho kinase (ROCK) inhibitor for targeted pulmonary drug delivery in pulmonary hypertension: Design, characterization, aerosolization, in vitro 2D/3D human lung cell cultures, and in vivo efficacy. Ther. Adv. Respir. Dis. 2021, 15. [Google Scholar] [CrossRef]
- Culture-Media. Available online: http://www.epithelix.com/products/culture-media (accessed on 10 August 2021).
- Polt, R.; Szabo, L.; Treiberg, J.; Li, Y.; Hruby, V.J. General methods for alpha- or beta-O-Ser/Thr glycosides and glycopeptides. Solid-phase synthesis of O-glycosyl cyclic enkephalin analogs. J. Am. Chem. Soc. 1992, 114, 10249–10258. [Google Scholar] [CrossRef]
- Myrdal, P.; Karlage, K.; Kuehl, P.; Angersbach, B.; Merrill, B.; Wightman, P. Effects of novel 5-lipoxygenase inhibitors on the incidence of pulmonary adenomas in the A/J murine model when administered via nose-only inhalation. Carcinogenesis 2006, 28, 957–961. [Google Scholar] [CrossRef]
- Elmagbari, N.O.; Egleton, R.D.; Palian, M.M.; Lowery, J.J.; Schmid, W.R.; Davis, P.; Navratilova, E.; Dhanasekaran, M.; Keyari, C.M.; Yamamura, H.I.; et al. Antinociceptive structure-activity studies with enkephalin-based opioid glycopeptides. J. Pharmacol. Exp. Ther. 2004, 311, 290–297. [Google Scholar] [CrossRef] [Green Version]
- Baka, E.; Comer, J.E.; Takács-Novák, K. Study of equilibrium solubility measurement by saturation shake-flask method using hydrochlorothiazide as model compound. J. Pharm. Biomed. Anal. 2008, 46, 335–341. [Google Scholar] [CrossRef]
- Glomme, A.; März, J.; Dressman, J. Comparison of a miniaturized shake-flask solubility method with automated potentiometric acid/base titrations and calculated solubilities. J. Pharm. Sci. 2005, 94, 1–16. [Google Scholar] [CrossRef]
- Apley, M.; Crist, B.; Fellner, V.; Gonzalez, M.; Hunter, R.; Martinez, M.; Messenheimer, J.; Modric, S.; Papich, M.; Parr, A.; et al. Determination of thermodynamic solubility of active pharmaceutical ingredients for veterinary species: A new USP general chapter. Dissolution Technol. 2017, 24, 36–39. [Google Scholar] [CrossRef]
- Bergström, C.; Norinder, U.; Luthman, K.; Artursson, P. Experimental and computational screening models for prediction of aqueous drug solubility. Pharm. Res. 2002, 19, 182–188. [Google Scholar] [CrossRef]
- Wenlock, M.C.; Potter, T.; Barton, P.; Austin, R.P. A method for measuring the lipophilicity of compounds in mixtures of 10. J. Biomol. Screen. 2011, 16, 348–355. [Google Scholar] [CrossRef] [Green Version]
- Schönsee, C.D.; Bucheli, T.D. Experimental determination of octanol-water partition coefficients of selected natural toxins. J. Chem. Eng. Data 2020, 65, 1946–1953. [Google Scholar] [CrossRef] [Green Version]
- Kempińska, D.; Chmiel, T.; Kot-Wasik, A.; Mróz, A.; Mazerska, Z.; Namieśnik, J. State of the art and prospects of methods for determination of lipophilicity of chemical compounds. TrAC Trends Anal. Chem. 2019, 113, 54–73. [Google Scholar] [CrossRef]
- Meenach, S.; Anderson, K.W.; Hilt, J.Z.; McGarry, R.C.; Mansour, H.M. High-performing dry powder inhalers of paclitaxel DPPC/DPPG lung surfactant-mimic multifunctional particles in lung cancer: Physicochemical characterization, in vitro aerosol dispersion, and cellular studies. AAPS PharmSciTech 2014, 15, 1574–1587. [Google Scholar] [CrossRef] [Green Version]
- Meenach, S.A.; Vogt, F.G.; Anderson, K.W.; Hilt, J.Z.; Mcgarry, R.C.; Mansour, H.M.F. Design, physicochemical characterization, and optimization of organic solution advanced spray-dried inhalable dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylethanolamine poly(ethylene glycol) (DPPE-PEG) microparticles and nanoparticles for targeted respiratory nanomedicine delivery as dry powder inhalation aerosols. Int. J. Nanomed. 2013, 8, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Mansour, H.; Wu, X.; Hayes, D.; Zwischenberger, J.B.; Kuhn, R. Design and physicochemical characterization of advanced spray-dried tacrolimus multifunctional particles for inhalation. Drug Des. Dev. Ther. 2013, 7, 59–72. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Vogt, F.G.; Hayes, D.; Mansour, H.M. Design, characterization, and aerosol dispersion performance modeling of advanced co-spray dried antibiotics with mannitol as respirable microparticles/nanoparticles for targeted pulmonary delivery as dry powder inhalers. J. Pharm. Sci. 2014, 103, 2937–2949. [Google Scholar] [CrossRef]
- Laboratories, B. CloneticsTM Normal Human Astrocytes. 2011, pp. 1–4. Available online: https://bioscience.lonza.com/lonza_bs/CH/en/download/product/asset/29377 (accessed on 10 August 2021).
- Sigma-Aldrich. Blood-Brain Barrier HCMEC/D3 Cell Line, 2011. Available online: https://www.emdmillipore.com/US/en/product/Blood-Brain-Barrier-hCMEC-D3-Cell-Line,MM_NF-SCC066#documentation (accessed on 10 August 2021).
- Acosta, M.F.; Muralidharan, P.; Meenach, S.A.; Hayes, D.; Black, S.M.; Mansour, H.M. In vitro pulmonary cell culture in pharmaceutical inhalation aerosol delivery: 2D, 3D, and in situ bioimpactor models. Curr. Pharm. Des. 2016, 22, 2522–2531. [Google Scholar] [CrossRef]
- Epithelix. Mucilair, 2021. Available online: https://www.epithelix.com/products/mucilair (accessed on 10 August 2021).
- Labute, P.; Williams, C. Application of Hückel theory to pharmacophore discovery. CICSJ Bull. 2015, 33, 33. [Google Scholar] [CrossRef]
- Li, X.; Mansour, H.M. Physicochemical characterization and water vapor sorption of organic solution advanced spray-dried inhalable trehalose microparticles and nanoparticles for targeted dry powder pulmonary inhalation delivery. AAPS PharmSciTech 2011, 12, 1420–1430. [Google Scholar] [CrossRef] [Green Version]
- Jones, M.; Hooton, J.C.; Dawson, M.L.; Ferrie, A.R.; Price, R. Dehydration of trehalose dihydrate at low relative humidity and ambient temperature. Int. J. Pharm. 2006, 313, 87–98. [Google Scholar] [CrossRef]
- Egleton, R.D.; Bilsky, E.J.; Tollin, G.; Dhanasekaran, M.; Lowery, J.; Alves, I.; Davis, P.; Porreca, F.; Yamamura, H.I.; Yeomans, L.; et al. Biousian glycopeptides penetrate the blood–brain barrier. Tetrahedron Asymmetry 2005, 16, 65–75. [Google Scholar] [CrossRef]
- Olsson, C.; Swenson, J. Structural comparison between sucrose and trehalose in aqueous solution. J. Phys. Chem. B 2020, 124, 3074–3082. [Google Scholar] [CrossRef]
- Barsky, A.J. The paradox of health. N. Engl. J. Med. 1988, 318, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Lechanteur, A.; Evrard, B. Influence of composition and spray-drying process parameters on carrier-free DPI properties and behaviors in the lung: A review. Pharmaceutics 2020, 12, 55. [Google Scholar] [CrossRef] [Green Version]
- Mansour, H.; Wu, X.; Zhang, W.; Hayes, J.D. Physicochemical characterization and aerosol dispersion performance of organic solution advanced spray-dried cyclosporine A multifunctional particles for dry powder inhalation aerosol delivery. Int. J. Nanomed. 2013, 8, 1269–1283. [Google Scholar] [CrossRef] [Green Version]
- Mortensen, N.; Hickey, A.J. Targeting inhaled therapy beyond the lungs. Respiration 2014, 88, 353–364. [Google Scholar] [CrossRef]
- Xi, J.; Si, X.A.; Gaide, R. Electrophoretic particle guidance significantly enhances olfactory drug delivery: A feasibility study. PLoS ONE 2014, 9, e86593. [Google Scholar] [CrossRef]
- Dong, J.; Shang, Y.; Inthavong, K.; Chan, H.-K.; Tu, J. Numerical comparison of nasal aerosol administration systems for efficient nose-to-brain drug delivery. Pharm. Res. 2017, 35, 5. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Xiong, G.; Tsang, W.C.; Schätzlein, A.G.; Uchegbu, I.F. Special section on drug delivery technologies-minireview nose-to-brain delivery. J. Pharmacol. Exp. Ther. 2019, 370, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Garcia, G.J.M.; Schroeter, J.D.; Kimbell, J.S. Olfactory deposition of inhaled nanoparticles in humans. Inhal. Toxicol. 2015, 27, 394–403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Formulations (Powder Composition = Molar Ratio) | SD Ang (1—7) SD PNA5 co-SD Ang (1—7):Trehalose (25:75) co-SD PNA5:Trehalose (25:75) | co-SD PNA5:Trehalose (20:80) |
---|---|---|
Feed concentration in solvent (% w/v) | 0.125 | 2.5 |
Solvent | Methanol | Methanol |
Aspiration gas: ultra-high purity nitrogen gas (L/hour) | 670 (55 mm in height) | 670 (55 mm in height) |
Inlet temperature (°C) | 150 | 150 |
Outlet temperature (°C) | 47–53 | 60 |
Inert loop temperature (°C) | −15 | −15 |
Pump rate (%) | Low (25%) (7.5 mL/min) | Low (25%) (7.5 mL/min) and Medium (50%) (15 mL/min) |
Aspirator (%) | 100 (35 m3/h) | 100 (35 m3/h) |
Solvent | Solubility of Ang (1—7) mg/mL ± Std dev | Ang (1—7) LogS * | Ang (1—7) LogS Calculated by MOE | Ang (1—7) Solubility Category According to USP Definition | Solubility of PNA5 mg/mL ± Std dev | PNA5 LogS * | PNA5 LogS Calculated by MOE | PNA5 Solubility Category According to the USP Definition |
---|---|---|---|---|---|---|---|---|
H2O | 174.03 ± 0.19 | −0.71 | −0.82 | Freely soluble (FS) | 275.33 ± 2.31 | −0.58 | −0.53 | Freely soluble (FS) |
PBS | 165.38 ± 0.34 | −0.73 | - | Freely Soluble (FS) | 305.05 ± 0.22 | −0.54 | - | Freely soluble (FS) |
NS | 140.37 ± 0.32 | −0.81 | - | Freely soluble (FS) | 269.33 ± 1.53 | −0.59 | - | Freely soluble (FS) |
Methanol | 1.00 ± 0.005 | −2.95 | - | Slightly soluble (SS) | 0.34 ± 0.01 | −3.48 | - | Very slightly soluble (VSS) |
Ethanol | 0.160 ± 0.001 | −3.75 | - | Very slightly soluble (VSS) | 0.12 ± 0.003 | −3.94 | - | Very slightly soluble (VSS) |
Powder Composition (Molar Ratio) | Mean Size (μm) | Size Range (μm) |
---|---|---|
Raw Ang (1—7) | unmeasurable | - |
Raw PNA5 | unmeasurable | - |
SD-Ang (1—7) | 0.86 ± 0.42 | 0.31–2.62 |
SD-PNA5 | 0.78 ± 0.42 | 0.24–2.48 |
Co-SD Ang (1—7):Trehalose (25:75) | 0.56 ± 0.21 | 0.20–1.25 |
Co-SD PNA5:Trehalose (25:75) | 0.59 ± 0.35 | 0.10–1.72 |
Parameter | Raw Ang (1—7) | SD Ang (1—7) | Raw PNA5 | SD PNA5 | Raw Trehalose | SD Trehalose | co-SD Ang (1—7):Trehalose (25:75) | co-SD PNA5:Trehalose (25:75) |
---|---|---|---|---|---|---|---|---|
Tg onset (°C) | 165.67 ± 4.43 | 170.16 ± 2.54 | 162.3 ± 3.47 | 168.37 ± 1.96 | - | 37.53 ± 1.43 | 143.12 ± 2.21 | 155.19 ± 2.60 |
Tg mid (°C) | 169.13 ± 6.54 | 175.10 ± 2.90 | 167.45 ± 3.66 | 172.78 ± 1.33 | - | 41.45 ± 0.70 | 143.21 ± 2.13 | 155.26 ± 2.61 |
Tg End (°C) | 173.99 ± 0.09 | 180.1 ± 2.28 | 170.05 ± 3.85 | 174.45 ± 2.41 | - | 45.68 ± 1.63 | 143.28 ± 1.96 | 155.32 ± 2.54 |
∆Cp (J/g.) | 1.80 ± 0.40 | 1.57 ± 0.04 | 1.19 ± 0.10 | 1.47 ± 0.00 | - | 0.59 ± 0.05 | 0.70 ± 0.12 | 1.26 ± 0.10 |
Endotherm1 onset (°C) | 217.54 ± 11.06 | 219.81 ± 3.92 | 231.98 ± 7.43 | 220.52 ± 4.61 | 94.70 ± 0.08 | 145.81 ± 2.92 | 178.41 ± 2.35 | 169.42 ± 1.42 |
Endotherm1 peak (°C) | 218.45 ± 10.84 | 221.29 ± 3.93 | 232.45 ± 7.21 | 220.70 ± 4.47 | 95.85 ± 0.12 | 146.3 ± 2.57 | 185.82 ± 1.65 | 179.53 ± 0.86 |
∆H1(Enthalpy) J/g | 45.96 ± 5.34 | 41.05 ± 2.67 | 81.37 ± 20.28 | 52.54 ± 4.96 | 91.92 ± 7.79 | 3.39 ± 0.68 | 27.08 ± 1.96 | 8.88 ± 0.66 |
Endotherm2 onset (°C) | - | - | - | 141.32 ± 1.20 | 182.90 ± 4.60 | 209.65 ± 8.03 | 204.26 ± 7.15 | |
Endotherm2 peak (°C) | - | - | - | 141.01 ± 1.14 | 189.76 ± 3.88 | 213.28 ± 7.12 | 207.65 ± 8.25 | |
∆H2 (Enthalpy) J/g | - | - | - | 106.90 ± 6.15 | 20.66 ± 2.30 | 34.02 ± 9.16 | 58.76 ± 28.99 | |
Endotherm3 onset (°C) | - | - | - | 196.54 ± 1.10 | - | - | - | |
Endotherm3 peak (°C) | - | - | - | 204.24 ± 1.10 | - | - | - | |
∆H3 (Enthalpy) J/g | - | - | - | 118.33 ± 4.17 | - | - | - | |
Exotherm (TC) °C | - | - | - | - | 99.41 ± 0.82 | 114.85 ± 8.68 | 142.71 ± 1.04 |
System | Water % (w/w) |
---|---|
Raw Ang (1—7) | 4.03 ± 0.13 |
Raw PNA5 | 4.64 ± 0.18 |
Raw Trehalose | 8.55 ± 1.50 |
SD Trehalose | 4.18 ± 0.54 |
SD Ang (1—7) | 3.15 ± 0.13 |
SD PNA5 | 2.27 ± 0.13 |
Co-SD Ang (1-—7):Trehalose (25:75) | 2.13 ± 0.44 |
Co-SD PNA5:Trehalose (25:75) | 2.99 ± 0.92 |
Powder Formulation Composition (Molar Ratio) | Emitted Dose (ED) (%) | Fine Particle Fraction (FPF) (%) | Respirable Fraction (RF) (%) | MMAD (μm) | GSD |
---|---|---|---|---|---|
Raw Ang (1—7) | 100.74 ± 2.69 | 7.75 ± 0.44 | 60.75 ± 0.48 | 5.53 ± 0.91 | 7.06 ± 0.75 |
Raw PNA5 | 101.52 ± 5.91 | 3.33 ± 0.15 | 41.26 ± 0.76 | 9.01 ± 0.64 | 2.89 ± 0.21 |
SD Ang (1—7) | 79.80 ± 2.06 | 44.45 ± 3.85 | 97.35 ± 2.00 | 1.72 ± 0.03 | 1.76 ± 0.07 |
SD PNA5 | 64.45 ± 1.73 | 50.52 ± 8.18 | 96.93 ± 2.39 | 1.99 ± 0.06 | 1.97 ± 0.17 |
Co-SD Ang (1—7): Trehalose 25:75 | 83.70 ± 1.53 | 50.21 ± 1.58 | 95.71 ± 1.57 | 1.70 ± 0.08 | 1.81 ± 0.10 |
Co-SD PNA5: Trehalose 25:75 | 86.26 ± 0.22 | 32.49 ± 0.28 | 91.26 ± 0.31 | 2.09 ± 0.02 | 1.81 ± 0.03 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alabsi, W.; Acosta, M.F.; Al-Obeidi, F.A.; Hay, M.; Polt, R.; Mansour, H.M. Synthesis, Physicochemical Characterization, In Vitro 2D/3D Human Cell Culture, and In Vitro Aerosol Dispersion Performance of Advanced Spray Dried and Co-Spray Dried Angiotensin (1—7) Peptide and PNA5 with Trehalose as Microparticles/Nanoparticles for Targeted Respiratory Delivery as Dry Powder Inhalers. Pharmaceutics 2021, 13, 1278. https://doi.org/10.3390/pharmaceutics13081278
Alabsi W, Acosta MF, Al-Obeidi FA, Hay M, Polt R, Mansour HM. Synthesis, Physicochemical Characterization, In Vitro 2D/3D Human Cell Culture, and In Vitro Aerosol Dispersion Performance of Advanced Spray Dried and Co-Spray Dried Angiotensin (1—7) Peptide and PNA5 with Trehalose as Microparticles/Nanoparticles for Targeted Respiratory Delivery as Dry Powder Inhalers. Pharmaceutics. 2021; 13(8):1278. https://doi.org/10.3390/pharmaceutics13081278
Chicago/Turabian StyleAlabsi, Wafaa, Maria F. Acosta, Fahad A. Al-Obeidi, Meredith Hay, Robin Polt, and Heidi M. Mansour. 2021. "Synthesis, Physicochemical Characterization, In Vitro 2D/3D Human Cell Culture, and In Vitro Aerosol Dispersion Performance of Advanced Spray Dried and Co-Spray Dried Angiotensin (1—7) Peptide and PNA5 with Trehalose as Microparticles/Nanoparticles for Targeted Respiratory Delivery as Dry Powder Inhalers" Pharmaceutics 13, no. 8: 1278. https://doi.org/10.3390/pharmaceutics13081278
APA StyleAlabsi, W., Acosta, M. F., Al-Obeidi, F. A., Hay, M., Polt, R., & Mansour, H. M. (2021). Synthesis, Physicochemical Characterization, In Vitro 2D/3D Human Cell Culture, and In Vitro Aerosol Dispersion Performance of Advanced Spray Dried and Co-Spray Dried Angiotensin (1—7) Peptide and PNA5 with Trehalose as Microparticles/Nanoparticles for Targeted Respiratory Delivery as Dry Powder Inhalers. Pharmaceutics, 13(8), 1278. https://doi.org/10.3390/pharmaceutics13081278