Efficacy of Combined Rifampicin Formulations Delivered by the Pulmonary Route to Treat Tuberculosis in the Guinea Pig Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of RIF Microspheres
2.2. Liposome Preparation and Characterization
2.3. Selection of a Nebulizer and the Characterization of the Nebulizer Output
2.4. Animals
2.5. Respiratory Infection
2.6. Treatments
2.7. Necropsy Procedure and the Assessment of the Number of Viable Bacteria
2.8. Statistical Analysis
3. Results
3.1. Preparation and Characterization of the RIF Formulations
3.2. Selection of a Nebulizer and the Characterization of the Nebulizer Output
3.3. Wet Organ Weights
3.4. Bacteriology of the Lung and Spleen of Guinea Pigs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. Global Tuberculosis Report 2020; WHO: Geneva, Switzerland, 2020; pp. 15–17. [Google Scholar]
- Mollel, E.W.; Maokola, W.; Todd, J.; Msuya, S.E.; Mahande, M.J. Incidence Rates for Tuberculosis among HIV Infected Patients in Northern Tanzania. Front. Public Health 2019, 7, 306. [Google Scholar] [CrossRef]
- WHO. Guidelines for Treatment of Drug-Susceptible Tuberculosis and Patient Care, 2017 Update; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Rifampin. Tuberculosis 2008, 88, 151–154. [CrossRef]
- Conradie, F.; Diacon, A.H.; Ngubane, N.; Howell, P.; Everitt, D.; Crook, A.M.; Mendel, C.M.; Egizi, E.; Moreira, J.; Timm, J.; et al. Treatment of Highly Drug-Resistant Pulmonary Tuberculosis. N. Engl. J. Med. 2020, 382, 893–902. [Google Scholar] [CrossRef] [PubMed]
- La Porte, C.J.; Colbers, E.P.; Bertz, R.; Voncken, D.S.; Wikstrom, K.; Boeree, M.J.; Koopmans, P.P.; Hekster, Y.A.; Burger, D.M. Pharmacokinetics of adjusted-dose lopinavir-ritonavir combined with rifampin in healthy volunteers. Antimicrob. Agents Chemother. 2004, 48, 1553–1560. [Google Scholar] [CrossRef] [Green Version]
- Suarez, S.; O’Hara, P.; Kazantseva, M.; Newcomer, C.E.; Hopfer, R.; McMurray, D.N.; Hickey, A.J. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: Screening in an infectious disease model. Pharm. Res. 2001, 18, 1315–1319. [Google Scholar] [CrossRef]
- Suarez, S.; O’Hara, P.; Kazantseva, M.; Newcomer, C.E.; Hopfer, R.; McMurray, D.N.; Hickey, A.J. Airways delivery of rifampicin microparticles for the treatment of tuberculosis. J. Antimicrob. Chemother. 2001, 48, 431–434. [Google Scholar] [CrossRef]
- Garcia-Contreras, L.; Sethuraman, V.; Kazantseva, M.; Godfrey, V.; Hickey, A.J. Evaluation of dosing regimen of respirable rifampicin biodegradable microspheres in the treatment of tuberculosis in the guinea pig. J. Antimicrob. Chemother. 2006, 58, 980–986. [Google Scholar] [CrossRef]
- Guirado, E.; Schlesinger, L.S. Modeling the Mycobacterium tuberculosis Granuloma—The Critical Battlefield in Host Immunity and Disease. Front. Immunol. 2013, 4, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, N.R.; Bicanic, T.; Salim, R.; Hope, W. Liposomal Amphotericin B (AmBisome(®)): A Review of the Pharmacokinetics, Pharmacodynamics, Clinical Experience and Future Directions. Drugs 2016, 76, 485–500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chowdhury, N.; Chaudhry, S.; Hall, N.; Olverson, G.; Zhang, Q.-J.; Mandal, T.; Dash, S.; Kundu, A. Targeted Delivery of Doxorubicin Liposomes for Her-2+ Breast Cancer Treatment. AAPS PharmSciTech 2020, 21, 202. [Google Scholar] [CrossRef]
- Vakili-Ghartavol, R.; Rezayat, S.M.; Faridi-Majidi, R.; Sadri, K.; Jaafari, M.R. Optimization of Docetaxel Loading Conditions in Liposomes: Proposing potential products for metastatic breast carcinoma chemotherapy. Sci. Rep. 2020, 10, 5569. [Google Scholar] [CrossRef] [Green Version]
- Anabousi, S.; Bakowsky, U.; Schneider, M.; Huwer, H.; Lehr, C.M.; Ehrhardt, C. In vitro assessment of transferrin-conjugated liposomes as drug delivery systems for inhalation therapy of lung cancer. Eur. J. Pharm. Sci. 2006, 29, 367–374. [Google Scholar] [CrossRef]
- Gaspar, M.M.; Radomska, A.; Gobbo, O.L.; Bakowsky, U.; Radomski, M.W.; Ehrhardt, C. Targeted delivery of transferrin-conjugated liposomes to an orthotopic model of lung cancer in nude rats. J. Aerosol. Med. Pulm. Drug Deliv. 2012, 25, 310–318. [Google Scholar] [CrossRef]
- Pandey, R.; Sharma, S.; Khuller, G.K. Nebulization of liposome encapsulated antitubercular drugs in guinea pigs. Int. J. Antimicrob. Agents 2004, 24, 93–94. [Google Scholar] [CrossRef]
- Patil, J.S.; Devi, V.K.; Devi, K.; Sarasija, S. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India 2015, 32, 331–338. [Google Scholar] [CrossRef]
- Patil, T.S.; Deshpande, A.S.; Deshpande, S.; Shende, P. Targeting pulmonary tuberculosis using nanocarrier-based dry powder inhalation: Current status and futuristic need. J. Drug Target. 2019, 27, 12–27. [Google Scholar] [CrossRef]
- Pinheiro, M.; Lúcio, M.; Lima, J.L.; Reis, S. Liposomes as drug delivery systems for the treatment of TB. Nanomed. Lond. 2011, 6, 1413–1428. [Google Scholar] [CrossRef]
- Swaminathan, J.; Gobbo, O.L.; Tewes, F.; Healy, A.M.; Ehrhardt, C. Encapsulation into PEG-liposomes does not improve the bioavailability of pulmonary delivered salmon calcitonin. J. Aerosol Med. Pulm. Drug Deliv. 2014, 27, 1–11. [Google Scholar] [CrossRef]
- Food and Drug Administration News Release. FDA Approves a New Antibacterial Drug to Treat a Serious Lung Disease Using a Novel Pathway to Spur Innovation. US FDA Press Announc., 2018. Available online: https://www.fda.gov/news-events/press-announcements/fda-approves-new-antibacterial-drug-treat-serious-lung-disease-using-novel-pathway-spur-innovation (accessed on 3 October 2018).
- Mostafa, M.; Alaaeldin, E.; Aly, U.F.; Sarhan, H.A. Optimization and Characterization of Thymoquinone-Loaded Liposomes with Enhanced Topical Anti-inflammatory Activity. AAPS PharmSciTech 2018, 19, 3490–3500. [Google Scholar] [CrossRef]
- O’Hara, P.; Hickey, A.J. Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: Manufacture and characterization. Pharm. Res. 2000, 17, 955–961. [Google Scholar] [CrossRef]
- Sethuraman, V.V.; Hickey, A.J. Powder properties and their influence on dry powder inhaler delivery of an antitubercular drug. AAPS PharmSciTech 2002, 3, E28. [Google Scholar] [CrossRef]
- Martin, A.; Bustamante, P. Micromeritics. In Martin’s Physical Pharmacy and Pharmaceutical Sciences, 4th ed.; Lea & Febiger: Philadelphia, PA, USA, 1993; pp. 423–452. [Google Scholar]
- Zalipsky, S.; Mullah, N.; Qazen, M. 4—Preparation of Poly(ethylene Glycol)-Grafted Liposomes with Ligands at the Extremities of Polymer Chains. In Methods in Enzymology; Düzgüneş, N., Ed.; Academic Press: Cambridge, MA, USA, 2004; Volume 387, pp. 50–69. [Google Scholar]
- Aerosols, Nasal Sprays, Metered-Dose Inhalers, and Dry Powder Inhalers. In Pharmacopeial Convention, 41st ed.; United States Pharmacopeia: Rockville, MD, USA, 2016; Chapter 601.
- Nizami, S.; Morales, C.; Hu, K.; Holzman, R.; Rapkiewicz, A. Trends in Mortality From Human Immunodeficiency Virus Infection, 1984-2016: An Autopsy-Based Study. Arch. Pathol. Lab. Med. 2020, 144, 572–579. [Google Scholar] [CrossRef] [PubMed]
- Suarez, S.; Kazantseva, M.; Bhat, M.; Costa, D.; Hickey, A.J. The influence of suspension nebulization or instillation on particle uptake by guinea pig alveolar macrophages. Inhal. Toxicol. 2001, 13, 773–788. [Google Scholar] [CrossRef] [PubMed]
- Chimote, G.; Banerjee, R. In vitro evaluation of inhalable isoniazid-loaded surfactant liposomes as an adjunct therapy in pulmonary tuberculosis. J. Biomed. Mater. Res. Part B Appl. Biomater. 2010, 94, 1–10. [Google Scholar] [CrossRef]
- Deol, P.; Khuller, G.K.; Joshi, K. Therapeutic efficacies of isoniazid and rifampin encapsulated in lung-specific stealth liposomes against Mycobacterium tuberculosis infection induced in mice. Antimicrob. Agents Chemother. 1997, 41, 1211–1214. [Google Scholar] [CrossRef] [Green Version]
- Changsan, N.; Chan, H.K.; Separovic, F.; Srichana, T. Physicochemical characterization and stability of rifampicin liposome dry powder formulations for inhalation. J. Pharm. Sci. 2009, 98, 628–639. [Google Scholar] [CrossRef]
- Changsan, N.; Nilkaeo, A.; Pungrassami, P.; Srichana, T. Monitoring safety of liposomes containing rifampicin on respiratory cell lines and in vitro efficacy against Mycobacterium bovis in alveolar macrophages. J. Drug Target. 2009, 17, 751–762. [Google Scholar] [CrossRef]
- Manca, M.L.; Sinico, C.; Maccioni, A.M.; Diez, O.; Fadda, A.M.; Manconi, M. Composition influence on pulmonary delivery of rifampicin liposomes. Pharmaceutics 2012, 4, 590–606. [Google Scholar] [CrossRef]
- Vyas, S.P.; Kannan, M.E.; Jain, S.; Mishra, V.; Singh, P. Design of liposomal aerosols for improved delivery of rifampicin to alveolar macrophages. Int. J. Pharm 2004, 269, 37–49. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Kumar, L.; Narang, R.K.; Murthy, R.S. Development and characterization of ligand-appended liposomes for multiple drug therapy for pulmonary tuberculosis. Artif. Cells Nanomed. Biotechnol. 2013, 41, 52–59. [Google Scholar] [CrossRef]
- Gaspar, M.M.; Cruz, A.; Penha, A.F.; Reymao, J.; Sousa, A.C.; Eleuterio, C.V.; Domingues, S.A.; Fraga, A.G.; Filho, A.L.; Cruz, M.E.; et al. Rifabutin encapsulated in liposomes exhibits increased therapeutic activity in a model of disseminated tuberculosis. Int. J. Antimicrob. Agents 2008, 31, 37–45. [Google Scholar] [CrossRef] [Green Version]
- Adams, L.B.; Sinha, I.; Franzblau, S.G.; Krahenbuhl, J.L.; Mehta, R.T. Effective treatment of acute and chronic murine tuberculosis with liposome-encapsulated clofazimine. Antimicrob. Agents Chemother. 1999, 43, 1638–1643. [Google Scholar] [CrossRef] [Green Version]
- Labana, S.; Pandey, R.; Sharma, S.; Khuller, G.K. Chemotherapeutic activity against murine tuberculosis of once weekly administered drugs (isoniazid and rifampicin) encapsulated in liposomes. Int. J. Antimicrob. Agents 2002, 20, 301–304. [Google Scholar] [CrossRef]
- Pandey, R.; Sharma, S.; Khuller, G.K. Liposome-based antitubercular drug therapy in a guinea pig model of tuberculosis. Int. J. Antimicrob. Agents 2004, 23, 414–415. [Google Scholar] [CrossRef] [PubMed]
- Kurunov Iu, N.; Kaledin, V.I.; Popova, N.A.; Panteleeva, A.G. Effectiveness of a liposomal form of rifampicin in the treatment of experimental tuberculosis in mice. Probl. Tuberk. 1992, 1–2, 13–15. [Google Scholar]
- Kurunov Iu, N.; Ursov, I.G.; Krasnov, V.A.; Petrenko, T.I.; Iakovchenko, N.N.; Svistelńik, A.V.; Filimonov, P.A. Effectiveness of liposomal antibacterial drugs in the inhalation therapy of experimental tuberculosis. Probl. Tuberk. 1995, 1, 38–40. [Google Scholar]
- Coderch, L.; Fonollosa, J.; De Pera, M.; Estelrich, J.; De La Maza, A.; Parra, J.L. Influence of cholesterol on liposome fluidity by EPR. Relationship with percutaneous absorption. J. Control. Release Off. J. Control. Release Soc. 2000, 68, 85–95. [Google Scholar] [CrossRef]
- Cipolla, D.; Blanchard, J.; Gonda, I. Development of Liposomal Ciprofloxacin to Treat Lung Infections. Pharmaceutics 2016, 8, 6. [Google Scholar] [CrossRef] [Green Version]
- Cipolla, D.; Gonda, I.; Chan, H.K. Liposomal formulations for inhalation. Ther. Deliv. 2013, 4, 1047–1072. [Google Scholar] [CrossRef]
- Niven, R.W.; Schreier, H. Nebulization of liposomes. I. Effects of lipid composition. Pharm. Res. 1990, 7, 1127–1133. [Google Scholar] [CrossRef]
- Niven, R.W.; Speer, M.; Schreier, H. Nebulization of liposomes. II. The effects of size and modeling of solute release profiles. Pharm. Res. 1991, 8, 217–221. [Google Scholar] [CrossRef] [PubMed]
- Niven, R.W.; Carvajal, T.M.; Schreier, H. Nebulization of liposomes. III. The effects of operating conditions and local environment. Pharm. Res. 1992, 9, 515–520. [Google Scholar] [CrossRef] [PubMed]
- McMurray, D.N. Guinea pig model of tuberculosis. In Tuberculosis: Pathogenesis, Protection and Control; Bloom, B.R., Ed.; ASM Press: Washington, DC, USA, 1994; pp. 135–148. [Google Scholar]
Treatment Day | Treatment Groups | ||||
---|---|---|---|---|---|
RIF Formulation (RM 1 Or RL 2) | Negative Controls | ||||
1 | RM | RL every day | BM | BL every day | Untreated controls |
2 | RM | BM | |||
3 | RM | BM | |||
4 | RL | BL | |||
5 | RM | BM | |||
6 | RL | BL | |||
7 | RM | BM | |||
8 | RL | BL | |||
9 | RL | BL | |||
10 | RL | BL |
Property | RIF Liposomes | RIF Microspheres |
---|---|---|
Size (µm) | 0.1371 ± 0.0337 | Dp = 2.48; Dv = 64 |
Polydispersity or GSD | n.d. | 1.89; 2.4 |
Drug loading | 20% | 10% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Contreras, L.; Sethuraman, V.; Kazantseva, M.; Hickey, A. Efficacy of Combined Rifampicin Formulations Delivered by the Pulmonary Route to Treat Tuberculosis in the Guinea Pig Model. Pharmaceutics 2021, 13, 1309. https://doi.org/10.3390/pharmaceutics13081309
Garcia-Contreras L, Sethuraman V, Kazantseva M, Hickey A. Efficacy of Combined Rifampicin Formulations Delivered by the Pulmonary Route to Treat Tuberculosis in the Guinea Pig Model. Pharmaceutics. 2021; 13(8):1309. https://doi.org/10.3390/pharmaceutics13081309
Chicago/Turabian StyleGarcia-Contreras, Lucila, Vasu Sethuraman, Masha Kazantseva, and Anthony Hickey. 2021. "Efficacy of Combined Rifampicin Formulations Delivered by the Pulmonary Route to Treat Tuberculosis in the Guinea Pig Model" Pharmaceutics 13, no. 8: 1309. https://doi.org/10.3390/pharmaceutics13081309
APA StyleGarcia-Contreras, L., Sethuraman, V., Kazantseva, M., & Hickey, A. (2021). Efficacy of Combined Rifampicin Formulations Delivered by the Pulmonary Route to Treat Tuberculosis in the Guinea Pig Model. Pharmaceutics, 13(8), 1309. https://doi.org/10.3390/pharmaceutics13081309