Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns
Abstract
:1. Introduction
2. Formulation and Characterization of Nanosystems Used in Cosmetics
- 0D: all dimensions fall within the nanometer scale;
- 1D: with one non-nanoscale and two nanoscale dimensions;
- 2D: only one dimension in the nanometer range;
- 3D: materials with various dimensions below 100 nm, while combining multiple nanocrystals in different directions.
3. Cosmetic Functions of Nanosystems
4. Market Overview
5. Regulatory Landscape
5.1. EU
5.1.1. Definition of Nanomaterial and Regulating Authorities
5.1.2. EC Released Documents
5.1.3. SCCS Released Documents
5.1.4. Other Relevant Documents
5.2. USA
5.2.1. Definition of Nanomaterial and Regulating Authorities
5.2.2. FDA Released Documents
5.3. Commonwealth Countries
5.4. Other Countries
6. Safety Concerns
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gupta, S.; Bansal, R.; Gupta, S.; Jindal, N.; Jindal, A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol. Online J. 2013, 4, 267–272. [Google Scholar] [CrossRef]
- Pastrana, H.; Avila, A.; Tsai, C.S.J. Nanomaterials in Cosmetic Products: The challenges with regard to current legal frameworks and consumer exposure. Nanoethics 2018, 12, 123–137. [Google Scholar] [CrossRef]
- Bilal, M.; Iqbal, H.M.N. New insights on unique features and role of nanostructured materials in cosmetics. Cosmetics 2020, 7, 24. [Google Scholar] [CrossRef] [Green Version]
- Antunes, A.F.; Pereira, P.; Reis, C.; Rijo, P.; Reis, C. Nanosystems for Skin Delivery: From Drugs to Cosmetics. Curr. Drug Met. 2017, 18, 412–425. [Google Scholar] [CrossRef]
- Roberts, M.S.; Mohammed, Y.; Pastore, M.N.; Namjoshi, S.; Yousef, S.; Alinaghi, A.; Haridass, I.N.; Abd, E.; Leite-Silva, V.R.; Benson, H.; et al. Topical and cutaneous delivery using nanosystems. J. Control. Release 2017, 247, 86–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fytianos, G.; Rahdar, A.; Kyzas, G.Z. Nanomaterials in cosmetics: Recent updates. Nanomaterials 2020, 10, 979. [Google Scholar] [CrossRef] [PubMed]
- ISO. Nanotechnologies—Vocabulary—Part 1: Core Terms; ISO/TS 80004-1; International Organization for Standardization: Geneva, Switzerland, 2010; Available online: https://www.iso.org/obp/ui/#iso:std:iso:ts:80004:-1:ed-2:v1:en (accessed on 20 August 2021).
- ISO. Technical Specification: Nanotechnologies—Terminology and Definitions for Nano-Objects—Nanoparticle, Nanofibre and Nanoplate; ISO/TS 80004-2:2008; International Organization for Standardization: Geneva, Switzerland, 2008; Available online: https://www.iso.org/obp/ui/#iso:std:54440:en (accessed on 20 August 2021).
- Boverhof, D.R.; Bramante, C.M.; Butala, J.H.; Clancy, S.F.; Lafranconi, M.; West, J.; Gordon, S.C. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 2015, 73, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Luo, D.; Chen, D.; Tan, X.; Bai, X.; Liu, Z.; Yang, X.; Liu, W. Current Advances of Nanocarrier Technology-Based Active Cosmetic Ingredients for Beauty Applications. Clin. Cosmet. Investig. Dermatol. 2021, 14, 867–887. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, L.; Ugazio, E. Lipid nano- and microparticles: An overview of patent-related research. J. Nanomat. 2019. [Google Scholar] [CrossRef] [Green Version]
- Mainard, A.D.; Aitken, R.J.; Butz, T.; Colvin, V.; Donaldson, K.; Oberdörster, G.; Philbert, M.A.; Ryan, J.; Seaton, A.; Stone, V.; et al. Safe handling of nanotechnology. Nature 2006, 444, 267–269. [Google Scholar] [CrossRef]
- Etheridge, M.L.; Campbell, S.A.; Erdman, A.G.; Haynes, C.L.; Wolf, S.M.; McCullough, J. The big picture on nanomedicine: The state of investigational and approved nanomedicine products. Nanomedicine 2013, 9, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, T.A. Nanomaterials: Classification, properties, and environmental toxicities. Environ. Technol. Innov. 2020, 20, 101067. [Google Scholar] [CrossRef]
- Santos, A.C.; Morais, F.; Simoes, A.; Pereira, I.; Sequieira, J.A.D.; Pereira-Silva, M.; Veiga, F.; Ribeiro, A. Nanotechnology for the development of new cosmetic formulations. Exp. Opin. Drug. Del. 2019, 16, 313–330. [Google Scholar] [CrossRef] [PubMed]
- Ijaz, I.; Gilani, E.; Nazir, A.; Bukhari, A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem. Lett. Rev. 2020, 13, 223–245. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Chircov, C.; Grumezescu, A.M.; Teleanu, R.I. Neurotoxicity of nanomaterials: An up-to-date overview. Nanomaterials 2019, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Ajazzuddin, M.; Jeswani, G.; Jha, A.K. Nanocosmetics: Past, present and future trends. Recent Pat. Nanomed. 2015, 5, 3–11. [Google Scholar] [CrossRef]
- Schneider, S.L.; Lim, H.W. A review of organic UV filters zinc oxide and titanium dioxide. Photodermatol. Photoimmunol. Photomed. 2019, 35, 442–446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srinivas, K. The current role of nanomaterials in cosmetics. J. Chem. Pharm. Res. 2016, 8, 906–914. [Google Scholar]
- Nanda, S. Nanocosmeceuticals: Retrospect, precepts and prospects. Pharma. Times 2018, 50, 73–78. [Google Scholar]
- Raj, S.; Jose, S.; Sumod, U.S.; Sabitha, M. Nanotechnology in cosmetics: Opportunities and challenges. J. Pharm. Bioallied. Sci. 2012, 4, 186–193. [Google Scholar] [CrossRef]
- Gupta, S.R.N. Exploration of various classes of nanoparticles used in cosmetic applications. Int. Res. J. Sci. Eng. 2016, 4, 91–97. [Google Scholar]
- Yang, S.; Liu, L.; Han, J.; Tang, Y. Encapsulating plant ingredients for dermocosmetic application: An update review of delivery systems and characterization techniques. Int. J. Cosmet. Sci. 2020, 42, 16–28. [Google Scholar] [CrossRef]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef]
- Chauhan, I.; Yasir, M.; Verma, M.; Singh, A.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv. Pharm. Bull. 2020, 10, 150–165. [Google Scholar] [CrossRef]
- Müller, R.H.; Radtke, M.; Wissing, S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv. Drug Del. Rev. 2002, 54, S131–S155. [Google Scholar] [CrossRef]
- Lohani, A.; Verma, A. Vescicles: Potential nano carriers for the delivery of skin cosmetics. J. Cosmet Laser Ther. 2017, 19, 485–493. [Google Scholar] [CrossRef]
- Fakhravar, Z.; Ebrahimnejad, P.; Daraee, H.; Akbarzadeh, A. Nanoliposomes: Synthesis methods and applications in cosmetics. J. Cosmet Laser Ther. 2016, 18, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Egbaria, K.; Weiner, N. Liposomes as a topical drug delivery system. Adv. Drug Del Rev. 1990, 5, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Hussain, A.; Singh, S.; Sharma, D.; Webster, T.J.; Shafaat, K.; Faruk, A. Elastic liposomes as novel carriers: Recent advances in drug delivery. Int. J. Nanomed. 2017, 12, 5087–5108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blume, G. Flexible liposomes for topical applications in cosmetics. In Science and Application of Skin Delivery Systems; Wiechers, J.W., Ed.; Allured Publishing: Carol Stream, IL, USA, 2010. [Google Scholar]
- Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019, 144, 18–39. [Google Scholar] [CrossRef] [Green Version]
- Azmi, N.A.N.; Elgharbawy, A.A.M.; Motlagh, S.R.; Samsudin, N.; Salleh, H.M. Nanoemulsions: Factory for food, pharmaceutical and cosmetics. Processes 2019, 7, 617. [Google Scholar] [CrossRef] [Green Version]
- Özgün, S. Nanoemulsions in cosmetics. Nanomaterials and Nanotechnology Lecture Project Report; Anadolu University: Eskişehir, Turkey, 2013. [Google Scholar]
- Sharma, S.; Sarangdevot, K. Nanoemulsions for cosmetics. Int. J. Adv. Res. Biol. Sci. 2012, 2, 408–415. [Google Scholar]
- Lopes, L.B. Overcoming the cutaneous barrier with microemulsions. Pharmaceutics 2014, 6, 52–77. [Google Scholar] [CrossRef] [Green Version]
- Spicer, P. Cubosome processing: Industrial nanoparticle technology development. Chem. Eng. Res. Des. 2005, 83, 1283–1286. [Google Scholar] [CrossRef]
- Bahamonde-Norambuena, D.; Molina-Pereira, A.; Cantin, M.; Muñoz, M.; Zepeda, K.; Vilos, C. Polymeric nanoparticles in dermocosmetic. Int. J. Morphol. 2015, 33, 1563–1568. [Google Scholar] [CrossRef] [Green Version]
- Guterres, S.S.; Alves, M.P.; Pohlmann, A.R. Polymeric nanoparticles, nanospheres and nanocapsules, for cutaneous applications. Drug Target Insights 2017, 2, 147–157. [Google Scholar]
- Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Pulit-Prociak, J.; Grabowska, A.; Chwastowski, J.; Majka, T.M.; Banach, M. Safety of the application of nanosilver and nanogold in topical cosmetic preparations. Colloids Surf. B Biointerfaces 2019, 183, 110416. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, R.K.; Gaur, K.; Càtala Torres, J.F.; Loza-Rosas, S.A.; Torres, A.; Saxena, M.; Julin, M.; Tinoco, A.D. Fueling a hot debate on the application of TiO2 nanoparticles in sunscreens. Materials 2019, 12, 2317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nafisi, S.; Schafer-Korting, M.; Maibach, H.I. Measuring silica nanoparticles in the skin. In Agache’s Measuring the Skin; Humbert, P., Fanian, F., Maibach, H., Agache, P., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Mebert, A.M.; Baglole, C.J.; Desimone, M.F.; Maysinger, D. Nanoengineered silica: Properties, applications and toxicity. Food Chem. Toxicol. 2017, 109, 753–770. [Google Scholar] [CrossRef]
- Ramis, J.M.; Coelho, C.C.; Córdoba, A.; Quadros, P.A.; Monjo, M. Safety assessment of nano-hydroxyapatite as an oral care ingredient according to the EU cosmetics Regulation. Cosmetics 2018, 5, 53. [Google Scholar] [CrossRef] [Green Version]
- Bordea, I.R.; Candrea, S.; Alexescu, G.T.; Brand, S.; Baciut, M.; Baciut, G.; Lucaciu, O.; Dinu, C.M.; Todeaf, D.A. Nano-hydroxyapatite use in dentistry: A systematic review. Drug Metab Rev. 2020, 52, 319–332. [Google Scholar] [CrossRef]
- Lens, M. Use of fullerenes in cosmetics. Recent Pat. Biotechnol. 2009, 3, 118–123. [Google Scholar] [CrossRef] [PubMed]
- Kuche, K.; Maheshwari, R.; Tambe, V.; Mak, K.-K.; Jogi, H.; Raval, N.; Pichika, M.; Tekade, R. Carbon nanotubes (CNTs) based advanced dermal therapeutics: Current trends and future potential. Nanoscale 2018, 10, 8911–8937. [Google Scholar] [CrossRef] [PubMed]
- Monteiro-Riviere, N.A.; Inman, A.O. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 2006, 44, 1070–1078. [Google Scholar] [CrossRef]
- Contado, C. Nanomaterials in consumer products: A challenging analytical problem. Front. Chem. 2015, 3, 48. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Hu, L. Nanoscale delivery systems for nutraceutical: Preparation, application, characterization, safety, and future trends. Food Eng. Rev. 2020, 12, 14–31. [Google Scholar] [CrossRef]
- SCCS. Guidance on the Safety Assessment of Nanomaterials in Cosmetics; SCCS/1611/19; Scientific Committee on Consumer Safety: Brussels, Belgium, 2019; Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_233.pdf (accessed on 15 July 2021).
- Zielinska, A.; Carreirò, F.; Oliveira, A.M.; Neves, A.; Pires, B.; Nagasamy Venkatesh, D.; Durazzo, A.; Lucarini, M.; Eder, P.; Silva, A.M.; et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020, 25, 3731. [Google Scholar] [CrossRef]
- Yapar, E.A.; Inal, Ö. Nanomaterials and cosmetics. J. Pharm. Istanbul. Univ. 2012, 42, 43–70. [Google Scholar]
- Karamanidou, T.; Bourganis, V.; Gatzogianni, G.; Tsouknidas, A. A Review of the EU’s Regulatory Framework for the Production of Nano-Enhanced Cosmetics. Metals 2021, 11, 455. [Google Scholar] [CrossRef]
- EC. Regulation on Cosmetic Products; 2009/1223/EU; European Commission: Brussels, Belgium; Available online: https://ec.europa.eu/health/sites/default/files/endocrine_disruptors/docs/cosmetic_1223_2009_regulation_en.pdf (accessed on 15 July 2021).
- Sharma, B.; Sharma, A. Future prospect of nanotechnology in development of anti-ageing formulations. Int. J. Pharm. Pharm. Sci. 2012, 4, 57–66. [Google Scholar]
- Arora, N.; Agarwal, S.; Murthy, R.S. Latest technology advances in cosmaceuticals. Int. J. Pharm. Sci. Drug Res. 2012, 4, 168–182. [Google Scholar]
- Miastkowska, M.; Lasoń, E.; Sikora, E.; Wolińska-Kennard, K. Preparation and Characterization of Water-Based Nano-Perfumes. Nanomaterials 2018, 8, 981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grimes, P.E. A Microsponge Formulation of Hydroquinone 4% and Retinol 0.15% in the Treatment of Melasma and Post Inflammatory Hyperpigmentation. Cutis 2004, 74, 362–368. [Google Scholar] [PubMed]
- Singh, P.; Nanda, A. Enhanced sun protection of nano-sized metal oxide particles over conventional metal oxide particles: An in vitro comparative study. Int. J. Cosmet Sci. 2014, 36, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Schneider, M.; Stracke, F.; Hansen, S.; Schaefer, U.F. Nanoparticles and their interactions with the dermal barrier. Dermatoendocrinol 2009, 1, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Larese Filon, F.; Mauro, M.; Adami, G.; Bovenzi, M.; Crosera, M. Nanoparticles skin absorption: New aspects for a safety profile evaluation. Regul. Toxicol. Pharmacol. 2015, 72, 310–322. [Google Scholar] [CrossRef]
- Liang, X.W.; Xu, Z.P.; Grice, J.; Zvyagin, A.V.; Roberts, M.S.; Liu, X. Penetration of nanoparticles into human skin. Curr. Pharm. Des. 2013, 19, 6353–6366. [Google Scholar] [CrossRef]
- Wickett, R.R.; Visscher, M.O. Structure and function of the epidermal barrier. Am. J. Infect. Control. 2006, 34, S98–S110. [Google Scholar] [CrossRef]
- Carrer, D.C.; Vermehren, C.; Bagatolli, L.A. Pig skin structure and transdermal delivery of liposomes: A two photon microscopy study. J. Control. Release 2008, 132, 12–20. [Google Scholar] [CrossRef]
- Cevc, G. Lipid vesicles and other colloids as drug carriers on the skin. Adv. Drug Deliv. Rev. 2004, 56, 675–711. [Google Scholar] [CrossRef] [PubMed]
- Cevc, G.; Vierl, U. Nanotechnology and the transdermal route: A state of the art review and critical appraisal. J. Control. Release 2010, 141, 277–299. [Google Scholar] [CrossRef] [PubMed]
- Mojsiewicz-Pieńkowska, K.; Stachowska, E.; Krenczkowska, D.; Bazar, D.; Meijer, F. Evidence of Skin Barrier Damage by Cyclic Siloxanes (Silicones)—Using Digital Holographic Microscopy. Int. J. Mol. Sci. 2020, 21, 6375. [Google Scholar] [CrossRef] [PubMed]
- Lapteva, M.; Santer, V.; Mondon, K.; Patmanidis, I.; Chiriano, G.; Scapozza, L.; Gurny, R.; Möller, M.; Kalia, Y.N. Targeted cutaneous delivery of cyclosporin A using micellar nanocarriers and the possible role of inter-cluster regions as molecular transport pathways. J. Control. Release 2014, 196, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Bugaj, A.M. Intradermal Delivery of Active Cosmeceutical Ingredients. In Novel Delivery Systems for Transdermal and Intradermal Drug Delivery; Donnelly, R.F., Singh, T.R.R., Eds.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar] [CrossRef]
- Saraf, S.; Kaur, C.D.; Gupta, A.; Verma, N. Skin Targeting Approaches in Cosmetics. Indian J. Pharm. Educ. Res. 2019, 53, 577–594. [Google Scholar] [CrossRef] [Green Version]
- Ascenso, A.; Simões, S.; Ribeiro, H. Carrier-Mediated Dermal Delivery: Applications in the Prevention and Treatment of Skin Disorders; Jenny Stanford Publishing: Boca Raton, FL, USA, 2017; Available online: https://www.routledge.com/Carrier-Mediated-Dermal-Delivery-Applications-in-the-Prevention-and-Treatment/Ascenso-Ribeiro-Simoes/p/book/9789814745581 (accessed on 15 July 2021).
- Mohanty, D.; Mounika, A.; Bakshi, V.; Akiful Haque, M.; Sahoo, C.K. Ethosomes: A Novel Approach for Transdermal Drug Delivery. Int. J. Chem. Tech. Res. 2018, 11, 219–226. [Google Scholar] [CrossRef]
- Wadher, K.; Pounikar, S.D.; Trivedi, S.; Umekar, M. Ethosome: A Novel Vesicular Carrier. Int. J. Innov. Res. Adv. Stud. 2018, 5, 13–20. Available online: https://www.ijiras.com/2018/Vol_5-Issue_7/paper_3.pdf (accessed on 15 July 2021).
- Ahmadi Ashtiani, H.R.; Bishe, P.; Lashgari, N.; Nilforoushzadeh, M.A.; Zare, S. Liposomes in Cosmetics. J. Skin Stem Cell 2016, 3, e65815. [Google Scholar] [CrossRef] [Green Version]
- Kaul, S.; Gulati, N.; Verma, D.; Mukherjee, S.; Nagaich, U. Role of nanotechnology in cosmeceuticals: A Review of Recent Advances. J. Pharm. 2018, 2018, 3420204. [Google Scholar] [CrossRef] [Green Version]
- Madan, K.; Nanda, S. Nanotechnology driven cosmetic products: Commercial and regulatory milestones. Appl. Clin. Res. Clin. Trials Regul. Aff. 2018, 5, 112–121. [Google Scholar]
- Kuenen, J.; Pomar-portillo, V.; Vilchez, A.; Visschedijk, A.; van der Gon, H.D.; Vázquez-Campos, S.; Nowack, B.; Adam, V. Inventory of country-specific emissions of engineered nanomaterials throughout the life cycle. Environ. Sci. Nano 2020, 7, 3824–3839. [Google Scholar] [CrossRef]
- Dhapte-Pawar, V.; Kadam, S.; Saptarsi, S.; Kenjale, P.P. Nanocosmeceuticals: Facets and aspects. Future Sci. OA 2020, 6, FSO613. [Google Scholar] [CrossRef] [PubMed]
- Talegaonkar, S.; Rai, M. Nanoformulations in Human Health Challenges and Approaches; Springer: Cham, Switzerland, 2017; ISBN 978-3-030-41860-1. Available online: https://www.springer.com/gp/book/9783030418571 (accessed on 15 July 2021).
- Rahiman, A.A.; Krishnan, K.; Srelekshmi, A.S.; Arjum, K.K.; Nair, S.C. Novasome: A pionering advancement in vesicular drug delivery. Int. J. Appl. Pharm. 2021, 13, 59–64. [Google Scholar] [CrossRef]
- Sonawane, R.O.; Deshmukh, A.S.; Mangrule, U.E.; Shinde, S.A.; Mahajan, H.S. Nanotechnology as a marketing future. World J. Pharm. Res. 2020, 9, 889–903. [Google Scholar]
- Lohani, A.; Verma, A.; Joshi, H.; Yadav, N.; Karki, N. Nanotechnology-based cosmeceuticals. ISRN Dermatol. 2014, 843687. [Google Scholar] [CrossRef]
- Najibfard, K.; Ramalingam, K.; Chedjieu, I.; Amaechi, B.T. Remineralization of early caries by a nano-hydroxyapatite dentifrice. J. Clin. Dent. 2011, 22, 139–143. [Google Scholar] [PubMed]
- Nanotechnology Product Database. Available online: https://product.statnano.com (accessed on 15 July 2021).
- Consumer Products Inventory. Available online: https://www.nanotechproject.tech/cpi (accessed on 15 July 2021).
- Vance, M.E.; Kuiken, T.; Vejerano, E.P.; McGinnis, S.P.; Hochella, M.F., Jr.; Tejeski, D.; Hull, M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein. J. Nanotechnol. 2015, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berube, D.M.; Searson, E.M.; Morton, T.S.; Cummings, C.L. Project on emerging nanotechnologies—Consumer product inventory evaluated. Nanotechnol. Law Bus. 2010, 7, 152–163. [Google Scholar]
- Tasleem, A.; Nuzhatun, N.; Syed, S.A.; Sheikh, S.; Raheel, M.; Muzafar, R.S. Therapeutic and diagnostic applications of nanotechnology in dermatology and cosmetics discovery. J. Nanomed. Biother. Discov. 2015, 5, 1–10. [Google Scholar]
- Scherer Santos, J. Nanocosmetics: Production, Characterization, and Performance Improvement. In Beauty—Cosmetic Science, Cultural Issues and Creative Developments; Levine, M.P., Santos, J.S., Eds.; IntechOpen: London, UK, 2020; Available online: https://www.intechopen.com/chapters/73171 (accessed on 15 July 2021).
- Netto, G.; Jose, J. Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin. J. Cosmet Dermatol. 2018, 17, 1073–1083. [Google Scholar] [CrossRef]
- Carlotti, M.E.; Battaglia, L.; Ugazio, E.; Gallarate, M.; Debernardi, F. Study on the release properties and stability of o/w emulsions containing salicylic acid and zinc oxide. J. Drug Del. Sci. Technol. 2004, 14, 119–126. [Google Scholar] [CrossRef]
- Dréno, B.; Alexis, A.; Chuberre, B.; Marinovich, M. Safety of titanium dioxide nanoparticles in cosmetics. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 34–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patravale, V.B.; Mandawgade, S.D. Novel cosmetic delivery systems: An application update. Int. J. Cosm. Sci. 2008, 30, 19–33. [Google Scholar] [CrossRef]
- Melo, A.; Amadeu, M.; Lancellotti, M.; Hollanda, L.; Machado, D. The role of nanomaterials in cosmetics: National and international legislative aspects. Química Nova 2015, 38, 599–603. [Google Scholar] [CrossRef]
- FDA. Federal Food Drug and Cosmetic Act (FFDCA); Last revision 2018; Food and Drug Administration: Silver Spring, MD, USA, 2018. Available online: https://www.fda.gov/regulatory-information/laws-enforced-fda/federal-food-drug-and-cosmetic-act-fdc-act (accessed on 15 July 2021).
- EC. Recommendation on Nanomaterial Definition; 2011/696/EU; European Commission: Brussels, Belgium, 2011; Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:275:0038:0040:en:PDF (accessed on 15 July 2021).
- FDA. Considering Whether an FDA-Regulated Product Involves the Application of Nanotechnology; Food and Drug Administration: Silver Spring, MD, USA, 2014. Available online: https://www.fda.gov/media/88423/download (accessed on 15 July 2021).
- SCCS. The SCCS Notes of Guidance for the Testing of Cosmetic Ingredients and Their Safety Evaluation; 11th revision; SCCS/ 1628/21; Scientific Committee on Consumer Safety: Brussels, Belgium, 2021; Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_250.pdf (accessed on 20 August 2021).
- FDA. Guidance for Industry—Safety of Nanomaterials in Cosmetic Products; Food and Drug Administration: Silver Spring, MD, USA, 2014. Available online: https://www.fda.gov/media/83957/download (accessed on 15 July 2021).
- EC. Regulation Amending Regulation (EC) No 1907/2006 of the European Parliament and of the Council on the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) As Regards Annexes I, III, VI, VII, VIII, IX, X, XI, and XII to Address Nanoforms of Substances; 1881/2018/EU; European Commission: Brussels, Belgium, 2018; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R1881 (accessed on 15 July 2021).
- SCCS. Guidance on the Safety Assessment of Nanomaterials in Cosmetics; SCCS/1484/12; Scientific Committee on Consumer Safety: Brussels, Belgium, 2012; Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_s_005.pdf (accessed on 15 July 2021).
- SCCS. Scientific Advice on the Safety of Nanomaterials in Cosmetic; SCCS/1618/20; Scientific Committee on Consumer Safety: Brussels, Belgium, 2020; Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_239.pdf (accessed on 15 July 2021).
- EC. Regulation on Registration, Evaluation, Authorization and Restriction of Chemical Substances (REACH); 1907/2006/EU; European Commission: Brussels, Belgium, 2006; Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2007:136:0003:0280:EN:PDF (accessed on 15 July 2021).
- Hubbs, A.F.; Mercer, R.R.; Benkovic, S.A.; Harkema, J.; Sriram, K.; Schwegler-Berry, D.; Goravanahally, M.P.; Nurkiewicz, T.R.; Castranova, V.; Sargent, L.M. Nanotoxicology—A pathologist’s perspective. Toxicol. Pathol. 2011, 39, 301–324. [Google Scholar] [CrossRef]
- Mogharabi, M.; Abdollahi, M.; Faramarzi, M.A. Toxicity of nanomaterials; An undermined issue. Daru 2014, 22, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gebel, T.; Foth, H.; Damm, G.; Freyberger, A.; Kramer, P.J.; Lilienblum, W.; Röhl, C.; Schupp, T.; Weiss, C.; Wollin, K.M.; et al. Manufactured nanomaterials: Categorization and approaches to hazard assessment. Arch. Toxicol. 2014, 88, 2191–2211. [Google Scholar] [CrossRef]
- Zhang, X.; Li, W.; Yang, Z. Toxicology of nanosized titanium dioxide: An update. Arch. Toxicol. 2015, 89, 2207–2217. [Google Scholar] [CrossRef]
- Nohynek, G.J.; Lademann, J.; Ribaud, C.; Michael, S.; Nohynek, G.J.; Roberts, M.S. Grey Goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Crit. Rev. Toxicol. 2007, 37, 251–277. [Google Scholar] [CrossRef]
- EC. Catalogue of Nanomaterials in Cosmetic Products Placed on the Market, as Notified to the European Commission by Responsible Persons, 2nd ed.; European Commission: Brussels, Belgium, 2019; Available online: https://ec.europa.eu/growth/content/commission-publishes-updated-catalogue-nanomaterials-used-cosmetics_en (accessed on 15 July 2021).
- SCCS. Opinion on Titanium Dioxide (Nano Form); SCCS/1516/13; Scientific Committee on Consumer Safety: Brussels, Belgium, 2013; Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_136.pdf (accessed on 15 July 2021).
- SCCS. Opinion on Additional Coatings for Titanium Dioxide (Nano Form) as UV-Filter in Dermally Applied Cosmetic Products; SCCS/1580/16; Scientific Committee on Consumer Safety: Brussels, Belgium, 2016; Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_202.pdf (accessed on 15 July 2021).
- SCCS. Opinion on Titanium Dioxide (Nano Form) as UV-Filter in Sprays; SCCS/1583/17; Scientific Committee on Consumer Safety: Brussels, Belgium, 2018; Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_206.pdf (accessed on 15 July 2021).
- SCCS. Opinion on Zinc Oxide (Nano Form); SCCS/1489/12; Scientific Committee on Consumer Safety: Brussels, Belgium, 2012; Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_103.pdf (accessed on 15 July 2021).
- SCCS. Opinion on 2,2′-Methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol); SCCS/1460/11; Scientific Committee on Consumer Safety: Brussels, Belgium, 2011; Available online: https://op.europa.eu/en/publication-detail/-/publication/09dcfef6-40cf-4d37-b787-13a13996fcd9 (accessed on 15 July 2021).
- SCCS. Opinion on 2,2′-Methylene-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol) (Nano Form); SCCS/1546/15; Scientific Committee on Consumer Safety: Brussels, Belgium, 2015; Available online: https://op.europa.eu/en/publication-detail/-/publication/ad2cb4e2-063d-11e8-b8f5-01aa75ed71a1 (accessed on 15 July 2021).
- SCCS. Opinion on 1,3,5-Triazine, 2,4,6-tris[1,1′-biphenyl]-4-yl-; SCCS/1429/11; Scientific Committee on Consumer Safety: Brussels, Belgium, 2011; Available online: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_070.pdf (accessed on 15 July 2021).
- SCCS. Opinion on Carbon Black (Nano Form); SCCS/1515/13; Scientific Committee on Consumer Safety: Brussels, Belgium, 2013; Available online: https://op.europa.eu/en/publication-detail/-/publication/400c8d18-e67b-46b5-aee5-2bf344955e05 (accessed on 15 July 2021).
- SCCS. Opinion on Hydroxyapatite (Nano); SCCS/1566/15; Scientific Committee on Consumer Safety: Brussels, Belgium, 2015; Available online: https://op.europa.eu/en/publication-detail/-/publication/56b33f4f-0256-11e7-8a35-01aa75ed71a1 (accessed on 15 July 2021).
- SCCS. Opinion on Hydroxyl-Apatite (Nano); SCCS/1624/20; Scientific Committee on Consumer Safety: Brussels, Belgium, 2020; Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_246.pdf (accessed on 20 August 2021).
- SCCS. Opinion on Colloidal Silver (Nano); SCCS/1596/18; Scientific Committee on Consumer Safety: Brussels, Belgium, 2018; Available online: https://op.europa.eu/it/publication-detail/-/publication/654c48ce-38cd-11e9-8d04-01aa75ed71a1 (accessed on 15 July 2021).
- SCCS. Opinion on Silica, Hydrated Silica, and Silica Surface Modified with Alkyl Silylates (Nano Form); SCCS/1545/15; Scientific Committee on Consumer Safety: Brussels, Belgium, 2015; Available online: https://op.europa.eu/it/publication-detail/-/publication/7e9e28a6-d3af-11e5-a4b5-01aa75ed71a1 (accessed on 15 July 2021).
- SCCS. Opinion on Solubility of Synthetic Amorphous Silica (SAS); SCCS/1606/19; Scientific Committee on Consumer Safety: Brussels, Belgium, 2019; Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_228.pdf (accessed on 15 July 2021).
- SCCS. Opinion on Styrene/Acrylates Copolymer (Nano) and Sodium Styrene/Acrylates Copolymer (Nano); SCCS/1595/18; Scientific Committee on Consumer Safety: Brussels, Belgium, 2018; Available online: https://ec.europa.eu/health/sites/default/files/scientific_committees/consumer_safety/docs/sccs_o_218.pdf (accessed on 15 July 2021).
- SCCS. Preliminary Opinion on Copper (Nano) and Colloidal Copper (Nano); SCCS/1621/20; Scientific Committee on Consumer Safety: Brussels, Belgium, 2020; Available online: https://ec.europa.eu/health/sites/health/files/scientific_committees/consumer_safety/docs/sccs_o_245.pdf (accessed on 15 July 2021).
- Doak, S.H. Opinion of the Scientific Committee on consumer safety (SCCS)—Opinion on the use of 2,20-methylene-bis-(6-(2H-benzotriazol-2-yl)- 4-(1,1,3,3-tetramethylbutyl)phenol) (nano)—S79—In cosmetic products. Front. Chem. 2016, 76, 215–216. [Google Scholar] [CrossRef] [Green Version]
- Chaudhry, Q. Opinion of the Scientific Committee on Consumer safety (SCCS)—Second revision of the opinion on carbon black, nano-form, in cosmetic products. Regul. Toxicol. Pharmacol. 2016, 79, 103–104. [Google Scholar] [CrossRef] [PubMed]
- Bernauerb, U. Opinion of the Scientific Committee on Consumer Safety (SCCS)—Revision of the Opinion on hydroxyapatite (nano) in cosmetic products. Regul. Toxicol. Pharmacol. 2018, 98, 274–275. [Google Scholar] [CrossRef] [PubMed]
Category | Type | Subtype | Features | Claimed Advantages | References |
---|---|---|---|---|---|
Lipid | Lipid nanoparticles | SLN, NLC | Solid (SLN) or solid/liquid (NLC) matrix-based nanoparticles stabilized with surfactants | High compound payload, stability, skin occlusion | [25,26,27] |
Vesicles | Liposomes (SUV, LUV, MLV) | Phospholipid-based vesicles | Water-soluble and lipid soluble compound loading in inner core and bilayer, respectively | [28,29,30] | |
Elastic liposomes | Deformable liposomes, due to edge activator surfactants (transferosomes) or ethanol (ethosomes) | Overcoming the stratum corneum | [31,32] | ||
Niosomes | Synthetic surfactant (sorbitans)-based vesicles | Cheaper and more stable than liposomes; skin permeation enhancers due to surfactants | [28,33] | ||
Nanoemulsions | O/W; W/O | Submicron sized emulsion | Prolonged release of loaded compounds, skin occlusion | [34,35,36] | |
Microemulsions | O/W; W/O | Clear ternary systems (oil, surfactant + co-surfactant, water) | Skin permeation enhancers due to high content of surfactants | [37] | |
Cubosomes | Amphiphilic lipid based 3D honeycomb-like structures | Cheap, stable, prolonged release of loaded compounds | [38] | ||
Polymeric | Nanospheres | Uniform matrix nanoparticles | Bioadhesion, prolonged release of loaded compounds | [39,40] | |
Nanocapsules | Core-shell nanoparticles | Bioadhesion, prolonged release of loaded compounds | |||
Nanofibers | Cheap, prolonged release of loaded compounds | ||||
Inorganic | Metal | Ag, Au | Antimicrobial (Ag), Antioxidant (Au), Nanopigments | [41,42] | |
Metal Oxides | ZnO, TiO2 | Transparent physical sunscreen | [19,43] | ||
Silica (SiO2) | Prolonged release of loaded compounds | [44,45] | |||
Hydroxyapatite | Teeth remineralization in oral care products | [46,47] | |||
Carbon-based | Fullerenes | C70, C76, C84, C90 e C36 but mainly C60 buckyballs | Antioxidants, antimicrobial | [48] | |
Carbon nanotubes | High compound payload and prolonged release | [49] | |||
Other | Carbon dots, graphene and nanodiamonds, etc. | High compound payload and prolonged release | [50] |
Information Category | Relevant Parameters for NM Characterization | Analytical Technique | Specific Information Gathered |
---|---|---|---|
Chemical identity | formula/molecular structure of the NM constituents | AAS | metal/inorganic content |
FTIR | functional groups: chemical structure | ||
ICP-MS | metal/inorganic content | ||
Mössbauer | metal/inorganic content | ||
MS | molecular ion, fragmentation spectrum: MW, chemical structure | ||
NMR (1H and 13C) | functional groups: chemical structure | ||
Chemical composition | purity; nature of impurities; coatings/surface moieties; doping material; encapsulated materials; processing chemicals; dispersing agents; other additives (i.e., stabilizers) | AAS | metal/inorganic impurities & doping materials |
DSC | calorimetric transitions: melting temperature/enthalpy; polymorphism | ||
FTIR | functional groups: doping materials, processing chemicals | ||
GC/LC-MS | analytical separation & identification: purity; nature of impurities, encapsulated actives, processing chemicals | ||
HPLC | analytical separation: purity, encapsulated actives, processing chemicals | ||
ICP-MS | metal/inorganic impurities & doping materials | ||
Mössbauer | metal/inorganic impurities & doping materials | ||
NMR (1H and 13C) | funtional groups: doping materials, processing chemicals | ||
SEM | elemental analysis | ||
UV–Vis | functional groups, UV extintion coefficient: chemical structure | ||
Crystallographic structure | crystalline form: amorphous, polycrystalline, crystalline; phase/volume fraction; spatial distribution | DSC | calorimetric transitions: liquid crystals; polymorphism |
XRD | crystal structure | ||
TEM | 2D transmitted electronic image | ||
Particle size and size distribution | distribution diagrams for agglomerates/aggregates: number versus size; number weighted sum function -cumulative numbers; batch-to-batch variation | AFM | probe scan image |
CLS | density/size separation | ||
DLS | mean particle size and polydispersity, size distribution | ||
FFF/HDC | size/MW based separation: size distribution, presence of agglomeration or aggregation | ||
SEM | 3D backscattered electronic image | ||
SLS | mean particle size | ||
TEM | 2D transmitted electronic image | ||
Morphology/Shape/Structure | state/physical form: powder, solution, suspension; shape: spherical, tube, rod; aggregation: primary particulates/agglomerates; spatial distribution: homogeneous mixture, core-shell, surface coating | AFM | probe scan image |
SEM | 3D backscattered electronic image | ||
TEM | 2D transmitted electronic image | ||
XRD | crystal structure | ||
Surface characteristics | surface charge: Zeta potential; morphology/topography; interfacial tension; reactive sites; chemical/biochemical modifications/coatings; surface contaminants | FTIR | functional groups: reactive sites, coatings, surface moieties |
GE | MW based separation: coatings/functionalization with proteins | ||
LDE | Zeta potential | ||
NMR (1H and 13C) | functional groups: reactive sites, coatings or surface moieties | ||
RS | surface binding, coatings, surface moieties of Carbon based materials | ||
XPS | surface elemental analysis | ||
Surface area | specific surface area. volume-specific surface area | BET | surface area calculation by gas absorption |
Concentration | particle mass/ particle number per volume | AAS | metal/inorganic dose quantification |
GC/LC-MS | analytical separation: dose quantification | ||
HPLC | analytical separation: dose quantification | ||
ICP-MS | metal/inorganic dose quantification | ||
UV–Vis | dose quantification | ||
Stability | stability/dissociation constants in relevant formulation/media | DLS | mean particle size and polydispersity; size distribution |
DSC | calorimetric transitions: polymorphism | ||
FTIR | functional groups: chemical structure | ||
GC/LC-MS | analytical separation & identification: dose quantification | ||
HPLC | analytical separation: dose quantification | ||
MS | molecular ion, fragmentation spectrum: chemical structure | ||
NMR (1H and 13C) | functional groups: chemical structure | ||
SLS | mean particle size |
Type | Product Category | Nanosystem Function | Company Line & Product Name(s) | Ref. |
---|---|---|---|---|
Vesicles | ||||
Liposomes | Hair care | Hair repair | Sesderma Seskavel Mulberry Anti-Hair Loss Foam | [10] |
Skin Cleanser | Skin purification | Dermaviduals Acnel Lotion N | [18] | |
Skin care | Anti-age | Aubrey Organics Lumescence Eye Cream | [78] | |
Christian Dior Capture Totale | [78,81,82] | |||
I-Wen Naturals Ageless Facelift Cream | [82] | |||
Jafra Cosmetics Royal Jelly Lift Concentrate | [82] | |||
Kaya Skin Clinic Derma Stemness Reviving Serum | [10] | |||
Lucas Meyer Isocell MAP | [10] | |||
Anti-age & moisturizing | Russell Organics Liposome Concentrate | [78] | ||
Sesderma C-Vit Liposomal Serum; Fillderma Lips Volumizer; Acglicolic Classic Crema Hidratante SPF 15; Daeses Lifting Cream | [10,15,78] | |||
Anti-age & skin repair | Clinicians Complex Liposome Face and Neck Lotion | [78,81] | ||
Rovi Cosmetics Int Rovisome ACE Plus | [82] | |||
Moisturizing | Dead Sea Premier Bio Performance Liposome | [10] | ||
Decorte Moisture Liposome: Eye Cream/Face Cream | [78,81] | |||
Kerstin Florian Rehydrating Liposome Day Creme | [78,81] | |||
Microfluidics Dermosome | [78,81] | |||
Nattermann PL Natipide II | [20] | |||
Skin repair | Estee Lauder Advanced Night Repair Protective Recovery Complex | [78,81] | ||
Whitening | Sesderma Azelac Ru Serum | [10] | ||
Niosomes | Hair Cleanser | Hair repair | Identik Floral Repair: Shampooing | [78] |
Hair care | Identik Floral Repair: Masque | [78] | ||
Make up | Anti-age & skin repair | Lancome Niosome + Clear whitening foundation cream | [78,81] | |
Skin care | Anti-age & skin repair | Eusu Niosome Makam Pom Whitening Facial Cream | [78,81] | |
Lancome Niosome + Perfected Age Treatment | [78,81] | |||
Laon Cosmetics Mayu Niosome Base Cream | [78,81] | |||
Simply Man Match Anti-Age Response Cream | [78,81] | |||
Whitening | Guinot Deep action lightening serum | [10] | ||
Ethosomes | Skin care | Anti-age & skin repair | Genome Cosmetics Decorin Cream | [74,75,76,77] |
Adjuvant for cellulitis | Hampden Health Cellulight EF | [74,75,76,77] | ||
NovelTherpeutic Technologies Noicellex | [73,75,76,77] | |||
Osmotics Lipoduction | [73,77] | |||
Physonics Skin genuity | [76,77] | |||
Novasomes | Skin care | Moisturizing | Amore Pacific Water Bank | [83] |
IGI MIAJ | [83] | |||
Jo. & Johnson Neutrogena | [22] | |||
NSom | Skin care | Anti-age | L’Oreal Revitalift: double lifting/intense lift treatment mask | [15,18,22,82,84] |
Lipid NP | ||||
SLN | Parfum | Stabilizer | Chanel Allure: Eau Parfum Spray/Parfum Bottle | [78,81] |
Skin care | Anti-age & skin repair | Soosion Facial Lifting Cream SLN technology | [81] | |
Moisturizing | Chanel Allure: Body Cream | [78,81] | ||
Yamanouchi Nanobase | [11] | |||
NLC | Skin care | Anti-age | Scholl Regenerations Cream Intensive Ampoules | [11,78] |
Anti-age & skin repair | Amore Pacific Iope Supervital Extra Moist: Eye Cream | [11,78] | ||
Beate Johnen NLC deep effect: eye serum/repair cream/reconstruction cream | [11] | |||
Chemisches Laboratorium (Dr. Richter) NanoLipid: Basic/Q10/Repair/Restore | [11] | |||
Dr. Rimpler Cutanova Cream: Nano Repair Q10/ NanoVital Q10; Intensive Serum NanoRepair Q10 | [11,78,82] | |||
Dr.Theiss (Medipharma Cosmetics) Olivenol: Anti Falten Pflegekontrat/Augenpflegebalsam | [11,78] | |||
Sirech Emas Phyto NLC Active Cell Repair | [15,81] | |||
Moisturizing & skin repair | Amore Pacific Iope Supervital Extra Moist: Softener | [11,78] | ||
Isabelle Lancray Surmer: Crème Contour Des Yeux Nano-Remodelante/Creme Legere NanoProtection/Crème Riche Nano-Restructurante/Elixir du beauté Nano-Vitalisant/Masque Creme Nano-Hydratant | [11] | |||
Skin repair | La Prairie Swiss Cellular White Illuminating Eye Essence | [11,78] | ||
NE & ME | ||||
NE | Hair care | Anti-fading | Korres Red Vine Hair Sun Protection | [78] |
Pureology Color Max | [22] | |||
Parfum | Stabilizer | Chanel Calming Alcohol Free Nanoemulsion | [22,78,81,84] | |
Skin care | Anti-age | La Prairie Skin Caviar ampoules | [15,22,84] | |
MiBelle Biochemistry Nano-LipoBelle: H-AECL/E-Q10 Cream | [82] | |||
Marie Louise Vital Nanoemulsions A-VC | [81] | |||
Anti-age & moisturizing | Bayer HealthCare Bepanthenol-Protect Facial Cream Ultra | [78] | ||
Rhonda Allison Phyto-Endorphin Hand Cream | [78,81] | |||
Moisturizing | Chanel Precision-Solution Destressante Solution NanoEmulsion Peaux Sensitivity; Coco Mademoiselle Fresh Moisture Mist | [22,78,81,84] | ||
Coni Beauty Hyaluronic Acid & Naneomulsion Intensive Hydration Toner | [78,81] | |||
Vitacos Cosmetics Vita-Herb Nona-Vital Skin Toner; Nanovital Vitanics Crystal Moisture Cream | [15,78,81] | |||
ME | Skin care | Anti-age | Auriga International Aurigene Microemulsion P | [37] |
Skin repair | African Botanics Cloudburst Microemulsion Balancing Moisturizer | [37] | ||
Polymeric NP | ||||
NS | Skin Cleanser | Skin purification | Kara Vita Clear It! Complex Mist | [18,78,81,85] |
Hair care & skin care | Nourishing | Pureology Nanowax | [18] | |
Skin care | Anti-age | Cell Act Switzerland DNA Filler Intense Cream | [81] | |
Dermaswiss Nanosphere Plus | [81,82] | |||
Kara Vita Eye Tender; Lip Tender | [18,78,81,85] | |||
Moisturizing | Coryse Salome Paris Competence Hydration Ultra-Moisturizing Cream | [78] | ||
Hydralane Paris Ultra Moisturizing Day Cream | [78,81] | |||
Kara Vita Fresh As A Daisy Body Lotion | [18,78,81,85] | |||
Skin repair | Dermazone Solutions (Lyphazome) Moisturizing sunscreen MAX SPF 29/Moisturizing sunscreen SPF 30 | [15,18,22] | ||
Whitening | Kara Vita Enlighten me | [18,78,81,85] | ||
NC | Skin care | Anti-age | Dr. Brandt (QuSome) Double dose in a box; Laser relief; Laser tight | [22] |
Eccos Nano vita C | [15] | |||
Euoko eye contour nanolift | [10] | |||
Pharmanex LifePak Nano | [85] | |||
Anti-age & skin repair | Lancome Hydra flash bronzer; Soleil Instant Cooling Sun Spritz SPF 15; Primordiale Optimum Lip; Hydra Zen Cream | [15,22,82,84,85] | ||
Moisturizing | Enprani Super aqua skin cream line | [22,84] | ||
Inorganic NP | ||||
Au | Skin care | Anti-age | Orogold 24 K Nano Ultra Silk Serum | [78,81] |
Chantecaille Nano Gold Energizing: Cream/Eye Serum | [78] | |||
Nuvoderm Nano Gold Anti-Aging Lifting Serum | [78] | |||
LR Zeitgard Nano Gold & Silk Day Cream | [78,81] | |||
Lexon Nanorama—Nano Gold Mask Pack | [85] | |||
Ameizii Nano Gold Foil Liquid | [78,81] | |||
Anti-age, whitening | Tony Moly Nano Gold BB Cream SPF 50 PA+++ | [78] | ||
Whitening | O3+ 24 K Gold Gel Cream | [78,81] | ||
Ag | Skin Cleanser | Skin purification | NanoCyclic Cleanser Silver | [85] |
Natural Korea Cosil: Nano Beauty Soap | [85] | |||
Skin care | Natural Korea Cosil: Whitening Mask | [85] | ||
Au + Ag | Skin care | Anti-age & skin purification | Joyona International Marketing Nano Gold 24 Hour Cream | [18,21,79] |
ZnO | Skin Cleanser | Adsorbent | Nano-Infinity Nanotech Nano-in Deep Cleaning | [18,21] |
Skin care | Sunscreen | Antaria Zinclear | [84] | |
Dermatone Moisfurizing lips ‘n face protection crème | [22] | |||
Procter & Gamble Olay complete UV protective moisture lotion | [22] | |||
TiO2 | Skin care | Sunscreen | Boots (Optisol) Soltan facial sun defence cream | [22] |
Christian Dior DiorSnow Pure UV Base SPF 50 | [82,85] | |||
ZnO + TiO2 | Make up | Sunscreen | Colore Science Sunforgettable: corrector colores SPF 20/SPF 30 brush range | [22,84] |
Skin care | Colore Science Wild to mild skin bronzer | [22,84] | ||
SiO2 | Skin care | Antiage & skin care | Global Med Tech. Leorex hypoallergenic wrinkle nano remover line | [22,84] |
Lancome Renergie: lift makeup/microlift eye | [22,82,84] | |||
Shiseido Elixir skin range; Pureness matifying compact | [22] | |||
Al2O3 | Make up | Absorbent & anti-caking | Revlon Colorstay natural powder; New complexion concealer | [22] |
Mica | Hair care | Colorant | Pureology Nano Works Shine Luxe | [18] |
Make up | Colore Science Dual Finished Pressed Compacts | [18] | ||
HA | Toothpaste | Abrasive | Apagard Apagard Premio toothpaste | [86] |
Carbon based | ||||
Fullerenes | Skin care | Anti-age | Dr. Brandt New lineless cream | [22] |
Sircuit Cosmeceuticals White out/Daily under eye care | [21,22,79,82] | |||
Anti-age & skin repair | Bellapelle Skin Studio Defy: Age management exfoliator/EGF complex cocktail/Nourish | [18,22] | ||
MyChelle Dermaceuticals Revitalizing night cream | [22] | |||
Skin repair | Zelens Fullerene C60: day cream/night cream | [22,82] |
Company | Nanosystem | Product(s) Name | Function | Ref. |
---|---|---|---|---|
Vesicles | ||||
Applied genetics | Enzyme loaded | Ultrasomes; Photosome | Suncare products, skin repair | [73,96] |
BASF | DHA loaded | Elespher | DHA protection & delivery | [96] |
BASF | Catezome | Improved skin delivery | [96] | |
Nanoemulsions | ||||
Sinerga | O/W | Nanocream | Sprayable, hyperfluid emulsions; wet wipes | [78] |
Microemulsions | ||||
Abitec | Oily | Caprol Microexpress blends | Sunscreens & anti-age actives delivery | [37] |
Dow Corning | Silicon | Dowsil | Hair care: conditioners, gels | [37] |
Nanoparticles | ||||
Advanced Nanotechnology | Al2O3 | Alusion Aluminum Powders | Adsorbent & anti-caking | [18] |
Advancec Polymers Systems | Polymer | Microsponge | Improved skin delivery | [59,96] |
BASF | Nylon/silica | Elesponge | Emollient | [96] |
Degussa | TiO2 | Tego Sun TS Plus | Sunscreen | [82] |
Micronisers Pty | ZnO | NanoSun | Sunscreen, adsorbent | [82] |
EU | USA | |
---|---|---|
Regulating authorities/organizations | EC; SCCS; EUON | FDA; NTF, NNI, PCPC |
Relevant documents released | EC Regulation 1223/2009 [57] | Federal Food, Drug, and Cosmetic Act (FDA) [98] |
EC Recommendation 696/2011 [99] | “Considering whether an FDA-Regulated Product Involves the Application of Nanotechnology” (FDA) [100] | |
SCCS Notes of Guidance 11th revision [101] | ||
Guidance on the Safety Assessment of Nanomaterials in Cosmetics (SCCS) [53] | “Guidance for Industry-Safety of Nanomaterials in Cosmetic Products” (FDA) [102] | |
REACH updated Regulation 1907/2006 (2018) [103] | ||
Nanomaterial definition | EC Regulation 1223/2009: “an insoluble or biopersistent and intentionally manufactured material, having one or more external dimensions, or an internal structure, on the scale from 1 to 100 nm” | No approved definition by FDA; only two points from “Considering whether an FDA-Regulated Product Involves the Application of Nanotechnology” (2014) should be used to identify nanomaterials: (1) if “a material or final product is designed to have at least one external dimension, or internal or surface structure, in the nanoscale range (approximately 1 nm to 100 nm)”; (2) if “a material or final product is designed to exhibit properties or phenomena, including physical or chemical properties or biological effects, which are attributable to its size, even if these dimensions are outside the nanoscale range, down to one micrometer (1000 nm)”. |
EC Recommendation 696/2011: “a natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and where, for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range 1–100 nm. In specific cases and where warranted by concerns for the environment, health, safety or competitiveness the number size distribution threshold of 50% may be replaced by a threshold between 1 and 50%. By derogation from the above, fullerenes, graphene flakes and single-wall carbon nanotubes with one or more external dimensions below 1 nm should be considered as nanomaterials” | ASTM: “any technology that measures, manipulates or incorporates materials and/or resources from 1 to 100 nm” | |
NNI: “nanotechnology is the development, understanding and control of materials at the nanoscale, ranging from 1 to 100 nm” |
NM | Intended Use by the Applicant | Exp | LO/ RO | Safety Concerns | SCCS Opinion | Justification | Ref |
---|---|---|---|---|---|---|---|
Nano-TiO2 | UV filter in sunscreens | D/ O/ I | LO/ RO | Inhalation exposure could lead to lung inflammatory response and potential carcinogenicity |
| Lack of dermal absorption after application to healthy, intact skin | [113,114,115] |
Nano-ZnO | UV filter in sunscreens and colorant in dermally-applied products | D/ O/ I | LO/ RO | Lung inflammation after inhalation |
|
| [116] |
Nano-MBBT (120 nm) | UV filter in sunscreens, day care and whitening products | D/ O | LO/ RO | Inhalation toxicity |
| No concern for the dermal application with regards to the systemic effects | [117,118,128] |
Tris-Biphenyl Triazine | UV filter in sunscreens and dermallyapplied products | D/ I | LO | Strong inflammatory response in the lung through inhalation exposure |
| Lack of dermal absorption of the material in insoluble particulate form | [119] |
Nano-Carbon black (20 nm or greater) | Colorant in skin products up to 0.001% | D/ O | LO/ RO | Toxicity, inflammation and altered phagocytosis in human monocytes |
|
| [120,129] |
Colorant in nail polishes and mascaras up to 5% | D | LO | |||||
Colorant in other make-up eye products up to 10% | D | LO | |||||
Nano hydroxyapatite | Toothpastes, teeth whiteners and mouthwashes up to 10% | O | RO | Cytotoxicity, induction of oxidative stress, apoptosis, and inflammatory responses | Negative/ inconclusive |
| [121,122,130] |
Colloidal Ag | Toothpastes up to 1% | O | RO | Much of the information provided by the applicant turned out not to be relevant for safety assessment | Negative/ inconclusive |
| [123] |
Skin care products up to 1% | D | LO/ RO | |||||
Nano-Silica | Absorbent & anti-caking agent, controlled release of active compounds | D/ O/ I | LO/ RO | Nanoparticles might penetrate the skin and end up in internal organs or the bloodstream—where they might be toxic | Negative/ inconclusive | No proof that nanosilica penetrates the skin or is toxic, but also no enough evidence to rule out those possibilities | [124,125] |
Styrene/Acrylate Copolymer | Carrier for other bioactive compounds | D | LO | Potential accumulation of the encapsulated substances to unintended parts of the body | Negative/ inconclusive | No sufficient evidence for the safety related to nano-scale styrene/acrylates as such or as a carrier for bioactive substances | [126] |
Colloidal Cu | Oral uses (mouth wash) | O | RO | Possible systemic uptake of Cu nanoparticles with potential accumulation in certain organs; potential mutagenic/genotoxic and immunotoxic/nephrotoxic effects | Negative/ inconclusive | Further safety evaluation are needed due to the relevant potential toxicological risks | [127] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferraris, C.; Rimicci, C.; Garelli, S.; Ugazio, E.; Battaglia, L. Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics 2021, 13, 1408. https://doi.org/10.3390/pharmaceutics13091408
Ferraris C, Rimicci C, Garelli S, Ugazio E, Battaglia L. Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics. 2021; 13(9):1408. https://doi.org/10.3390/pharmaceutics13091408
Chicago/Turabian StyleFerraris, Chiara, Clara Rimicci, Sara Garelli, Elena Ugazio, and Luigi Battaglia. 2021. "Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns" Pharmaceutics 13, no. 9: 1408. https://doi.org/10.3390/pharmaceutics13091408
APA StyleFerraris, C., Rimicci, C., Garelli, S., Ugazio, E., & Battaglia, L. (2021). Nanosystems in Cosmetic Products: A Brief Overview of Functional, Market, Regulatory and Safety Concerns. Pharmaceutics, 13(9), 1408. https://doi.org/10.3390/pharmaceutics13091408