Truncated Pleurocidin Derivative with High Pepsin Hydrolysis Resistance to Combat Multidrug-Resistant Pathogens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Validation of Peptides
2.2. Determination of Antibacterial Activity
2.2.1. Bacterial Strains and Growing Conditions
2.2.2. Minimum Inhibitory Concentrations (MICs) Determination
2.2.3. Determination of Inhibition Curves
2.3. Determination of Hemolysis
2.4. Determination of Stability
2.4.1. Temperature and pH Stability
2.4.2. Ion and Serum Plasma Stability
2.4.3. Protease Stability
2.5. Verification of Pepsin Tolerance
2.5.1. Circular Dichroism (CD) Analysis
2.5.2. Scanning Electron Microscope
2.6. Study on Antibacterial Mechanism
2.6.1. Cell Membrane Integrity Test
2.6.2. Measurement of Plasma Membrane Potential
2.6.3. ROS Determination
2.6.4. LPS and Phospholipid Inhibition Test
3. Results
3.1. Physicochemical Properties of Peptides
3.2. Broad-Spectrum Antibacterial Activity of Peptides
3.3. High Stability and Safety of Peptides
3.4. GK-4 Exerts Antimicrobial Activity by Interacting with Membrane Components
3.5. GK-4 Dissipates Bacterial Membrane Potential and Promotes the Generation of ROS
3.6. GK-4 Has High Pepsin Hydrolytic Resistance Relative to Pleu
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berendonk, T.U.; Manaia, C.M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Burgmann, H.; Sorum, H.; Norstrom, M.; Pons, M.N.; et al. Tackling antibiotic resistance: The environmental framework. Nat. Rev. Microbiol. 2015, 13, 310–317. [Google Scholar] [CrossRef]
- Kim, W.; Zou, G.; Hari, T.P.A.; Wilt, I.K.; Zhu, W.; Galle, N.; Faizi, H.A.; Hendricks, G.L.; Tori, K.; Pan, W.; et al. A selective membrane-targeting repurposed antibiotic with activity against persistent methicillin-resistant Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 2019, 116, 16529–16534. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Hong, T.; Cui, P.; Wang, J.; Xia, J. Antimicrobial peptides towards clinical application: Delivery and formulation. Adv. Drug. Deliv. Rev. 2021, 175, 113818. [Google Scholar] [CrossRef] [PubMed]
- Wani, N.A.; Stolovicki, E.; Hur, D.B.; Shai, Y. Site-specific isopeptide bond formation: A powerful tool for the generation of potent and nontoxic antimicrobial peptides. J. Med. Chem. 2022, 65, 5085–5094. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.D.; Moriya, J.; Carle, V.; Pojer, F.; Abriata, L.A.; Deyle, K.; Heinis, C. De novo development of proteolytically resistant therapeutic peptides for oral administration. Nat. Biomed. Eng. 2020, 4, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wainer, J.; Ryoo, S.W.; Qi, X.; Chang, R.; Li, J.; Lee, S.H.; Min, S.; Wentworth, A.; Collins, J.E.; et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci. Adv. 2022, 8, eabk1792. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, D.S.; Shepherd, N.E.; Xu, W.; Lucke, A.J.; Stoermer, M.J.; Fairlie, D.P. Orally absorbed cyclic peptides. Chem. Rev. 2017, 117, 8094–8128. [Google Scholar] [CrossRef] [PubMed]
- Ahn, M.; Gunasekaran, P.; Rajasekaran, G.; Kim, E.Y.; Lee, S.J.; Bang, G.; Cho, K.; Hyun, J.K.; Lee, H.J.; Jeon, Y.H.; et al. Pyrazole derived ultra-short antimicrobial peptidomimetics with potent anti-biofilm activity. Eur. J. Med. Chem. 2017, 125, 551–564. [Google Scholar] [CrossRef]
- Ma, L.; Xie, X.; Liu, H.; Huang, Y.; Wu, H.; Jiang, M.; Xu, P.; Ye, X.; Zhou, C. Potent antibacterial activity of MSI-1 derived from the magainin 2 peptide against drug-resistant bacteria. Theranostics 2020, 10, 1373–1390. [Google Scholar] [CrossRef]
- Liu, Y.; Song, M.; Ding, S.; Zhu, K. Discovery of linear low-cationic peptides to target methicillin-resistant Staphylococcus aureus in vivo. ACS Infect. Dis. 2019, 5, 123–130. [Google Scholar] [CrossRef]
- McMillan, K.A.M.; Coombs, M.R.P. Investigating potential applications of the fish anti-microbial peptide pleurocidin: A systematic review. Pharmaceuticals 2021, 14, 687. [Google Scholar] [CrossRef] [PubMed]
- Talandashti, R.; Mehrnejad, F.; Rostamipour, K.; Doustdar, F.; Lavasanifar, A. Molecular insights into pore formation mechanism, membrane perturbation, and water permeation by the antimicrobial peptide pleurocidin: A combined all-atom and coarse-grained molecular dynamics simulation study. J. Phys. Chem. B 2021, 125, 7163–7176. [Google Scholar] [CrossRef]
- Manzo, G.; Hind, C.K.; Ferguson, P.M.; Amison, R.T.; Hodgson-Casson, A.C.; Ciazynska, K.A.; Weller, B.J.; Clarke, M.; Lam, C.; Man, R.C.H.; et al. A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy. Commun. Biol. 2020, 3, 697. [Google Scholar] [CrossRef] [PubMed]
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Shi, J.; Chen, C.; Wang, D.; Tong, Z.; Wang, Z.; Liu, Y. Amphipathic peptide antibiotics with potent activity against multidrug-resistant pathogens. Pharmaceutics 2021, 13, 438. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, J.; Yin, Y.; Wang, G.; Yang, M.; Li, Y.; Zhang, Z.; Lai, R. The antimicrobial peptide ZY4 combats multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii infection. Proc. Natl. Acad. Sci. USA 2019, 116, 26516–26522. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, J.; Yang, Z.; He, S.; Yang, Y.; Feng, X.; Dou, X.; Shan, A. Antimicrobial peptides with high proteolytic resistance for combating Gram-negative bacteria. J. Med. Chem. 2019, 62, 2286–2304. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Garcia, M.; Rodriguez, A.; Alba, A.; Vazquez, A.A.; Morales Vicente, F.E.; Perez-Erviti, J.; Spellerberg, B.; Stenger, S.; Grieshober, M.; Conzelmann, C.; et al. New antibacterial peptides from the freshwater mollusk Pomacea poeyana (Pilsbry, 1927). Biomolecules 2020, 10, 1473. [Google Scholar] [CrossRef]
- Dong, W.; Liu, Z.; Sun, L.; Wang, C.; Guan, Y.; Mao, X.; Shang, D. Antimicrobial activity and self-assembly behavior of antimicrobial peptide chensinin-1b with lipophilic alkyl tails. Eur. J. Med. Chem. 2018, 150, 546–558. [Google Scholar] [CrossRef]
- Ma, Z.; Wei, D.; Yan, P.; Zhu, X.; Shan, A.; Bi, Z. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of alpha-helix-based peptide amphiphiles. Biomaterials 2015, 52, 517–530. [Google Scholar] [CrossRef]
- Jayathilaka, E.; Rajapaksha, D.C.; Nikapitiya, C.; De Zoysa, M.; Whang, I. Antimicrobial and anti-biofilm peptide octominin for controlling multidrug-resistant Acinetobacter baumannii. Int. J. Mol. Sci. 2021, 22, 5353. [Google Scholar] [CrossRef]
- Hong, M.J.; Kim, M.K.; Park, Y. Comparative antimicrobial activity of Hp404 peptide and its analogs against Acinetobacter baumannii. Int. J. Mol. Sci. 2021, 22, 5540. [Google Scholar] [CrossRef] [PubMed]
- Hong, Y.; Li, L.; Luan, G.; Drlica, K.; Zhao, X. Contribution of reactive oxygen species to thymineless death in Escherichia coli. Nat. Microbiol. 2017, 2, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Hong, L.; Gontsarik, M.; Amenitsch, H.; Salentinig, S. Human antimicrobial peptide triggered colloidal transformations in bacteria membrane lipopolysaccharides. Small 2022, 18, e2104211. [Google Scholar] [CrossRef] [PubMed]
- Sohlenkamp, C.; Geiger, O. Bacterial membrane lipids: Diversity in structures and pathways. FEMS Microbiol. Rev. 2016, 40, 133–159. [Google Scholar] [CrossRef]
- Hazam, P.K.; Cheng, C.C.; Hsieh, C.Y.; Lin, W.C.; Hsu, P.H.; Chen, T.L.; Lee, Y.T.; Chen, J.Y. Development of bactericidal peptides against multidrug-resistant Acinetobacter baumannii with enhanced stability and low toxicity. Int. J. Mol. Sci. 2022, 23, 2191. [Google Scholar] [CrossRef]
- Qi, S.; Gao, B.; Zhu, S. A fungal defensin inhibiting bacterial cell-wall biosynthesis with non-hemolysis and serum stability. J. Fungi. 2022, 8, 174. [Google Scholar] [CrossRef]
- Etayash, H.; Alford, M.; Akhoundsadegh, N.; Drayton, M.; Straus, S.K.; Hancock, R.E.W. Multifunctional antibiotic-host defense peptide conjugate kills bacteria, eradicates biofilms, and modulates the innate immune response. J. Med. Chem. 2021, 64, 16854–16863. [Google Scholar] [CrossRef]
- Chen, J.; Hao, D.; Mei, K.; Li, X.; Li, T.; Ma, C.; Xi, X.; Li, L.; Wang, L.; Zhou, M.; et al. In vitro and in vivo studies on the antibacterial activity and safety of a new antimicrobial peptide dermaseptin-AC. Microbiol. Spectr. 2021, 9, e0131821. [Google Scholar] [CrossRef]
- Safronova, V.N.; Panteleev, P.V.; Sukhanov, S.V.; Toropygin, I.Y.; Bolosov, I.A.; Ovchinnikova, T.V. Mechanism of action and therapeutic potential of the beta-hairpin antimicrobial peptide capitellacin from the marine polychaeta capitella teleta. Mar. Drugs 2022, 20, 167. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Uma, S.K.; Mohan, G.; Mohan, A.; Shanmugam, G.; Kumar, V.T.V.; Sreekumar, J.; Chandrika, S.K.; Vasudevan, D.; Nori, S.R.C.; et al. SSTP1, a host defense peptide, exploits the immunomodulatory il6 pathway to induce apoptosis in cancer cells. Front. Immunol. 2021, 12, 740620. [Google Scholar] [CrossRef]
- Gong, H.; Hu, X.; Liao, M.; Fa, K.; Ciumac, D.; Clifton, L.A.; Sani, M.A.; King, S.M.; Maestro, A.; Separovic, F.; et al. Structural disruptions of the outer membranes of gram-negative bacteria by rationally designed amphiphilic antimicrobial peptides. ACS Appl. Mater. Interfaces 2021, 13, 16062–16074. [Google Scholar] [CrossRef] [PubMed]
- Gan, B.H.; Cai, X.; Javor, S.; Kohler, T.; Reymond, J.L. Synergistic effect of propidium iodide and small molecule antibiotics with the antimicrobial peptide dendrimer g3kl against Gram-negative bacteria. Molecules 2020, 25, 5643. [Google Scholar] [CrossRef] [PubMed]
- Farha, M.A.; Verschoor, C.P.; Bowdish, D.; Brown, E.D. Collapsing the proton motive force to identify synergistic combinations against Staphylococcus aureus. Chem. Biol. 2013, 20, 1168–1178. [Google Scholar] [CrossRef] [PubMed]
- Taggar, R.; Singh, S.; Bhalla, V.; Bhattacharyya, M.S.; Sahoo, D.K. Deciphering the antibacterial role of peptide from Bacillus subtilis subsp. spizizenii Ba49 against Staphylococcus aureus. Front. Microbiol. 2021, 12, 708712. [Google Scholar] [CrossRef]
- Zhao, X.; Drlica, K. Reactive oxygen species and the bacterial response to lethal stress. Curr. Opin. Microbiol. 2014, 21, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, M.; Niu, W.; Mao, H.; Yang, P.; Xu, B.; Sun, Y. Tricalcium phosphate particles promote pyroptotic death of calvaria osteocytes through the ROS/NLRP3/Caspase-1 signaling axis in amouse osteolysis model. Int. Immunopharmacol. 2022, 107, 108699. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Li, F.; Zhu, Z.; Peng, G.; Huang, D.; Xie, M. 4-[1-Ethyl-1-methylhexy]-phenol induces apoptosis and interrupts Ca(2+) homeostasis via ROS pathway in Sertoli TM4 cells. Environ. Sci. Pollut. Res. Int. 2022, 29, 52665–52674. [Google Scholar] [CrossRef]
- Wang, X.; Yang, X.; Wang, Q.; Meng, D. Unnatural amino acids: Promising implications for the development of new antimicrobial peptides. Crit. Rev. Microbiol. 2022, 7, 1–25. [Google Scholar] [CrossRef]
- Schnaider, L.; Brahmachari, S.; Schmidt, N.W.; Mensa, B.; Shaham-Niv, S.; Bychenko, D.; Adler-Abramovich, L.; Shimon, L.J.W.; Kolusheva, S.; DeGrado, W.F.; et al. Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity. Nat. Commun. 2017, 8, 1365. [Google Scholar] [CrossRef]
- Kasetty, G.; Kalle, M.; Morgelin, M.; Brune, J.C.; Schmidtchen, A. Anti-endotoxic and antibacterial effects of a dermal substitute coated with host defense peptides. Biomaterials 2015, 53, 415–425. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.A.; Karim, A.; Ethiraj, B.; Raihan, T.; Kadier, A. Antimicrobial peptides: Promising alternatives over conventional capture ligands for biosensor-based detection of pathogenic bacteria. Biotechnol. Adv. 2022, 55, 107901. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, D.; Shukla, S.K.; Prakash, O.; Zhang, G. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie 2010, 92, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Ong, Z.Y.; Liu, S.; Li, Y.; Wiradharma, N.; Yang, Y.Y.; Ying, J.Y. Synthetic beta-sheet forming peptide amphiphiles for treatment of fungal keratitis. Biomaterials 2015, 43, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Vergalli, J.; Bodrenko, I.V.; Masi, M.; Moynié, L.; Acosta-Gutiérrez, S.; Naismith, J.H.; Davin-Regli, A.; Ceccarelli, M.; van den Berg, B.; Winterhalter, M.; et al. Porins and small-molecule translocation across the outer membrane of Gram-negative bacteria. Nat. Rev. Microbiol. 2020, 18, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Chou, S.; Shao, C.; Wang, J.; Shan, A.; Xu, L.; Dong, N.; Li, Z. Short, multiple-stranded beta-hairpin peptides have antimicrobial potency with high selectivity and salt resistance. Acta Biomater. 2016, 30, 78–93. [Google Scholar] [CrossRef]
- Nguyen, L.T.; Haney, E.F.; Vogel, H.J. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011, 29, 464–472. [Google Scholar] [CrossRef]
- Coones, R.T.; Green, R.J.; Frazier, R.A. Investigating lipid headgroup composition within epithelial membranes: A systematic review. Soft Matter 2021, 17, 6773–6786. [Google Scholar]
- Liu, Y.; Shi, J.; Tong, Z.; Jia, Y.; Yang, K.; Wang, Z. Potent broad-spectrum antibacterial activity of amphiphilic peptides against multidrug-resistant bacteria. Microorganisms 2020, 8, 1398. [Google Scholar] [CrossRef]
- Chen, Y.C.; Yang, Y.; Zhang, C.; Chen, H.Y.; Chen, F.; Wang, K.J. A novel antimicrobial peptide Sparamosin26-54 from the mud crab scylla paramamosain showing potent antifungal activity against Cryptococcus neoformans. Front. Microbiol. 2021, 12, 746006. [Google Scholar] [CrossRef]
- Xia, Y.; Cebrian, R.; Xu, C.; Jong, A.; Wu, W.; Kuipers, O.P. Elucidating the mechanism by which synthetic helper peptides sensitize Pseudomonas aeruginosa to multiple antibiotics. PLoS Pathog. 2021, 17, e1009909. [Google Scholar] [CrossRef]
AMPs | Formula | MW | N | H | FSI | GRAVY | pI | Purity |
---|---|---|---|---|---|---|---|---|
Pleu | C129H192N36O29 | 2711.17 | 4 | 0.421 | 70.40 | −0.068 | 10.18 | 96.68% |
GK-1 | C73H106N20O16 | 1519.77 | 3 | 0.342 | 35.00 | −0.314 | 10.30 | 95.59% |
GK-2 | C97H134N24O16 | 1892.28 | 5 | 0.478 | 20.71 | −1.200 | 10.60 | 95.35% |
GK-3 | C95H133N23O16 | 1853.25 | 5 | 0.445 | 20.71 | −0.936 | 10.60 | 95.58% |
GK-4 | C100H141N25O15 | 1933.38 | 6 | 0.410 | 20.71 | −1.421 | 10.70 | 95.52% |
Organism and Genotype | GK-1 | GK-2 | GK-3 | GK-4 | Pleu | Tig |
---|---|---|---|---|---|---|
Gram-positive bacteria | ||||||
S. aureus ATCC 29213 | >128 | 4 | 4 | 4 | 4 | 0.125 |
MRSA T144 | >128 | 8 | 8 | 4 | 2 | 0.25 |
MRSA 1530 | >128 | 32 | 16 | 16 | 8 | 1 |
S. aureus 215 (cfr + LZDR) | >128 | 4 | 4 | 8 | 2 | 0.25 |
S. aureus G16 (RIFR) | >128 | 8 | 8 | 8 | 2 | <0.0625 |
E. faecalis A4 (VRE, VanA) | >128 | 16 | 32 | 16 | 8 | <0.0625 |
Gram-negative bacteria | ||||||
E. coli ATCC 25922 | >128 | 8 | 8 | 8 | 1 | 0.125 |
E. coli B2 (blaNDM-5 + mcr-1) | >128 | 2 | 4 | 2 | 2 | 2 |
E. coli C3 (blaNDM-1) | >128 | 2 | 4 | 2 | 1 | 2 |
E. coli G6 (blaNDM-5) | >128 | 2 | 4 | 4 | 1 | 2 |
E. coli G92 (mcr-1) | >128 | 2 | 2 | 4 | 1 | 4 |
E. coli CP131 (mcr-3) | >128 | 2 | 2 | 2 | 1 | 2 |
E. coli B3-1 (tet(X4)) | >128 | 4 | 2 | 4 | 1 | 32 |
E. coli 1F28 (tet(X4)) | >128 | 16 | 16 | 16 | 4 | 16 |
S. enteritidis ATCC 13076 | >128 | 4 | 4 | 4 | 1 | 0.125 |
A. baumannii ATCC 19609 | >128 | 8 | 4 | 4 | 2 | 0.25 |
P. aeruginosa PA14 | >128 | 16 | 64 | 16 | 1 | <0.0625 |
P. aeruginosa (VIM + tmexCD1-torJ1) | >128 | 16 | 16 | 16 | 4 | <0.0625 |
P. cibarius HNCF44W (blaNDM-1+ tet(X6)) | >128 | 8 | 8 | 4 | 2 | 64 |
Treatment | MRSA T144 | E. coli B2 | ||||||
---|---|---|---|---|---|---|---|---|
GK-2 | GK-3 | GK-4 | Pleu | GK-2 | GK-3 | GK-4 | Pleu | |
Control | 8 | 8 | 4 | 2 | 2 | 4 | 2 | 2 |
Temperature | ||||||||
40 °C | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 1 |
60 °C | 4 | 2 | 2 | 1 | 4 | 2 | 2 | 1 |
80 °C | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 1 |
100 °C | 4 | 8 | 4 | 4 | 2 | 4 | 2 | 2 |
121 °C | 4 | 8 | 4 | 8 | 2 | 4 | 2 | 2 |
pH | ||||||||
2 | 4 | 4 | 4 | 4 | 2 | 4 | 1 | 1 |
4 | 4 | 4 | 4 | 4 | 4 | 2 | 1 | 1 |
6 | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 1 |
8 | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
10 | 4 | 4 | 4 | 4 | 2 | 2 | 1 | 1 |
12 | 4 | 4 | 4 | 4 | 2 | 2 | 2 | 1 |
Salts (10 mM) | ||||||||
Na+ | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 |
K+ | 4 | 4 | 4 | 2 | 2 | 2 | 2 | 1 |
Mg2+ | 4 | 8 | 8 | 8 | 32 | 32 | 32 | 128 |
Ca2+ | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
Protease (1 mg/mL) | ||||||||
Pepsin | 64 | 64 | 8 | 64 | 128 | 64 | 2 | 128 |
Trypsin | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
Papain | >128 | >128 | >128 | >128 | >128 | >128 | >128 | >128 |
Serum (10%) | 8 | 8 | 8 | 4 | 4 | 8 | 4 | 1 |
Plasma (10%) | 4 | 4 | 4 | 2 | 0.5 | 0.5 | 2 | <0.25 |
DMEM (10%) | 4 | 4 | 2 | 2 | 4 | 4 | 4 | 4 |
Secondary | GK-4 | Pepsin Treated GK-4 | Pleu | Pepsin Treated Pleu | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Structure | PBS | LPS | SDS | TFEA | PBS | LPS | SDS | TFEA | PBS | LPS | SDS | TFEA | PBS | LPS | SDS | TFEA |
Helix | 6.6 | 74.3 | 100 | 100 | 5.6 | 28.5 | 100 | 100 | 0 | 68.6 | 90 | 100 | 0 | 13.2 | 100 | 100 |
Beta | 0 | 0 | 0 | 0 | 0 | 32.1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 53.1 | 0 | 0 |
Turn | 36.6 | 0 | 0 | 0 | 34.4 | 21.3 | 0 | 0 | 100 | 0 | 0 | 0 | 63.4 | 11.8 | 0 | 0 |
Random | 56.8 | 25.7 | 0 | 0 | 60 | 18.1 | 0 | 0 | 0 | 31.4 | 10 | 0 | 36.6 | 21.9 | 0 | 0 |
Total | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Shi, J.; Chen, C.; Wang, Z.; Liu, Y. Truncated Pleurocidin Derivative with High Pepsin Hydrolysis Resistance to Combat Multidrug-Resistant Pathogens. Pharmaceutics 2022, 14, 2025. https://doi.org/10.3390/pharmaceutics14102025
Wang D, Shi J, Chen C, Wang Z, Liu Y. Truncated Pleurocidin Derivative with High Pepsin Hydrolysis Resistance to Combat Multidrug-Resistant Pathogens. Pharmaceutics. 2022; 14(10):2025. https://doi.org/10.3390/pharmaceutics14102025
Chicago/Turabian StyleWang, Dejuan, Jingru Shi, Chen Chen, Zhiqiang Wang, and Yuan Liu. 2022. "Truncated Pleurocidin Derivative with High Pepsin Hydrolysis Resistance to Combat Multidrug-Resistant Pathogens" Pharmaceutics 14, no. 10: 2025. https://doi.org/10.3390/pharmaceutics14102025
APA StyleWang, D., Shi, J., Chen, C., Wang, Z., & Liu, Y. (2022). Truncated Pleurocidin Derivative with High Pepsin Hydrolysis Resistance to Combat Multidrug-Resistant Pathogens. Pharmaceutics, 14(10), 2025. https://doi.org/10.3390/pharmaceutics14102025