Chromogranin A and Its Fragments in the Critically Ill: An Expanding Domain of Interest for Better Care
Abstract
:1. Introduction
2. CGA and Vasostatin-I (CGA1-76) Are Biomarkers of Severity in the Critically Ill
3. Fine-Tuned Albumin Infusion Modifies CGA-Derived Peptides Multimers In Vitro and Impacts on Nosocomial Infection Occurrence
4. In Vitro, CGA-Derived Peptides Modify the Immunological Activities of Specific Cells Belonging to Defense
5. CGA-Derived Peptides as Actors against Superbugs
6. Enigma and Future for CGA and Its Derived Peptides in the Critically Ill
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blaschko, H.; Comline, R.S.; Schneider, F.H.; Silver, M.; Smith, A.D. Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature 1967, 215, 58–59. [Google Scholar] [CrossRef]
- Helle, K.B. The chromogranin if the adrenal medulla: A high-density lipoprotein. Biochem. J. 1968, 109, 43–44. [Google Scholar] [CrossRef]
- Schneider, F.; Castelain, V.; Herbrecht, J.E.; Hellé, S.; Metz-Boutigue, M.H. Adrenal gland-released Vasostatin-Iis a myocardial depressant factor. Br. J. Clin. Pharmacol. 2020, 86, 825–828. [Google Scholar] [CrossRef] [Green Version]
- Chung, H.; Corti, A.; Crippa, L.; Schneider, F.; Metz-Boutigue, M.H.; Garnero, P. Development of an immunoassay for the derived-peptide of chromogranin A Vasostatin-I (1-76): Assessment of severity in patients with sepsis. Biomarkers 2012, 17, 430–434. [Google Scholar] [CrossRef] [PubMed]
- Lord, J.M.; Midwinter, M.J.; Chen, Y.-F.; Belli, A.; Brohi, K.; Kovacs, E.J.; Koenderman, L.; Kubes, P.; Lilford, R.J. The systemic immune response to trauma: An overview of pathophysiology and treatment. Lancet 2014, 18, 1455–1465. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, V.A.; Tracey, K.J. Neural regulation of immunity: Molecular mechanisms and clinical translation. Nat. Neurosci. 2017, 2, 156–166. [Google Scholar] [CrossRef] [PubMed]
- Le Gall, J.R.; Lemeshow, S.; Saulnier, F. A new simplified acute physiology score (SAPS II) based on a European/North American multicenter study. JAMA 1993, 270, 2957–2963. [Google Scholar] [CrossRef]
- Cannon, W.B. The emergency function of the adrenal medulla in pain and the major emotions. Am. J. Physiol. 1914, 33, 356–372. [Google Scholar] [CrossRef]
- Zhang, D.; Lavaux, T.; Voegeli, A.-C.; Lavigne, T.; Castelain, V.; Meyer, N.; Sapin, R.; Aunis, D.; Metz-Boutigue, M.-H.; Schneider, F. Prognostic value of chromogranin A at admission in critically ill patients: A cohort study in a medical intensive care unit. Clin. Chem. 2008, 54, 1497–1503. [Google Scholar] [CrossRef] [Green Version]
- Tasiemski, A.; Hammad, H.; Vandenbulcke, F.; Breton, C.; Bilfinger, T.J.; Pestel, J.; Salzet, M. Presence of chromogranin-derived antimicrobial peptides in plasma during coronary artery bypass surgery and evidence of an immune origin of these peptides. Blood 2002, 100, 553–559. [Google Scholar] [CrossRef]
- Zhang, D.; Lavaux, T.; Sapin, R.; Lavigne, T.; Castelain, V.; Aunis, M.; Metz-Boutigue, M.-H.; Schneider, F. Serum concentration of chromogranin A at admission: An early biomarker of severity in critically ill patients. Ann. Med. 2009, 41, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Schneider, F.; Bach, C.; Chung, H.; Crippa, L.; Lavaux, T.; Bollaert, P.-E.; Wolff, M.; Corti, A.; Launoy, A.; Delabranche, X.; et al. Vasostatin-I, a chromogranin A-derived peptide, in non-selected critically ill patients: Distribution, kinetics, and prognostic significance. Intensiv. Care Med. 2012, 38, 1514–1522. [Google Scholar] [CrossRef] [PubMed]
- Schneider, F.; Marban, C.; Ajob, G.; Helle, S.; Guillot, M.; Launoy, A.; Maestraggi, Q.; Scavello, F.; Rohr, O.; Metz-Boutigue, M.-H. In trauma patients, the occurrence of early-onset nosocomial infections is associated with increased plasma concentrations of Chromogranin A. Shock 2018, 49, 522–528. [Google Scholar] [CrossRef]
- Schneider, F.; Le Borgne, P.; Herbrecht, J.-E.; Danion, F.; Solis, M.; Hellé, S.; Betscha, C.; Clere-Jehl, R.; Lefebvre, F.; Castelain, V.; et al. Assessment of plasma Catestatin in COVID-19 reveals a hitherto unknown inflammatory activity with impact on morbidity-mortality. Front. Immunol. 2022, in press. [CrossRef]
- Lugardon, K.; Raffner, R.; Goumon, Y.; Corti, A.; Delmas, A.; Bulet, P.; Aunis, D.; Metz-Boutigue, M.H. Antibacterial and antifungal activities of Vasostatin-I, the N-terminal fragment of chromogranin A. J. Biol. Chem. 2000, 275, 10745–10753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, F.; Dureau, A.-F.; Hellé, S.; Betscha, C.; Senger, B.; Cremel, G.; Boulmedais, F.; Strub, J.-M.; Corti, A.; Meyer, N.; et al. A pilot study on continuous infusion of 4% Albumin in critically ill patients: Impact on nosocomial infection via a reduction mechanism for oxidized substrates. Crit. Care Explor. 2019, 1, e0044. [Google Scholar] [CrossRef]
- Schneider, F.; Castelain, V.; Morel, G.; Dureau, A.-F.; Poidevin, A.; Ludes, P.-O.; Fabacher, T.; Senger, B.; Meyer, N.; Metz-Boutigue, M.-H. Continuous 4 percent Albumin versus intermittent 20 percent Albumin in adults with septic shock: A prospective, pHSAe IV, open-label randomized trial. Am. J. Intern. Med. 2020, 8, 89–100. [Google Scholar] [CrossRef]
- China, L.; Freemantle, N.; Forrest, E.; Kallis, Y.; Ryder, S.D.; Wright, G.; Portal, A.J.; Salles, N.B.; Gilroy, D.W.; O’Brien, A. A randomized trial of albumin infusions in hospitalized patients with cirrhosis. N. Eng. J. Med. 2021, 384, 808–817. [Google Scholar] [CrossRef]
- Caraceni, P.; Riggio, O.; Angeli, P. ANSWER Study Investigators. Long-term albumin administration in decompensated cirrhosis: An open-label randomized trial. Lancet 2018, 391, 2417–2429, Erratum in Lancet 2018, 392, 386. [Google Scholar] [CrossRef]
- Plantier, J.L.; Duretz, V.; Devos, V.; Urbain, R.; Jorieux, S. Comparison of antioxidant properties of different therapeutic albumin preparations. Biologicals 2016, 44, 226–233. [Google Scholar] [CrossRef]
- Shooshtarizadeh, P.; Zhang, D.; Chich, J.-F.; Gasnier, C.; Schneider, F.; Haïkel, Y.; Aunis, D.; Metz-Boutigue, M.-H. The antimicrobial peptides derived from chromogranin/secretogranin family, new actors of innate immunity. Regul. Pept. 2010, 165, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Scavello, F.; Kharouf, H.; Lavalle, P.; Haïkel, Y.; Schneider, F.; Metz-Boutigue, M.H. The antimicrobial peptides secreted by the chromaffin cells of the adrenal medulla link the neuroendocrine and immune systems: From basic to clinical studies. Front. Immunol. 2022, 13, 977175. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Shooshtarizadeh, P.; Laventie, B.-J.; Colin, D.A.; Chich, J.-F.; Vidic, J.; de Barry, J.; Chasserot-Golaz, S.; Delalande, F.; Van Dorsselaer, A.; et al. Two chromogranin a-derived peptides induce calcium entry in human neutrophils by calmodulin-regulated calcium independent phospholipase A2. PLoS ONE 2009, 4, e4501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaet, A.; Dartevelle, P.; Daouad, F.; Ehlinger, C.; Quilès, F.; Francius, G.; Boehler, C.; Bergthold, C.; Frisch, B.; Prévost, G.; et al. D-Cateslytin, a new antimicrobial peptide with therapeutic potential. Sci. Rep. 2017, 7, 15199. [Google Scholar] [CrossRef] [Green Version]
- Dartevelle, P.; Ehlinger, C.; Zaet, A.; Boehler, C.; Rabineau, M.; Westermann, B.; Strub, J.-M.; Cianférani, S.; Haïkel, Y.; Metz-Boutigue, M.-H.; et al. D-Cateslytin: A new antifungal agent for the treatment of oral Candida albicans associated infections. Sci. Rep. 2018, 8, 9235. [Google Scholar] [CrossRef] [Green Version]
- Mancino, D.; Kharouf, N.; Scavello, F.; Hellé, S.; Salloum-Yared, F.; Mutschler, A.; Mathieu, E.; Lavalle, P.; Metz-Boutigue, M.-H.; Haïkel, Y. The Catestatin-derived peptides are new actors to fight the development of oral candidosis. Int. J. Mol. Sci. 2022, 23, 2066. [Google Scholar] [CrossRef]
- Cado, G.; Aslam, R.; Séon, L.; Garnier, T.; Fabre, R.; Parat, A.; Chassepot, A.; Voegel, J.-C.; Senger, B.; Schneider, F.; et al. Self-defensive biomaterial coating against bacteria and yeasts: Polysaccharide multilayer film with embedded antimicrobial peptide. Adv. Funct. Mater. 2013, 23, 4801–4809. [Google Scholar] [CrossRef]
- Scavello, F.; Mutschler, A.; Hellé, S.; Schneider, F.; Chasserot-Golaz, S.; Strub, J.-M.; Cianferani, S.; Haikel, Y.; Metz-Boutigue, M.-H. Catestatin in innate immunity and Cateslytin-derived peptides against superbugs. Sci. Rep. 2021, 11, 15615. [Google Scholar] [CrossRef]
- Mateescu, M.; Baixe, S.; Garnier, T.; Jierry, L.; Ball, V.; Haikel, Y.; Metz-Boutigue, M.H.; Nardin, M.; Schaaf, P.; Etienne, O.; et al. Antibacterial Peptide-Based Gel for Prevention of Medical Implanted-Device Infection. PLoS ONE 2015, 10, e0145143. [Google Scholar] [CrossRef]
- Özçelik, H.; Vrana, N.E.; Gudima, A.; Riabov, V.; Gratchev, A.; Haïkel, Y.; Metz-Boutigue, M.-H.; Carradò, A.; Faerber, J.; Roland, T.; et al. Harnessing the multifunctionality in nature: A bioactive agent release system with self-antimicrobial and immunomodulatory properties. Adv. Healthc. Mater. 2015, 4, 2026–2036. [Google Scholar] [CrossRef] [PubMed]
- Aardal, S.; Helle, K.B. The vasoinhibitory activity of bovine chromogranin A fragment (vasostatin) and its independence of extracellular calcium in isolated segments of human blood vessels. Regul. Pept. 1992, 41, 9–18. [Google Scholar] [CrossRef]
- Aardal, S.; Helle, K.B.; Elsayed, S.; Reed, R.K.; Serck-Hanssen, G. Vasostatins, comprising the N-terminal domain of chromogranin A, suppress tension in isolated human blood vessel segments. J. Neuroendocrinol. 1993, 5, 405–412. [Google Scholar] [CrossRef] [PubMed]
- Brekke, J.F.; Osol, G.J.; Helle, K.B. N-terminal chromogranin-derived peptides as dilators of bovine coronary resistance arteries. Regul. Pept. 2002, 105, 93–100. [Google Scholar] [CrossRef]
- Roatta, S.; Passatore, M.; Novello, M.; Colombo, B.; Dondossola, E.; Mohammed, M.; Losano, G.; Corti, A.; Helle, K.B. The chromogranin A-derived N-terminal peptide vasostatin-I: In vivo effects on cardiovascular variables in the rabbit. Regul. Pept. 2011, 168, 10–20. [Google Scholar] [CrossRef] [PubMed]
- Pfortmueller, C.A.; Meisel, C.; Fux, M.; Schefold, J.C. Assessment of immune organ dysfunction in critical illness: Utility of innate immune response markers. Intensiv. Care Med. Exp. 2017, 5, 49. [Google Scholar] [CrossRef] [Green Version]
- De Lorenzo, R.; Sciorati, C.; Ramirez, G.A.; Colombo, B.; Lorè, N.I.; Capobianco, A.; Tresoldi, C.; Cirillo, D.M.; Ciceri, F.; Corti, A.; et al. Chromogranin A plasma levels predict mortality in COVID-19. PLoS ONE 2022, 17, e0267235. [Google Scholar] [CrossRef]
- Dry, K.L.; Phillips, J.H.; Dart, A.M. Catecholamine release from bovine adrenal chromaffin cells during anoxia or metabolic inhibition. Circ. Res. 1991, 69, 466–474. [Google Scholar] [CrossRef] [Green Version]
- Mahata, S.K.; O’Connor, D.T.; Mahata, M.; Yoo, S.H.; Taupenot, L.; Wu, H.; Gill, B.M.; Parmer, R.J. Novel autocrine feedback control of catecholamine release. A discrete chromogranin a fragment is a non-competitive nicotinic cholinergic antagonist. J. Clin. Investig. 1997, 100, 1623–1633. [Google Scholar] [CrossRef] [Green Version]
- Rudolf, R.; Straka, T. Nicotinic acetylcholine receptor at vertebrate motor endplates: Endocytosis, recycling, and degradation. Neurosci. Lett. 2019, 711, 134434. [Google Scholar] [CrossRef]
- Tota, B.; Angelone, T.; Cerra, M.C. The surging role of Chromogranin A in cardiovascular homeostasis. Front. Chem. 2014, 2, 64. [Google Scholar] [CrossRef]
- Mahata, S.K.; Corti, A. Chromogranin A and its fragments in cardiovascular, immunometabolic, and cancer regulation. Ann. N. Y. Acad. Sci. 2019, 1455, 34–58. [Google Scholar] [CrossRef] [Green Version]
- Filice, E.; Pasqua, T.; Quintieri, A.M.; Cantafio, P.; Scavello, F.; Amodio, N.; Cerra, M.C.; Marban, C.; Schneider, F.; Metz-Boutigue, M.-H.; et al. Chromofungin, CGA47-66-derived peptide, produces basal cardiac effects and postconditioning cardioprotective action during ischemia/reperfusion injury. Peptides 2015, 71, 40–48. [Google Scholar] [CrossRef] [PubMed]
- Rocca, C.; De Bartolo, A.; Grande, F.; Rizzuti, B.; Pasqua, T.; Giordano, F.; Granieri, M.C.; Occhiuzzi, M.A.; Garofalo, A.; Amodio, N.; et al. Cateslytin abrogates lipopolysaccharide-induced cardiomyocyte injury by reducing inflammation and oxidative stress through toll like receptor 4 interaction. Int. Immunopharmacol. 2021, 94, 107487. [Google Scholar] [CrossRef] [PubMed]
- Angelone, T.; Mazza, R.; Cerra, M.C. Chromogranin-A: A multifaceted cardiovascular role in health and disease. Curr. Med. Chem. 2012, 19, 4042–4050. [Google Scholar] [CrossRef] [PubMed]
- Tarantino, N.; Santoro, F.; Di Biase, L.; Di Terlizzi, V.; Vitale, E.; Barone, R.; Della Rocca, D.G.; Cruz, N.S.D.L.D.L.; Di Biase, M.; Brunetti, N.D. Chromogranin-A serum levels in patients with Tako-tsubo syndrome and ST elevation acute myocardial infarction. Int. J. Cardiol. 2020, 320, 12–17. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, F.; Clère-Jehl, R.; Scavello, F.; Lavigne, T.; Corti, A.; Angelone, T.; Haïkel, Y.; Lavalle, P. Chromogranin A and Its Fragments in the Critically Ill: An Expanding Domain of Interest for Better Care. Pharmaceutics 2022, 14, 2178. https://doi.org/10.3390/pharmaceutics14102178
Schneider F, Clère-Jehl R, Scavello F, Lavigne T, Corti A, Angelone T, Haïkel Y, Lavalle P. Chromogranin A and Its Fragments in the Critically Ill: An Expanding Domain of Interest for Better Care. Pharmaceutics. 2022; 14(10):2178. https://doi.org/10.3390/pharmaceutics14102178
Chicago/Turabian StyleSchneider, Francis, Raphaël Clère-Jehl, Francesco Scavello, Thierry Lavigne, Angelo Corti, Tommaso Angelone, Youssef Haïkel, and Philippe Lavalle. 2022. "Chromogranin A and Its Fragments in the Critically Ill: An Expanding Domain of Interest for Better Care" Pharmaceutics 14, no. 10: 2178. https://doi.org/10.3390/pharmaceutics14102178
APA StyleSchneider, F., Clère-Jehl, R., Scavello, F., Lavigne, T., Corti, A., Angelone, T., Haïkel, Y., & Lavalle, P. (2022). Chromogranin A and Its Fragments in the Critically Ill: An Expanding Domain of Interest for Better Care. Pharmaceutics, 14(10), 2178. https://doi.org/10.3390/pharmaceutics14102178