Novel Scintillating Nanoparticles for Potential Application in Photodynamic Cancer Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis
2.2.1. Synthesis of Rare Earth Salts
2.2.2. Synthesis of Gadolinium Oxide Doped with Europium Nanoparticles
2.2.3. Synthesis of Europium-Doped Gadolinium Oxide Deposited upon Nanosilica
2.3. Physicochemical Characterization
2.4. Cytotoxic Activity Study
2.4.1. Cell Culture
2.4.2. Assessment of the Intrinsic Cytotoxicity of Nanoparticles by the MTT Method
2.4.3. Statistical Analysis
3. Results and Discussion
3.1. Infrared Spectroscopy
3.2. X-ray Diffraction
3.3. Electron Microscopy
3.3.1. Scanning Electron Microscopy
3.3.2. Transmission Electron Microscopy
3.4. Photoluminescence Studies
3.5. Stability Measures
3.5.1. Dynamic Light Scattering (DLS)
3.5.2. ζ-Potential
3.6. Cytotoxic Activity Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roser, M.; Ritchie, H. Cancer—Our World in Data. Available online: https://ourworldindata.org/cancer (accessed on 17 July 2022).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Cancer Statistics—NCI. Available online: https://www.cancer.gov/about-cancer/understanding/statistics#:~:text=The%20rate%20of%20new%20cases,on%202013%E2%80%932017%20deaths (accessed on 17 July 2022).
- Dougherty, T.J.; Gomer, C.J.; Henderson, B.W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic Therapy. JNCI J. Natl. Cancer Inst. 1998, 90, 889–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alves, L.A.; Ferreira, L.B.; Pacheco, P.; Mendivelso, E.A.C.; Teixeira, P.C.N.; Faria, R.X. Pore forming channels as a drug delivery system for photodynamic therapy in cancer associated with nanoscintillators. Oncotarget 2018, 9, 25342–25354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fan, H.-Y.; Zhu, Z.-L.; Zhang, W.-L.; Yin, Y.-J.; Tang, Y.-L.; Liang, X.-H.; Zhang, L. Light stimulus responsive nanomedicine in the treatment of oral squamous cell carcinoma. Eur. J. Med. Chem. 2020, 199, 112394. [Google Scholar] [CrossRef]
- Kamkaew, A.; Chen, F.; Zhan, Y.; Majewski, R.L.; Cai, W. Scintillating Nanoparticles as Energy Mediators for Enhanced Photodynamic Therapy. ACS Nano 2016, 10, 3918–3935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, W.; Zhu, J.; Wang, Y.; Wang, J.; Fang, W.; Xia, K.; Shao, J.; Wu, M.; Liu, B.; Liang, C.; et al. A review and outlook in the treatment of osteosarcoma and other deep tumors with photodynamic therapy: From basic to deep. Oncotarget 2017, 8, 39833–39848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Homayoni, H.; Sahi, S.; Ma, L.; Zhang, J.; Mohapatra, J.; Liu, P.; Sotelo, A.P.; Macaluso, R.; Davis, T.; Chen, W. X-ray excited luminescence and persistent luminescence of Sr2MgSi2O7:Eu2+, Dy3+ and their associations with synthesis conditions. J. Lumin. 2018, 198, 132–137. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, J. Using Nanoparticles to Enable Simultaneous Radiation and Photodynamic Therapies for Cancer Treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Abliz, E.; Collins, J.E.; Bell, H.; Tata, D.B. Novel applications of diagnostic X-rays in activating a clinical photodynamic drug: Photofrin II through X-ray induced visible luminescence from “rare-earth” formulated particles. J. X-ray Sci. Technol. 2011, 19, 521–530. [Google Scholar] [CrossRef]
- Scaffidi, J.P.; Gregas, M.K.; Lauly, B.; Zhang, Y.; Vo-Dinh, T. Activity of Psoralen-Functionalized Nanoscintillators against Cancer Cells upon X-ray Excitation. ACS Nano 2011, 5, 4679–4687. [Google Scholar] [CrossRef] [PubMed]
- Kaščáková, S.; Giuliani, A.; Lacerda, S.; Pallier, A.; Mercère, P.; Toth, E.; Réfrégiers, M. X-ray-induced radiophotodynamic therapy (RPDT) using lanthanide micelles: Beyond depth limitations. Nano Res. 2015, 8, 2373–2379. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; He, F.; Wang, C.; Gai, S.; Gulzar, A.; Yang, D.; Zhong, C.; Yang, P. Lanthanide-doped bismuth oxobromide nanosheets for self-activated photodynamic therapy. J. Mater. Chem. B 2017, 5, 7939–7948. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Pan, W.; Li, N.; Tang, B. A nuclear targeted dual-photosensitizer for drug-resistant cancer therapy with NIR activated multiple ROS. Chem. Sci. 2016, 7, 4237–4244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Teo, R.D.; Termini, J.; Gray, H.B. Lanthanides: Applications in Cancer Diagnosis and Therapy. J. Med. Chem. 2016, 59, 6012–6024. [Google Scholar] [CrossRef] [Green Version]
- González-Béjar, M.; Pérez-Prieto, J. Upconversion luminescent nanoparticles in physical sensing and in monitoring physical processes in biological samples. Methods Appl. Fluoresc. 2015, 3, 042002. [Google Scholar] [CrossRef]
- Sabri, T.; Pawelek, P.D.; Capobianco, J.A. Dual Activity of Rose Bengal Functionalized to Albumin-Coated Lanthanide-Doped Upconverting Nanoparticles: Targeting and Photodynamic Therapy. ACS Appl. Mater. Interfaces 2018, 10, 26947–26953. [Google Scholar] [CrossRef] [PubMed]
- Fakayode, O.J.; Tsolekile, N.; Songca, S.P.; Oluwafemi, O.S. Applications of functionalized nanomaterials in photodynamic therapy. Biophys. Rev. 2018, 10, 49–67. [Google Scholar] [CrossRef]
- Ahlawat, R.; Rani, N.; Goswami, B. Synthesis and characterizations of Eu2O3 nanocrystallites and its effect on optical investigations of Eu3+, Eu2+: SiO2 nanopowder. J. Alloys Compd. 2018, 743, 126–135. [Google Scholar] [CrossRef]
- Shan, L. Gadolinium-Incorporated Mesoporous Silica Nanoparticles. Molecular Imaging Contrast Agent Database 2011. Bethesda (MD): National Center for Biotechnology Information (US). 2004–2013. Available online: https://www.ncbi.nlm.nih.gov/books/NBK61834/ (accessed on 22 July 2022).
- Shao, Y.-Z.; Liu, L.-Z.; Song, S.-Q.; Cao, R.-H.; Liu, H.; Cui, C.-Y.; Li, X.; Bie, M.-J.; Li, L. A novel one-step synthesis of Gd3+-incorporated mesoporous SiO2 nanoparticles for use as an efficient MRI contrast agent. Contrast Media Mol. Imaging 2011, 6, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Feofilov, S.P.; Kulinkin, A.B.; Eurov, D.A.; A. Kurdyukov, D.; Golubev, V.G. Fluorescence spectroscopy study of mesoporous SiO2 particles containing Gd2O3:Eu3+. Mater. Res. Express 2014, 1, 025019. [Google Scholar] [CrossRef]
- Hong, S.P.; Kang, S.H.; Kim, D.K.; Kang, B.S. Eu(3+)-doped gadolinium oxide nanoparticles synthesized by chemical coprecipitation predicted by thermodynamic modeling. J. Nanosci. Nanotechnol. 2014, 14, 8296–8304. [Google Scholar] [CrossRef] [PubMed]
- Anh, T.K.; Huong, N.T.; Lien, P.T.; Tung, D.K.; Tu, V.D.; Van, N.D.; Strek, W.; Minh, L.Q. Great enhancement of monodispersity and luminescent properties of Gd2O3:Eu and Gd2O3:Eu@Silica nanospheres. Mater. Sci. Eng. B 2019, 241, 1–8. [Google Scholar] [CrossRef]
- Tian, X.; Yang, F.; Yang, C.; Peng, Y.; Chen, D.; Zhu, J.; He, F.; Li, L.; Chen, X. Toxicity evaluation of Gd2O3@SiO2 nanoparticles prepared by laser ablation in liquid as MRI contrast agents in vivo. Int. J. Nanomed. 2014, 9, 4043–4053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, N.-Q.; Huang, Z.-Y.; Li, L.; Shao, Y.-Z.; Chen, D.-H. Single-Step Fabrication of Gd2O3 @SiO2 Nanoparticles for use as MRI Contrast Agents by Pulsed Laser Ablation in Liquid. Chin. Phys. Lett. 2013, 30, 038101. [Google Scholar] [CrossRef]
- Sahoo, N.K.; Thakur, S.; Tokas, R.B. Growth-dependent refractive index nonlinearity and mean microstructural properties of codeposited composite gadolinia silica films. Appl. Opt. 2006, 45, 3243–3252. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.-B.; Ko, H.-H.; Lee, Y.-L.; Lai, C.-S.; Wang, C.-Y. The Electrical and pH-Sensitive Characteristics of Thermal Gd2O3/SiO2-Stacked Oxide Capacitors. J. Electrochem. Soc. 2006, 153, G330–G332. [Google Scholar] [CrossRef]
- Das, N.C.; Sahoo, N.K.; Bhattacharyya, D.; Thakur, S.; Nanda, D.; Hazra, S.; Bal, J.K.; Lee, J.F.; Tai, Y.L.; Hsieh, C.A. Modifications of local structures of Gd2O3 on incorporation of SiO2. J. Appl. Phys. 2011, 110, 063527. [Google Scholar] [CrossRef]
- Dramićanin, M.; Jokanović, V.; Andrić, Z.; Viana, B.; Aschehoug, P.; Antić-Fidančev, E. Synthesis, Structural and Luminescent Properties of Gd2O3-SiO2:Eu3+ Nanopowder Composites. Mater. Sci. Forum 2006, 518, 455–458. [Google Scholar] [CrossRef]
- Pinho, S.L.; Faneca, H.; Geraldes, C.F.; Delville, M.-H.; Carlos, L.D.; Rocha, J. Lanthanide-DTPA grafted silica nanoparticles as bimodal-imaging contrast agents. Biomaterials 2012, 33, 925–935. [Google Scholar] [CrossRef]
- Selvalakshmi, T.; Venkatesan, P.; Wu, S.-P.; Velmathi, S.; Bose, A.C. Gd2O3:RE3+ and GdAlO3:RE3+ (RE = Eu, Dy) Phosphor: Synthesis, Characterization and Bioimaging Application. J. Nanosci. Nanotechnol. 2017, 17, 1178–1184. [Google Scholar] [CrossRef]
- Du, P.; Kim, E.-J.; Yu, J.S. Local symmetry distortion-induced enhancement of upconversion luminescence in Gd2O3:Ho3+/Yb3+ /Zn2+ nanoparticles for solid-state lighting and bioimaging. Curr. Appl. Phys. 2018, 18, 310–316. [Google Scholar] [CrossRef]
- Shi, Z.; Neoh, K.G.; Kang, E.T.; Shuter, B.; Wang, S.-C. Bifunctional Eu3+-doped Gd2O3nanoparticles as a luminescent and T1 contrast agent for stem cell labeling. Contrast Media Mol. Imaging 2010, 5, 105–111. [Google Scholar] [CrossRef]
- Cacheris, W.P.; Quay, S.C.; Rocklage, S.M. The relationship between thermodynamics and the toxicity of gadolinium complexes. Magn. Reson. Imaging 1990, 8, 467–481. [Google Scholar] [CrossRef]
- Chaudhary, S.; Sharma, P.; Kumar, S.; Alex, S.A.; Kumar, R.; Mehta, S.; Mukherjee, A.; Umar, A. A comparative multi-assay approach to study the toxicity behaviour of Eu2O3 nanoparticles. J. Mol. Liq. 2018, 269, 783–795. [Google Scholar] [CrossRef]
- Kattel, K.; Park, J.Y.; Xu, W.; Kim, H.G.; Lee, E.J.; Alam Bony, B.; Heo, W.C.; Chang, Y.; Kim, T.J.; Do, J.Y.; et al. Water-soluble ultrasmall Eu2O3 nanoparticles as a fluorescent imaging agent: In vitro and in vivo studies. Colloids Surfaces A Physicochem. Eng. Asp. 2012, 394, 85–91. [Google Scholar] [CrossRef]
- Sobral, G.A.; Gomes, M.A.; Avila, J.F.M.; Rodrigues Jr., J.J.; Macedo, Z.S.; Hickmann, J.M.; Alencar, M.A.R.C. Tailoring red-green-blue emission from Er3+, Eu3+ and Tb3+ doped Y2O3 nanocrystals produced via PVA-assisted sol-gel route. J. Phys. Chem. Solids 2016, 98, 81–90. [Google Scholar] [CrossRef]
- Dhananjaya, N.; Nagabhushana, H.; Sharma, S.; Rudraswamy, B.; Shivakumara, C.; Nagabhushana, B. Hydrothermal synthesis of Gd2O3:Eu3+ nanophosphors: Effect of surfactant on structural and luminescence properties. J. Alloys Compd. 2014, 587, 755–762. [Google Scholar] [CrossRef]
- Silva, I.; Rodrigues, L.; Souza, E.; Kai, J.; Felinto, M.; Hölsä, J.; Brito, H.; Malta, O. Low temperature synthesis and optical properties of the R2O3:Eu3+ nanophosphors (R3+: Y, Gd and Lu) using TMA complexes as precursors. Opt. Mater. 2015, 40, 41–48. [Google Scholar] [CrossRef]
- Ahrén, M.; Selegård, L.; Söderlind, F.; Linares, M.; Kauczor, J.; Norman, P.; Käll, P.-O.; Uvdal, K. A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: An experimental and theoretical study. J. Nanopart. Res. 2012, 14, 1006. [Google Scholar] [CrossRef] [Green Version]
- Jiang, X.; Yu, L.; Yao, C.; Zhang, F.; Zhang, J.; Xueliang, J. Synthesis and Characterization of Gd2O3 Hollow Microspheres Using a Template-Directed Method. Materials 2016, 9, 323. [Google Scholar] [CrossRef] [Green Version]
- Tamrakar, R.K.; Bisen, D.P. Thermoluminescence studies of ultraviolet and gamma irradiated erbium(III)- and ytterbium(III)-doped gadolinium oxide phosphors. Mater. Sci. Semicond. Process. 2015, 33, 169–188. [Google Scholar] [CrossRef]
- Ruiz, A.E.; Caregnato, P.; Arce, V.B.; Schiavoni, M.D.L.M.; Mora, V.C.; Gonzalez, M.C.; Allegretti, P.E.; Mártire, D.O. Synthesis and Characterization of Butoxylated Silica Nanoparticles. Reaction with Benzophenone Triplet States. J. Phys. Chem. C 2007, 111, 7623–7628. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, C.; Wang, M.; Cai, J.; Xu, J.; Xia, C. Facile preparation of highly-dispersed cobalt-silicon mixed oxide nanosphere and its catalytic application in cyclohexane selective oxidation. Nanoscale Res. Lett. 2011, 6, 586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, Y.; Ouyang, J.; Wang, H.; Wang, W.; Chui, P.; Sun, K. Synthesis and characterization of core–shell structured SiO2@YVO4:Yb3+,Er3+ microspheres. Appl. Surf. Sci. 2012, 258, 3689–3694. [Google Scholar] [CrossRef]
- Llansola-Portolés, M.J.; Gara, P.M.D.; Kotler, M.L.; Bertolotti, S.; Román, E.S.; Rodríguez, H.B.; Gonzalez, M. Silicon Nanoparticle Photophysics and Singlet Oxygen Generation. Langmuir 2010, 26, 10953–10960. [Google Scholar] [CrossRef]
- Ahmad, M.W.; Xu, W.; Kim, S.J.; Baeck, J.S.; Chang, Y.; Bae, J.E.; Chae, K.S.; Park, J.A.; Kim, T.J.; Lee, G.H. Potential dual imaging nanoparticle: Gd2O3 nanoparticle. Sci. Rep. 2015, 5, 8549. [Google Scholar] [CrossRef] [Green Version]
- Binnemans, K. Interpretation of europium(III) spectra. Coord. Chem. Rev. 2015, 295, 1–45. [Google Scholar] [CrossRef] [Green Version]
- Kuo, Y.-T.; Chen, C.-Y.; Liu, G.-C.; Wang, Y.-M. Development of Bifunctional Gadolinium-Labeled Superparamagnetic Nanoparticles (Gd-MnMEIO) for In Vivo MR Imaging of the Liver in an Animal Model. PLoS ONE 2016, 11, e0148695. [Google Scholar] [CrossRef]
- Rogosnitzky, M.; Branch, S. Gadolinium-based contrast agent toxicity: A review of known and proposed mechanisms. BioMetals 2016, 29, 365–376. [Google Scholar] [CrossRef] [Green Version]
- Dai, Y.; Wu, C.; Wang, S.; Li, Q.; Zhang, M.; Li, J.; Xu, K. Comparative study on in vivo behavior of PEGylated gadolinium oxide nanoparticles and Magnevist as MRI contrast agent. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 547–555. [Google Scholar] [CrossRef]
- Zheng, C.; Tian, X.; Cai, J.; Huang, L.; Wang, S.; Yang, F.; Ma, Y.; Xie, F.; Li, L. In vivo immunotoxicity of Gd2O3: Eu3+ nanoparticles and the associated molecular mechanism. J. Biochem. Mol. Toxicol. 2020, 34, e22562. [Google Scholar] [CrossRef] [PubMed]
- Samia, A.C.S.; Chen, X.; Burda, C. Semiconductor Quantum Dots for Photodynamic Therapy. J. Am. Chem. Soc. 2003, 125, 15736–15737. [Google Scholar] [CrossRef] [PubMed]
- Lucky, S.S.; Soo, K.C.; Zhang, Y. Nanoparticles in Photodynamic Therapy. Chem. Rev. 2015, 115, 1990–2042. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, B.A.; Nazarkovsky, M.; Padilla-Chavarría, H.I.; Mendivelso, E.A.C.; Mello, H.L.d.; Nogueira, C.d.S.C.; Carvalho, R.d.S.; Cremona, M.; Zaitsev, V.; Xing, Y.; et al. Novel Scintillating Nanoparticles for Potential Application in Photodynamic Cancer Therapy. Pharmaceutics 2022, 14, 2258. https://doi.org/10.3390/pharmaceutics14112258
da Silva BA, Nazarkovsky M, Padilla-Chavarría HI, Mendivelso EAC, Mello HLd, Nogueira CdSC, Carvalho RdS, Cremona M, Zaitsev V, Xing Y, et al. Novel Scintillating Nanoparticles for Potential Application in Photodynamic Cancer Therapy. Pharmaceutics. 2022; 14(11):2258. https://doi.org/10.3390/pharmaceutics14112258
Chicago/Turabian Styleda Silva, Bianca A., Michael Nazarkovsky, Helmut Isaac Padilla-Chavarría, Edith Alejandra C. Mendivelso, Heber L. de Mello, Cauê de S. C. Nogueira, Rafael dos S. Carvalho, Marco Cremona, Volodymyr Zaitsev, Yutao Xing, and et al. 2022. "Novel Scintillating Nanoparticles for Potential Application in Photodynamic Cancer Therapy" Pharmaceutics 14, no. 11: 2258. https://doi.org/10.3390/pharmaceutics14112258
APA Styleda Silva, B. A., Nazarkovsky, M., Padilla-Chavarría, H. I., Mendivelso, E. A. C., Mello, H. L. d., Nogueira, C. d. S. C., Carvalho, R. d. S., Cremona, M., Zaitsev, V., Xing, Y., Bisaggio, R. d. C., Alves, L. A., & Kai, J. (2022). Novel Scintillating Nanoparticles for Potential Application in Photodynamic Cancer Therapy. Pharmaceutics, 14(11), 2258. https://doi.org/10.3390/pharmaceutics14112258