Mouse Pharmacokinetics and In Vitro Metabolism of SH-11037 and SH-11008, Synthetic Homoisoflavonoids for Retinal Neovascularization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mouse Pharmacokinetics
2.3. Stability of SH-11037 in Phosphate Buffer and Plasma
2.4. Chemical Inhibition of SH-11037 Hydrolysis
2.5. Metabolic Stability and Biotransformation of SH-11008
2.6. Sample Analysis
2.6.1. Mouse Pharmacokinetics
2.6.2. In Vitro Studies
2.7. Data Analysis
3. Results
3.1. Pharmacokinetics of SH-11037 and SH-11008 in Mice
3.2. Hydrolysis of SH-11037 in Mouse, Dog, and Human Plasma
3.3. Effect of Esterase Inhibitors on SH-11037 Hydrolysis
3.4. Metabolic Stability of SH-11008
3.5. Identification of SH-11008 Metabolites
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shah, P.K.; Prabhu, V.; Karandikar, S.S.; Ranjan, R.; Narendran, V.; Kalpana, N. Retinopathy of prematurity: Past, present and future. World J. Clin. Pediatr. 2016, 5, 35–46. [Google Scholar] [CrossRef]
- Wong, T.Y.; Cheung, C.M.; Larsen, M.; Sharma, S.; Simo, R. Diabetic retinopathy. Nat. Rev. Dis. Primers 2016, 2, 16012. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, T.; Patel, N. Age-related macular degeneration. J. R. Soc. Med. 2009, 102, 56–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shim, J.S.; Kim, J.H.; Lee, J.; Kim, S.N.; Kwon, H.J. Anti-angiogenic activity of a homoisoflavanone from Cremastra appendiculata. Planta Med. 2004, 70, 171–173. [Google Scholar] [PubMed]
- du Toit, K.; Drewes, S.E.; Bodenstein, J. The chemical structures, plant origins, ethnobotany and biological activities of homoisoflavanones. Nat. Prod. Res. 2010, 24, 457–490. [Google Scholar] [CrossRef]
- Lee, B.; Basavarajappa, H.D.; Sulaiman, R.S.; Fei, X.; Seo, S.Y.; Corson, T.W. The first synthesis of the antiangiogenic homoisoflavanone, cremastranone. Org. Biomol. Chem. 2014, 12, 7673–7677. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, R.S.; Basavarajappa, H.D.; Corson, T.W. Natural product inhibitors of ocular angiogenesis. Exp. Eye Res. 2014, 129, 161–171. [Google Scholar] [CrossRef] [Green Version]
- Basavarajappa, H.D.; Lee, B.; Lee, H.; Sulaiman, R.S.; An, H.; Magana, C.; Shadmand, M.; Vayl, A.; Rajashekhar, G.; Kim, E.Y.; et al. Synthesis and Biological Evaluation of Novel Homoisoflavonoids for Retinal Neovascularization. J. Med. Chem. 2015, 58, 5015–5027. [Google Scholar] [CrossRef] [Green Version]
- Basavarajappa, H.D.; Lee, B.; Fei, X.; Lim, D.; Callaghan, B.; Mund, J.A.; Case, J.; Rajashekhar, G.; Seo, S.Y.; Corson, T.W. Synthesis and mechanistic studies of a novel homoisoflavanone inhibitor of endothelial cell growth. PLoS ONE 2014, 9, e95694. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.Y.; Lee, B.; Seo, S.Y.; Lee, K. Mouse Pharmacokinetics and in vitro metabolism of (+/−)-cremastranone. Biol. Pharm. Bull. 2019, 42, 187–193. [Google Scholar] [CrossRef]
- La Du, B. Plasma esterase activity and the metabolism of drugs with ester groups. Ann. N. Y. Acad. Sci. 1971, 179, 684–694. [Google Scholar]
- Mentlein, R.; Heymann, E. Hydrolysis of ester- and amide-type drugs by the purified isoenzymes of nonspecific carboxylesterase from rat liver. Biochem. Pharmacol 1984, 33, 1243–1248. [Google Scholar] [CrossRef]
- Testa, B.; Mayer, J.M. The hydrolysis of carboxylic acid esters. In hydrolysis in drug and prodrug metabolism. Helv. Chim. Acta 2006, 89, 365–418. [Google Scholar]
- Fukami, T.; Yokoi, T. The emerging role of human esterases. Drug. Metab. Pharmacokinet. 2012, 27, 466–477. [Google Scholar] [CrossRef]
- Berry, L.M.; Wollenberg, L.; Zhao, Z. Esterase activities in the blood, liver and intestine of several preclinical species and humans. Drug Metab. Lett. 2009, 3, 70–77. [Google Scholar] [CrossRef]
- Olivera-Bravo, S.; Ivorra, I.; Morales, A. The acetylcholinesterase inhibitor BW284c51 is a potent blocker of Torpedo nicotinic AchRs incorporated into the Xenopus oocyte membrane. Br. J. Pharmacol. 2005, 144, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Bhuket, P.R.N.; Jithavech, P.; Ongpipattanakul, B.; Rojsitthisak, P. Interspecies differences in stability kinetics and plasma esterases involved in hydrolytic activation of curcumin diethyl disuccinate, a prodrug of curcumin. RSC Adv. 2019, 9, 4626–4634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simeon-Rudolf, V.; Šinko, G.; Štuglin, A.; Reiner, E. Inhibition of human blood acetylcholinesterase and butyrylcholinesterase by ethopropazine. Croat. Chem. Acta 2001, 74, 173–182. [Google Scholar]
- Hatfield, M.J.; Potter, P.M. Carboxylesterase inhibitors. Expert Opin. Ther. Pat. 2011, 21, 1159–1171. [Google Scholar] [CrossRef]
- Eng, H.; Niosi, M.; McDonald, T.S.; Wolford, A.; Chen, Y.; Simila, S.T.; Bauman, J.N.; Warmus, J.; Kalgutkar, A.S. Utility of the carboxylesterase inhibitor bis-para-nitrophenylphosphate (BNPP) in the plasma unbound fraction determination for a hydrolytically unstable amide derivative and agonist of the TGR5 receptor. Xenobiotica 2010, 40, 369–380. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huo, M.; Zhou, J.; Xie, S. PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput. Methods Programs Biomed. 2010, 99, 306–314. [Google Scholar] [CrossRef]
- Lane, E.A.; Levy, R.H. Fractions metabolized in a triangular metabolic system: Cinromide and two metabolites in the rhesus monkey. J. Pharmacokinet. Biopharm. 1985, 13, 373–386. [Google Scholar] [CrossRef]
- Lee, K.; Kwon, B.M.; Kim, K.; Ryu, J.; Oh, S.J.; Lee, K.S.; Kwon, M.G.; Park, S.K.; Kang, J.S.; Lee, C.W.; et al. Plasma pharmacokinetics and metabolism of the antitumour drug candidate 2′-benzoyloxycinnamaldehyde in rats. Xenobiotica 2009, 39, 255–265. [Google Scholar] [CrossRef]
- Li, B.; Sedlacek, M.; Manoharan, I.; Boopathy, R.; Duysen, E.G.; Masson, P.; Lockridge, O. Butyrylcholinesterase, paraoxonase, and albumin esterase, but not carboxylesterase, are present in human plasma. Biochem. Pharmacol. 2005, 70, 1673–1684. [Google Scholar] [CrossRef]
Parameter | SH-11037 Dosed | SH-11008 Dosed |
---|---|---|
Dose (mg/kg) | 5 | 3 |
t1/2 (min) | 3.6 ± 0.3 | 3.5 ± 0.5 |
tmax (min) | 5.0 ± 0.0 | 5.0 ± 0.0 |
Cmax (ng/mL) | 738.1 ± 127.1 | 769.8 ± 1163.6 |
AUClast (ng·min/mL) | 14,709.3 ± 1855.8 | 14,333.8 ± 30.4 |
AUCinf (ng·min/mL) | 14,728.5 ± 1870.9 | 14,348.3 ± 1157.2 |
CL (mL/min/kg) | NA | 210.0 ± 17.2 |
Vss (L/kg) | NA | 0.5 ± 0.1 |
fm (%) | 102.7 ± 13.0 | NA |
Inhibitor (mM) | SH-11008 Formation (%) a | ||
---|---|---|---|
Mouse | Dog | Human | |
Control (none) | 98.3 ± 2.8 | 91.7 ± 1.2 | 91.7 ± 1.2 |
BW284c51 (0.01) | 100.5 ± 5.5 | 102.0 ± 6.2 | 88.3 ± 1.2 |
BW284c51 (0.1) | 101.9 ± 6.6 | 101.7 ± 2.3 | 87.3 ± 2.1 |
BW284c51 (1) | 101.1 ± 2.0 | 89.0 ± 6.6 | 86.3 ± 6.4 |
DTNB (0.01) | 102.1 ± 3.7 | 84.3 ± 2.3 | 84.3 ± 1.5 |
DTNB (0.1) | 100.0 ± 0.1 | 62.7 ± 6.4 | 61.7 ± 6.7 |
DTNB (1) | 96.2 ± 2.1 | 35.0 ± 6.2 | 12.0 ± 2.6 |
EPZ (0.01) | 96.3 ± 1.3 | 99.0 ± 10.4 | 80.3 ± 5.5 |
EPZ (0.1) | 95.7 ± 7.1 | 86.0 ± 5.3 | 97.0 ± 1.0 |
EPZ (1) | 92.6 ± 4.6 | 51.7 ± 1.2 | 71.0 ± 3.5 |
BNPP (0.01) | 98.5 ± 3.6 | 93.0 ± 12.3 | 92.0 ± 5.0 |
BNPP (0.1) | 76.4 ± 3.6 | 83.3 ± 0.6 | 88.7 ± 2.1 |
BNPP (1) | ND | 88.7 ± 11.0 | 85.3 ± 4.0 |
Species | t1/2 | CLint | CLH | EH |
---|---|---|---|---|
(min) | (mL/min/kg) | (mL/min/kg) | ||
Mouse | 5.7 | 1510.3 | 84.9 | 0.94 |
Human | 0.6 | 3577.0 | 19.9 | 0.99 |
No. | Biotransformation | Formula | [M + H]+ a (m/z) | △m b (ppm) | tr c (min) | Product Ions (m/z) |
---|---|---|---|---|---|---|
M0 | Parent | C20H22O7 | 375.1426 | −3.4 | 6.70 | 357, 237, 137 |
M1 | Oxygenation | C20H22O8 | 391.1363 | −6.3 | 6.15 | 373, 251, 239, 153, 125 |
M2 | Demethylation | C19H20O7 | 361.1232 | −13.8 | 6.13 | 343, 223, 137 |
M3 | Demethylation | C19H20O7 | 361.1290 | 2.3 | 6.20 | 343, 223, 137 |
M4 | Oxygenation + demethylation | C19H20O8 | 377.1218 | −3.4 | 5.66 | 359, 237, 225, 153 |
M5 | Glucuronidation | C26H30O13 | 551.1758 | −0.1 | 5.80 | 375, 237, 137 |
M6 | Sulfation | C20H22O10S | 455.1015 | 1.8 | 6.37 | 375, 237, 137 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, E.-y.; Lee, B.; Kwon, S.; Corson, T.W.; Seo, S.-Y.; Lee, K. Mouse Pharmacokinetics and In Vitro Metabolism of SH-11037 and SH-11008, Synthetic Homoisoflavonoids for Retinal Neovascularization. Pharmaceutics 2022, 14, 2270. https://doi.org/10.3390/pharmaceutics14112270
Kim E-y, Lee B, Kwon S, Corson TW, Seo S-Y, Lee K. Mouse Pharmacokinetics and In Vitro Metabolism of SH-11037 and SH-11008, Synthetic Homoisoflavonoids for Retinal Neovascularization. Pharmaceutics. 2022; 14(11):2270. https://doi.org/10.3390/pharmaceutics14112270
Chicago/Turabian StyleKim, Eun-yeong, Bit Lee, Sangil Kwon, Timothy W. Corson, Seung-Yong Seo, and Kiho Lee. 2022. "Mouse Pharmacokinetics and In Vitro Metabolism of SH-11037 and SH-11008, Synthetic Homoisoflavonoids for Retinal Neovascularization" Pharmaceutics 14, no. 11: 2270. https://doi.org/10.3390/pharmaceutics14112270
APA StyleKim, E. -y., Lee, B., Kwon, S., Corson, T. W., Seo, S. -Y., & Lee, K. (2022). Mouse Pharmacokinetics and In Vitro Metabolism of SH-11037 and SH-11008, Synthetic Homoisoflavonoids for Retinal Neovascularization. Pharmaceutics, 14(11), 2270. https://doi.org/10.3390/pharmaceutics14112270