ZIF-8 and Its Magnetic Functionalization as Vehicle for the Transport and Release of Ciprofloxacin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Characterizations
2.2. ZIF-8 Synthesis
2.3. CIP Encapsulation in ZIF-8
2.4. Iron Nanoparticle Synthesis
2.5. Magnetic ZIF-8 Synthesis
2.6. CIP Release in Acid and Neutral Media
2.7. Release Kinetics
2.8. Antimicrobial Activity Test
3. Results
3.1. Materials Characterizations
3.2. Release Profiles
3.3. CIP Encapsulated in Magnetic ZIF-8
3.3.1. ZIF-8 Magnetization
3.3.2. Release Profiles of CIP Encapsulated in Magnetic ZIF-8
3.4. Release Kinetics
3.5. Antimicrobial Activity Test
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beledo, J.F.; Martínez, A.M.; Armijo, J. Farmacología Humana, 6th ed.; Elsevier: Amsterdam, The Netherlands, 2013; Available online: https://www.elsevier.com/books/farmacologia-humana/florez-beledo/978-84-458-2316-3 (accessed on 20 January 2022).
- Terp, D.K.; Rybak, M.J. Ciprofloxacin. Drug Intell. Clin. Pharm. 1987, 21, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.-F.; Liu, X.; Zhang, S.; Pan, B.; Liu, M.-L. Ciprofloxacin derivatives and their antibacterial activities. Eur. J. Med. Chem. 2018, 146, 599–612. [Google Scholar] [CrossRef] [PubMed]
- Thai, T.; Salisbury, B.H.; Zito, P.M.; Ciprofloxacin. StatPearls. Available online: https://www.ncbi.nlm.nih.gov/books/NBK535454/ (accessed on 20 January 2022).
- Balfour, J.A.; Faulds, D. Oral Ciprofloxacin. Pharmacoeconomics 1993, 3, 398–421. [Google Scholar] [CrossRef] [PubMed]
- Fass, R.J. Ciprofloxacin. Postgrad. Med. 1990, 87, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Rehman, A.; Patrick, W.M.; Lamont, I.L. Mechanisms of ciprofloxacin resistance in Pseudomonas aeruginosa: New approaches to an old problem. J. Med. Microbiol. 2019, 68, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Sanders, C.C. Ciprofloxacin: In Vitro Activity, Mechanism of Action, and Resistance. Clin. Infect. Dis. 1988, 10, 516–527. [Google Scholar] [CrossRef]
- Thomson, C.J. The global epidemiology of resistance to ciprofloxacin and the changing nature of antibiotic resistance: A 10 year perspective. J. Antimicrob. Chemother. 1999, 43 (Suppl. S1), 31–40. [Google Scholar] [CrossRef]
- Abioye, A.; Sanyaolu, A.; Dudzinska, P.; Adepoju-Bello, A.A.; Coker, H.A.B. Chitosan-induced Synergy for Extended Antimicrobial Potency and Enhanced In Vitro Drug Release of Free Base Ciprofloxacin Nanoplexes. Pharm. Nanotechnol. 2020, 8, 33–53. [Google Scholar] [CrossRef]
- Takagi, T.; Ramachandran, C.; Bermejo, M.; Yamashita, S.; Yu, L.X.; Amidon, G.L. A Provisional Biopharmaceutical Classification of the Top 200 Oral Drug Products in the United States, Great Britain, Spain, and Japan. Mol. Pharm. 2006, 3, 631–643. [Google Scholar] [CrossRef]
- Kawabata, Y.; Wada, K.; Nakatani, M.; Yamada, S.; Onoue, S. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: Basic approaches and practical applications. Int. J. Pharm. 2011, 420, 1–10. [Google Scholar] [CrossRef]
- Sun, D.D.; Lee, P.I. Probing the mechanisms of drug release from amorphous solid dispersions in medium-soluble and medium-insoluble carriers. J. Control. Release 2015, 211, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Talan, D.A.; Naber, K.G.; Palou, J.; Elkharrat, D. Extended-release ciprofloxacin (Cipro XR) for treatment of urinary tract infections. Int. J. Antimicrob. Agents 2004, 23 (Suppl. S1), 54–66. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.N.; Cheralathan, K.K.; Sasikumar, S. In vitro bioactivity and drug release kinetics studies of mesoporous silica-biopolymer composites. J. Porous Mater. 2015, 22, 1465–1472. [Google Scholar] [CrossRef]
- Yun, Y.H.; Lee, B.K.; Park, K. Controlled Drug Delivery: Historical perspective for the next generation. J. Control. Release 2015, 219, 2–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reyes, C.B.G.; Ramos, V.C.; Garcia, G.M.; Casas, R.N.; Polo, M.S. Nanomateriales para el transporte y liberación controlada de ciprofloxacino en aplicaciones biomédicas. Quim. Hoy. 2022, 11, 8–17. [Google Scholar] [CrossRef]
- García-Reyes, C.B.; Salazar-Rábago, J.J.; Sánchez-Polo, M.; Loredo-Cancino, M.; Leyva-Ramos, R. Ciprofloxacin, ranitidine, and chlorphenamine removal from aqueous solution by adsorption. Mechanistic and regeneration analysis. Environ. Technol. Innov. 2021, 24, 102060. [Google Scholar] [CrossRef]
- Ramos, V.C.; Han, W.; Yeung, K.L. Functionalization of metal organic frameworks by [BMIM][CH3COO] ionic liquid for toluene capture. Environ. Res. 2022, 215, 114341. [Google Scholar] [CrossRef]
- Sun, C.-Y.; Qin, C.; Wang, X.-L.; Su, Z.-M. Metal-organic frameworks as potential drug delivery systems. Expert Opin. Drug Deliv. 2013, 10, 89–101. [Google Scholar] [CrossRef]
- Hasan, M.N.; Bera, A.; Maji, T.K.; Pal, S.K. Sensitization of nontoxic MOF for their potential drug delivery application against microbial infection. Inorg. Chim Acta 2021, 523, 120381. [Google Scholar] [CrossRef]
- Nabipour, H.; Sadr, M.H.; Bardajee, G.R. Synthesis and characterization of nanoscale zeolitic imidazolate frameworks with ciprofloxacin and their applications as antimicrobial agents. New J. Chem. 2017, 41, 7364–7370. [Google Scholar] [CrossRef]
- Kaur, H.; Mohanta, G.C.; Gupta, V.; Kukkar, D.; Tyagi, S. Synthesis and characterization of ZIF-8 nanoparticles for controlled release of 6-mercaptopurine drug. J. Drug Deliv. Sci. Technol. 2017, 41, 106–112. [Google Scholar] [CrossRef]
- Bustamante, E.L.; Fernández, J.L.; Zamaro, J.M. Influence of the solvent in the synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals at room temperature. J. Colloid. Interface Sci. 2014, 424, 37–43. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Li, M.; Yu, T.; Zhang, H.; Xiong, M.; Li, F. Magnetic ZIF-8-Based Mimic Multi-enzyme System as a Colorimetric Biosensor for Detection of Aryloxyphenoxypropionate Herbicides. ACS Appl. Mater. Interfaces 2021, 13, 44329–44338. [Google Scholar] [CrossRef] [PubMed]
- Bruschi, M.L.; Strategies to Modify the Drug Release from Pharmaceutical Systems. Strategies to Modify the Drug Release from Pharmaceutical Systems. 2015, pp. 87–194. Available online: http://www.sciencedirect.com/science/article/pii/B9780081000922000060 (accessed on 24 June 2022).
- Wayne, P.A. Performance Standards for Antimicrobial Susceptibility Testing; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2011. [Google Scholar]
- Tezerjani, A.A.; Halladj, R.; Askari, S. Different view of solvent effect on the synthesis methods of zeolitic imidazolate framework-8 to tuning the crystal structure and properties. RSC Adv. 2021, 11, 19914–19923. [Google Scholar] [CrossRef] [PubMed]
Material | Zero Order | First Order | Higuchi Model | Korsmeyer–Peppas Model | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
K0 mg L−1 h−1 | R2 | K1 h−1 | R2 | KH mg h−0.5 | R2 | K | n | b | R2 | ||
CIP/ZIF (0.007 mg/mg) | pH 7 | 0.1556 | 0.11 | 0.0180 | 0.77 | 0.0044 | 0.96 | 0.4641 | 0.1943 | 0.2645 | 0.99 |
pH 5 | 0.2142 | 0.22 | 0.0152 | 0.79 | 0.0043 | 0.96 | 0.3865 | 0.1869 | 0.3616 | 0.99 | |
CIP/ZIF (0.40 mg/mg) | pH 7 | 4.1755 | 0.19 | 0.0073 | 0.73 | 0.1320 | 0.92 | 0.4439 | 0.1903 | 0.2587 | 0.99 |
pH 5 | 5.4427 | 0.18 | 0.0070 | 0.72 | 0.1671 | 0.92 | 0.3850 | 0.1862 | 0.3600 | 0.99 | |
CIP/ZIF (2 mg/mg) | pH 7 | 0.0081 | 0.12 | 0.0163 | 0.49 | 0.2701 | 0.75 | 0.5267 | 0.1979 | 0.2849 | 0.91 |
pH 5 | 52.8240 | 0.14 | 0.0198 | 0.50 | 1.9422 | 0.76 | 0.4132 | 0.1882 | 0.3848 | 0.92 | |
Magnetic CIP/ZIF (0.6 mg/mg) | pH 7 | 2.3750 | 0.19 | 0.0135 | 0.56 | 0.1386 | 0.80 | 0.4581 | 0.1933 | 0.2624 | 0.94 |
pH 5 | 7.6077 | 0.17 | 0.0123 | 0.51 | 0.4329 | 0.76 | 0.3850 | 0.1862 | 0.3600 | 0.92 |
Bacterial Inhibition Diameter (mm) | ||
---|---|---|
E. coli | S. aureus | |
CIP Blank | 31 | 27 |
ZIF-8 | 12 | 24 |
CIP/ZIF (0.007 mg/mg) | 21 | 15 |
CIP/ZIF (0.4 mg/mg) | 24 | 38 |
CIP/ZIF (2 mg/mg) | 32 | 42 |
Nanoparticles (NP) Fe | 9 | 0 |
ZIF-8 with NP Fe | 26 | 14 |
Magnetic CIP/ZIF (0.6 mg/mg) | 37 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos, V.C.; Reyes, C.B.G.; García, G.M.; Quesada, M.I.S.; Barrero, F.J.M.-C.; Rábago, J.J.S.; Polo, M.S. ZIF-8 and Its Magnetic Functionalization as Vehicle for the Transport and Release of Ciprofloxacin. Pharmaceutics 2022, 14, 2546. https://doi.org/10.3390/pharmaceutics14112546
Ramos VC, Reyes CBG, García GM, Quesada MIS, Barrero FJM-C, Rábago JJS, Polo MS. ZIF-8 and Its Magnetic Functionalization as Vehicle for the Transport and Release of Ciprofloxacin. Pharmaceutics. 2022; 14(11):2546. https://doi.org/10.3390/pharmaceutics14112546
Chicago/Turabian StyleRamos, Ventura Castillo, Cinthia Berenice García Reyes, Guillermo Mangas García, María Inmaculada Sampedro Quesada, Fernando José Martínez-Checa Barrero, Jacob Josafat Salazar Rábago, and Manuel Sánchez Polo. 2022. "ZIF-8 and Its Magnetic Functionalization as Vehicle for the Transport and Release of Ciprofloxacin" Pharmaceutics 14, no. 11: 2546. https://doi.org/10.3390/pharmaceutics14112546
APA StyleRamos, V. C., Reyes, C. B. G., García, G. M., Quesada, M. I. S., Barrero, F. J. M.-C., Rábago, J. J. S., & Polo, M. S. (2022). ZIF-8 and Its Magnetic Functionalization as Vehicle for the Transport and Release of Ciprofloxacin. Pharmaceutics, 14(11), 2546. https://doi.org/10.3390/pharmaceutics14112546