Distribution in Rat Blood and Brain of TDMQ20, a Copper Chelator Designed as a Drug-Candidate for Alzheimer’s Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. LC–MS/MS Method
2.3. Preparation of Calibration and Quality Control Samples
2.4. Animal Groups
2.5. Ethics Approval
2.6. Preparation of Plasma Sample and Brain Extract for Calibration
2.7. Method Validation
2.8. Pharmacokinetics and Brain Distribution of TDMQ20
3. Results and Discussion
3.1. Validation of the TDMQ20 Quantification Method
3.2. Quantification of TDMQ20 in Rat Plasma after Intravenous Administration
3.3. Quantification of TDMQ20 in Rat Plasma after Oral Administration
3.4. Quantification of TDMQ20 in Rat Brain after Oral Administration
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cummings, J.L.; Morstorf, T.; Zhong, K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimer’s Res. Ther. 2014, 6, 37–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lancet, T. Why are drug trials in Alzheimer’s disease failing? Lancet 2010, 376, 658. [Google Scholar] [CrossRef] [PubMed]
- Castellani, R.J.; Perry, G. Pathogenesis and disease-modifying therapy in Alzheimer’s disease: The flat line of progress. Arch. Med. Res. 2012, 43, 694–698. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, G.; Feng, T.; Zhang, J.; Huang, X.; Wang, T.; Xie, Z.; Chu, X.; Yang, J.; Wang, H.; et al. Sodium oligomannate therapeutically remodels gut microbiota and suppress gut bacterial amino acids-shaped neuroinflammation to inhibit Alzheimer’s disease progression. Cell Res. 2019, 29, 787–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, Y. Omission of previous publications by an author should be corrected. Cell Res. 2020, 30, 819. [Google Scholar] [CrossRef]
- Cummings, J.; Aisen, P.; Lemere, C.; Atri, A.; Sabbagh, M.; Salloway, S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alz. Res. Ther. 2021, 13, 98. [Google Scholar] [CrossRef]
- Mahase, E. Aducanumab: European agency rejects Alzheimer’s disease over efficacy and safety concerns. Brit. Med. J. 2021, 375, n3127. [Google Scholar] [CrossRef]
- Liu, Y.; Nguyen, M.; Robert, A.; Meunier, B. Metals ions in Alzheimer’s disease: A key role or not? Acc. Chem. Res. 2019, 52, 2026–2035. [Google Scholar] [CrossRef]
- Jakaria, M.; Belaidi, A.A.; Bush, A.; Ayton, S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer’s disease. J. Neurochem. 2021, 159, 804–825. [Google Scholar] [CrossRef]
- Cummings, J.; Lee, G.; Nahed, P.; Esmail Zadeh Nojoo Kambar, M.; Zhong, K.; Fonseca, J.; Taghva, K. Alzheimer’s disease drug development pipeline: 2022. Alzheimer’s Dement. 2022, 8, e12295. [Google Scholar] [CrossRef]
- Guilloreau, L.; Combalbert, S.; Sournia-Saquet, A.; Mazarguil, H.; Faller, P. Redox chemistry of copper-amyloid-beta: The generation of hydroxyl radical in the presence of ascorbate is linked to redox-potentials and aggregation state. ChemBioChem 2007, 8, 1317–1325. [Google Scholar] [CrossRef]
- Lee, S.J.C.; Nam, E.; Lee, H.J.; Savelieff, M.G.; Lim, M.H. Towards an understanding of amyloid-beta oligomers: Characterization, toxicity mechanisms, and inhibitors. Chem. Soc. Rev. 2017, 46, 310–323. [Google Scholar] [CrossRef]
- Bayer, T.A.; Schäfer, S.; Simons, A.; Kemmling, A.; Kamer, T.; Tepest, R.; Eckert, A.; Schüssel, K.; Eikenberg, O.; Sturchler-Pierrat, C.; et al. Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces Aβ production in APP23 transgenic mice. Proc. Natl. Acad. Sci. USA 2003, 100, 14187–14192. [Google Scholar] [CrossRef] [Green Version]
- Robert, A.; Liu, Y.; Nguyen, M.; Meunier, B. Regulation of copper and iron homeostasis by metal chelators: A possible chemotherapy for Alzheimer’s disease. Acc. Chem. Res. 2015, 48, 1332–1339. [Google Scholar] [CrossRef]
- Barnham, K.J.; Bush, A.I. Biological metals and metal-targeting compounds in major neurodegenerative diseases. Chem. Soc. Rev. 2014, 43, 6727–6749. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, X.; Huang, D.; Huang, M.; Wang, D.; Nguyen, M.; Robert, A.; Meunier, B. Etradentate Chelating Monoquinoline Derivative, Manufacturing Method Thereof, and Application of Same as Metal Ion Regulator for Neurodegenerative Disease. Chinese Patent WO2017/202360A1, 27 May 2016. [Google Scholar]
- Zhang, W.; Huang, D.; Huang, M.; Huang, J.; Wang, D.; Liu, X.; Nguyen, M.; Vendier, L.; Mazères, S.; Robert, A.; et al. Preparation of new tetradentate copper chelators as potential anti-Alzheimer agents. ChemMedChem 2018, 13, 684–704. [Google Scholar] [CrossRef]
- Huang, J.; Nguyen, M.; Liu, Y.; Robert, A.; Meunier, B. The TDMQ regulators of copper homeostasis do not disturb Cu,Zn-SOD and tyrosinase activity, nor the Co(III) cofactor vitamin B12. Eur. J. Inorg. Chem. 2019, 2019, 1384–1388. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Hureau, C.; Robert, A.; Meunier, B. N4-Tetradentate chelators efficiently regulate copper homeostasis and prevent ROS production induced by copper-amyloid-β1-16, even in the presence of an excess of zinc. Chem. Eur. J. 2018, 24, 7825–7829. [Google Scholar] [CrossRef]
- Zhao, J.; Shi, Q.; Tian, H.; Li, Y.; Liu, Y.; Xu, Z.; Robert, A.; Liu, Q.; Meunier, B. TDMQ20, a specific copper chelator, reduces memory impairments in Alzheimer’s disease mouse models. ACS Chem. Neurosci. 2021, 12, 140–149. [Google Scholar] [CrossRef]
- Sun, F.; Zhao, J.; Zhang, H.; Shi, Q.; Liu, Y.; Robert, A.; Liu, Q.; Meunier, B. Proteomics evidence of the role of TDMQ20 in the cholinergic system and synaptic transmission in a mouse model of Alzheimer’s disease. ACS Chem. Neurosci. 2022, 13, 3093–3107. [Google Scholar] [CrossRef]
- European Medicines Agency. Available online: https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-bioanalytical-method-validation_en.pdf (accessed on 25 October 2022).
- FDA. Bioanalytical Method Validation. Guidance for Industry. Available online: https://www.fda.gov/media/70858/download (accessed on 25 October 2022).
- National Medical Products Administration. Available online: https://www.nmpa.gov.cn/wwwroot/gsz05106/15.pdf (accessed on 25 October 2022).
- Franconi, F.; Campesi, I. Pharmacogenomics, pharmacokinetics and pharmacodynamics: Interaction with biological differences between men and women. Br. J. Pharmacol. 2014, 171, 580–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soldin, O.P.; Mattison, D.R. Sex differences in pharmacokinetics and pharmacodynamics. Clin. Pharmacokinet. 2009, 48, 143–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Näslund, J.; Haroutunian, V.; Mohs, R.; Davis, K.L.; Davies, P.; Greengard, P.; Buxbaum, J.D. Correlation between elevated levels of amyloid β-peptide in the brain and cognitive decline. JAMA 2000, 283, 1571–1577. [Google Scholar] [CrossRef] [PubMed]
- Dougherty, J.J.; Wu, J.; Nichols, R.A. β-Amyloid regulation of presynaptic nicotinic receptors in rat hippocampus and neocortex. J. Neurosci. 2003, 23, 6740–6747. [Google Scholar] [CrossRef] [Green Version]
- Kulkarni, A.D.; Patel, H.M.; Surana, S.J.; Belgamwar, V.S.; Pardeshi, C.V. Brain-blood ratio: Implications in brain drug delivery. Expert Opin. Drug. Deliv. 2015, 13, 85–92. [Google Scholar] [CrossRef]
- Mensch, J.; Oyarzabal, J.; Mackie, C.; Augustijns, P. In vivo, in vitro and in silico methods for small molecule transfer across the BBB. J. Pharm. Sci. 2009, 98, 4429–4468. [Google Scholar] [CrossRef]
- ChemDraw Prime, v. 19.0.0.26; Cambridge Soft Corp.: Cambridge, MA, USA.
Group Number | Number of Rats | Sex | Treatment | Outcome | ||
---|---|---|---|---|---|---|
1 | 6 | M | - | dosage in plasma a | ||
2 | 6 | M | - | dosage in brain a | ||
3M | 6 | M | per os b | dosage in plasma | ||
3F | 6 | F | per os b | dosage in plasma | ||
4M | 6 | M | per os b | dosage in brain | ||
4F | 6 | F | per os b | at 3 h | ||
5M | 6 | M | per os b | dosage in brain | ||
5F | 6 | F | per os b | at 5 h | ||
6M | 6 | M | per os b | dosage in brain | ||
6F | 6 | F | per os b | at 7 h | ||
7 | 6 | M | per os b | dosage in brain | at 12 h | |
8 | 6 | M | os b | at 24 h | ||
9 | 6 | M | per os b | at 48 h | ||
10M | 6 | M | Iv c | dosage in plasma | ||
10F | 6 | F | Iv c | dosage in plasma |
Administration Route | Mean ± SD | ||||
---|---|---|---|---|---|
iv | in plasma | Parameter | Unit | Males a | Females a |
AUC(0−t) | µg/L·h | 211 ± 33 | 226 ± 32 | ||
AUC(0−∞) | µg/L·h | 281 ± 55 | 355 ± 159 | ||
MRT(0−t) | h | 1.9 ± 0.2 | 1.7 ± 0.2 | ||
t1/2 | h | 2.8 ± 1.5 | 3.3 ± 2.7 | ||
CL | L/h/kg | 9.2 ± 1.8 | 8.1 ± 2.8 | ||
Oral | in plasma | AUC(0−t) | µg/L·h | 1778 ± 193 | 2906 ± 675 |
AUC(0−∞) | µg/L·h | 1843 ± 215 | 3046 ± 732 | ||
MRT(0−t) | h | 2.5 ± 0.4 | 2.4 ± 0.3 | ||
t1/2 | h | 2.7 ± 0.3 | 3.3 ± 2.0 | ||
Tmax | h | 0.6 ± 0.3 | 0.8 ± 0.3 | ||
CL/F | L/h/kg | 13.7 ± 1.7 | 8.7 ± 2.5 | ||
Cmax | µg/L | 830 ± 111 | 1251 ± 324 | ||
F b | 66% | 86% | |||
Oral | in brain | Vd | L/kg | 36 ± 13 | 30 ± 13 |
AUC(0−t) | µg/g·h | 35.5 ± 1.6 c | |||
AUC(0−∞) | µg/g·h | 83.2 ± 31.8 c | |||
MRT(0−t) | h | 22.0 ± 1.2 c | |||
t1/2 | h | 40.9 ± 16.3 c | |||
Tmax | h | 12.8 ± 9.0 c | |||
CL/F | L/h/kg | 0.3 ± 0.1 c | |||
Cmax | µg/g | 1.1 ± 0.7 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, L.; Zeng, Y.; Li, Y.; Zhu, Y.; He, Y.; Liu, Y.; Robert, A.; Meunier, B. Distribution in Rat Blood and Brain of TDMQ20, a Copper Chelator Designed as a Drug-Candidate for Alzheimer’s Disease. Pharmaceutics 2022, 14, 2691. https://doi.org/10.3390/pharmaceutics14122691
Huang L, Zeng Y, Li Y, Zhu Y, He Y, Liu Y, Robert A, Meunier B. Distribution in Rat Blood and Brain of TDMQ20, a Copper Chelator Designed as a Drug-Candidate for Alzheimer’s Disease. Pharmaceutics. 2022; 14(12):2691. https://doi.org/10.3390/pharmaceutics14122691
Chicago/Turabian StyleHuang, Lan, Yaoxun Zeng, Yongliang Li, Yingshan Zhu, Yan He, Yan Liu, Anne Robert, and Bernard Meunier. 2022. "Distribution in Rat Blood and Brain of TDMQ20, a Copper Chelator Designed as a Drug-Candidate for Alzheimer’s Disease" Pharmaceutics 14, no. 12: 2691. https://doi.org/10.3390/pharmaceutics14122691
APA StyleHuang, L., Zeng, Y., Li, Y., Zhu, Y., He, Y., Liu, Y., Robert, A., & Meunier, B. (2022). Distribution in Rat Blood and Brain of TDMQ20, a Copper Chelator Designed as a Drug-Candidate for Alzheimer’s Disease. Pharmaceutics, 14(12), 2691. https://doi.org/10.3390/pharmaceutics14122691