Evaluation of Nisin-Loaded PLGA Nanoparticles Prepared with Rhamnolipid Cosurfactant against S. aureus Biofilms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Microorganisms
2.2. Preparation of NPs (PLGA-NPs)
2.3. Characterization of NPs (PLGA-NPs)
2.3.1. Mean Particle Size, Zeta Potential and Polydispersity Index
2.3.2. Scanning Electron Microscopy (SEM)
2.3.3. Fourier Transform Infrared (FTIR) Spectrometry
2.3.4. Encapsulation Efficiency (EE), Drug Loading Capacity (DL)
2.4. In Vitro Nisin Release
2.5. Evaluation of Antibacterial Activity
2.6. Evaluation of Antibiofilm Activity
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Characterization of NPs
3.2. Encapsulation Efficiency and Drug Loading Capacity of N
3.3. Fourier Transform Infrared (FTIR) Spectrometry
3.4. In Vitro Nisin Release
3.5. Evaluation of Antibacterial Activity
3.6. Evaluation of Antibiofilm Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Biswaro, L.S.; da Costa Sousa, M.G.; Rezende, T.M.B.; Dias, S.C.; Franco, O.L. Antimicrobial Peptides and Nanotechnology, Recent Advances and Challenges. Front. Microbiol. 2018, 9, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lister, J.L.; Horswill, A.R. Staphylococcus Aureus Biofilms: Recent Developments in Biofilm Dispersal. Front. Cell. Infect. Microbiol. 2014, 4, 178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, S.; Singh, S.K.; Chowdhury, I.; Singh, R. Understanding the Mechanism of Bacterial Biofilms Resistance to Antimicrobial Agents. Open Microbiol. J. 2017, 11, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, H.; Kobayashi, M.; Takeuchi, H.; Kawashima, Y. Further Application of a Modified Spontaneous Emulsification Solvent Diffusion Method to Various Types of PLGA and PLA Polymers for Preparation of Nanoparticles. Powder Technol. 2000, 107, 137–143. [Google Scholar] [CrossRef]
- Wu, X.S.; Wang, N. Synthesis, Characterization, Biodegradation, and Drug Delivery Application of Biodegradable Lactic/Glycolic Acid Polymers. Part II: Biodegradation. J. Biomater. Sci. Polym. Ed. 2001, 12, 21–34. [Google Scholar] [CrossRef]
- Astete, C.E.; Sabliov, C.M. Synthesis and Characterization of PLGA Nanoparticles. J. Biomater. Sci. Polym. Ed. 2006, 17, 247–289. [Google Scholar] [CrossRef]
- Athanasiou, K.A.; Niederauer, G.G.; Agrawal, C.M. Sterilization, Toxicity, Biocompatibility and Clinical Applications of Polylactic Acid/ Polyglycolic Acid Copolymers. Biomaterials 1996, 17, 93–102. [Google Scholar] [CrossRef]
- Haider, T.; Pandey, V.; Behera, C.; Kumar, P.; Gupta, P.N.; Soni, V. Nisin and Nisin-Loaded Nanoparticles: A Cytotoxicity Investigation. Drug Dev. Ind. Pharm. 2022, 48, 310–321. [Google Scholar] [CrossRef]
- Antonov, E.N.; Andreevskaya, S.N.; Bocharova, I.; Bogorodsky, S.E.; Krotova, L.; Larionova, E.E.; Mariyanats, A.O.; Mishakov, G.; Smirnova, T.G.; Chernousova, L.N.; et al. PLGA Carriers for Controlled Release of Levofloxacin in Anti-Tuberculosis Therapy. Pharmaceutics 2022, 14, 1275. [Google Scholar] [CrossRef]
- Gharsallaoui, A.; Oulahal, N.; Joly, C.; Degraeve, P. Nisin as a Food Preservative: Part 1: Physicochemical Properties, Antimicrobial Activity, and Main Uses. Crit. Rev. Food Sci. Nutr. 2016, 56, 1262–1274. [Google Scholar] [CrossRef]
- Niaz, T.; Shabbir, S.; Noor, T.; Imran, M. Antimicrobial and Antibiofilm Potential of Bacteriocin Loaded Nano-Vesicles Functionalized with Rhamnolipids against Foodborne Pathogens. LWT 2019, 116, 108583. [Google Scholar] [CrossRef]
- da Silva, I.M.; Boelter, J.F.; da Silveira, N.P.; Brandelli, A. Phosphatidylcholine Nanovesicles Coated with Chitosan or Chondroitin Sulfate as Novel Devices for Bacteriocin Delivery. J. Nanopart. Res. 2014, 16, 2479. [Google Scholar] [CrossRef]
- Correia, R.C.; Jozala, A.F.; Martins, K.F.; Penna, T.C.V.; de Rezende Duek, E.A.; de Oliveira Rangel-Yagui, C.; Lopes, A.M. Poly(Lactic-Co-Glycolic Acid) Matrix Incorporated with Nisin as a Novel Antimicrobial Biomaterial. World J. Microbiol. Biotechnol. 2015, 31, 649–659. [Google Scholar] [CrossRef] [PubMed]
- Üstün, A.; Örtücü, S. Evaluatıon Of The Antıbıofılm Effect Of Fluconazole Loaded PLGA Nanoparticles Prepared Usıng Rhamnolipid On Candida Albicans. Trak. Univ. J. Nat. Sci. 2022, 23, 145–151. [Google Scholar] [CrossRef]
- Taylor, T.M.; Davidson, P.M.; Zhong, Q. Extraction of Nisin from a 2.5% Commercial Nisin Product Using Methanol and Ethanol Solutions. J. Food Prot. 2007, 70, 1272–1276. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Du, J. Revisiting the Time for Removing the Unloaded Drug by Dialysis Method Based on a Biocompatible and Biodegradable Polymer Vesicle. Polymer 2012, 53, 2068–2073. [Google Scholar] [CrossRef]
- Kalam, M.A.; Alshehri, S.; Alshamsan, A.; Haque, A.; Shakeel, F. Solid Liquid Equilibrium of an Antifungal Drug Itraconazole in Different Neat Solvents: Determination and Correlation. J. Mol. Liq. 2017, 234, 81–87. [Google Scholar] [CrossRef]
- Gruskiene, R.; Kavleiskaja, T.; Staneviciene, R.; Kikionis, S.; Ioannou, E.; Serviene, E.; Roussis, V.; Sereikaite, J. Nisin-Loaded Ulvan Particles: Preparation and Characterization. Foods 2021, 10, 1007. [Google Scholar] [CrossRef]
- Gaihre, B.; Khil, M.S.; Lee, D.R.; Kim, H.Y. Gelatin-Coated Magnetic Iron Oxide Nanoparticles as Carrier System: Drug Loading and in Vitro Drug Release Study. Int. J. Pharm. 2009, 365, 180–189. [Google Scholar] [CrossRef]
- Abts, A.; Mavaro, A.; Stindt, J.; Bakkes, P.J.; Metzger, S.; Driessen, A.J.M.; Smits, S.H.J.; Schmitt, L. Easy and Rapid Purification of Highly Active Nisin. Int. J. Pept. 2011, 2011, 175145. [Google Scholar] [CrossRef]
- Arasoglu, T.; Derman, S.; Mansuroglu, B. Comparative Evaluation of Antibacterial Activity of Caffeic Acid Phenethyl Ester and PLGA Nanoparticle Formulation by Different Methods. Nanotechnology 2016, 27, 025103. [Google Scholar] [CrossRef]
- Kong, C.; Chee, C.-F.; Richter, K.; Thomas, N.; Abd Rahman, N.; Nathan, S. Suppression of Staphylococcus Aureus Biofilm Formation and Virulence by a Benzimidazole Derivative, UM-C162. Sci. Rep. 2018, 8, 2758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marangon, C.A.; Martins, V.C.A.; Ling, M.H.; Melo, C.C.; Plepis, A.M.G.; Meyer, R.L.; Nitschke, M. Combination of Rhamnolipid and Chitosan in Nanoparticles Boosts Their Antimicrobial Efficacy. ACS Appl. Mater. Interfaces 2020, 12, 5488–5499. [Google Scholar] [CrossRef] [PubMed]
- Falakaflaki, M.; Varshosaz, J.; Mirian, M. Local Delivery of Usnic Acid Loaded Rhamnolipid Vesicles by Gelatin/Tragacanth Gum/Montmorillonite/Vanillin Cryogel Scaffold for Expression of Osteogenic Biomarkers and Antimicrobial Activity. J. Drug Deliv. Sci. Technol. 2022, 69, 103147. [Google Scholar] [CrossRef]
- Cheow, W.S.; Hadinoto, K. Lipid-Polymer Hybrid Nanoparticles with Rhamnolipid-Triggered Release Capabilities as Anti-Biofilm Drug Delivery Vehicles. Particuology 2012, 10, 327–333. [Google Scholar] [CrossRef]
- Patravale, V.B.; Date, A.A.; Kulkarni, R.M. Nanosuspensions: A Promising Drug Delivery Strategy. J. Pharm. Pharmacol. 2004, 56, 827–840. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Lee, D.; Park, E.; Jang, S.; Cheon, S.Y.; Han, S.; Koo, H. Rhamnolipid-Coated W/O/W Double Emulsion Nanoparticles for Efficient Delivery of Doxorubicin/Erlotinib and Combination Chemotherapy. J. Nanobiotechnol. 2021, 19, 411. [Google Scholar] [CrossRef]
- Koppolu, B.; Rahimi, M.; Nattama, S.; Wadajkar, A.; Nguyen, K.T. Development of Multiple-Layer Polymeric Particles for Targeted and Controlled Drug Delivery. Nanomedicine 2010, 6, 355–361. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Huang, H.; Song, W.; Hu, H.; Chen, J.; Zhang, L.; Li, P.; Wu, R.; Wu, C. Preparation and Evaluation of Lipid Polymer Nanoparticles for Eradicating H. Pylori Biofilm and Impairing Antibacterial Resistance in Vitro. Int. J. Pharm. 2015, 495, 728–737. [Google Scholar] [CrossRef]
Formulations | ZP ± SD | PDI ± SD | d.nm ± SD |
---|---|---|---|
PVA-R-NP | −33.5 ± 1.56 mV | 0.497 ± 0.042 | 374.2 ± 21 |
N-PVA-R-NP | −53.23 ± 0.42 mV | 0.339 ± 0.013 | 371 ± 1.13 |
EE% ± SD | DL% ± SD | |
---|---|---|
N-PVA-R-NP | 78 ± 3.42 | 25 ± 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Üstün, A.; Örtücü, S. Evaluation of Nisin-Loaded PLGA Nanoparticles Prepared with Rhamnolipid Cosurfactant against S. aureus Biofilms. Pharmaceutics 2022, 14, 2756. https://doi.org/10.3390/pharmaceutics14122756
Üstün A, Örtücü S. Evaluation of Nisin-Loaded PLGA Nanoparticles Prepared with Rhamnolipid Cosurfactant against S. aureus Biofilms. Pharmaceutics. 2022; 14(12):2756. https://doi.org/10.3390/pharmaceutics14122756
Chicago/Turabian StyleÜstün, Ayşe, and Serkan Örtücü. 2022. "Evaluation of Nisin-Loaded PLGA Nanoparticles Prepared with Rhamnolipid Cosurfactant against S. aureus Biofilms" Pharmaceutics 14, no. 12: 2756. https://doi.org/10.3390/pharmaceutics14122756
APA StyleÜstün, A., & Örtücü, S. (2022). Evaluation of Nisin-Loaded PLGA Nanoparticles Prepared with Rhamnolipid Cosurfactant against S. aureus Biofilms. Pharmaceutics, 14(12), 2756. https://doi.org/10.3390/pharmaceutics14122756