Amelioration of Brain Damage after Treatment with the Methanolic Extract of Glycyrrhizae Radix et Rhizoma in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening of Active Substances from GR and Target Diseases through Network Pharmacology Analysis
2.2. Preparation of GRex
2.3. Animals
2.4. Administration of GRex
2.5. Mice MCAO Modeling
2.6. Analysis of Damaged Area of Brain Tissue
2.7. Neurobehavioral Evaluation
2.8. Forepaw Grip Strength Test
2.9. Novel Object Recognition Test (NORT) and Spontaneous Motor Activity Measurement
2.10. Cardiac Perfusion and Brain Cryosectioning
2.11. Immunofluorescence (IF) Stain
2.12. Western Blot Analysis
2.13. Statistical Analysis
3. Results
3.1. Network Pharmacology Analysis of GR on Compound-Disease Network
3.2. Effects on Damaged Brain Area and Neurobehavioral Changes
3.3. Effects of GRex on Changes of the Forepaw Grip Strength and Behavior Tests
3.4. Effects of GRex on Inflammatory Changes in Ipsilateral Cerebral Cortices
3.5. Influence of GRex on NF-κB and TLR4 Proteins
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bejot, Y.; Delpont, B.; Giroud, M. Rising stroke incidence in young adults: More epidemiological evidence, more questions to be answered. J. Am. Heart Assoc. 2016, 5, e003661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poisson, S.N.; Glidden, D.; Johnston, S.C.; Fullerton, H.J. Deaths from stroke in US young adults, 1989–2009. Neurology 2014, 83, 2110–2115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, S.; Liesz, A. Stroke research at the crossroads—Where are we heading? Swiss. Med. Wkly. 2016, 146, w14329. [Google Scholar] [CrossRef] [Green Version]
- Sander, R. Prevention and treatment of acute ischaemic stroke. Nurs. Older People 2013, 25, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Cho, S.; Park, J.; Ko, C.; Park, H.; Walls, B.L.; Cotter, A.C.; Park, J.J. Integrative treatment modalities for stroke victims in Korea. Complement. Ther. Clin. Pract. 2014, 20, 37–41. [Google Scholar] [CrossRef]
- Fu, D.; Lu, L.; Zhu, W.; Li, J.; Li, H.; Liu, A.; Xie, C.; Zheng, G. Xiaoxuming decoction for acute ischemic stroke: A systematic review and meta-analysis. J. Ethnopharmacol. 2013, 148, 1–13. [Google Scholar] [CrossRef]
- Song, B.K.; Won, J.H.; Kim, S. Historical medical value of Donguibogam. J. Pharmacopunct. 2016, 19, 16–20. [Google Scholar] [CrossRef]
- Lim, C.; Lim, S.; Lee, B.; Cho, S. Selection for preclinical study candidate through analysis of frequently used medications presented in Donguibogam Stroke chapter. Herb. Formula Sci. 2022, 30, 165–174. [Google Scholar]
- Rizzato, G.; Scalabrin, E.; Radaelli, M.; Capodaglio, G.; Piccolo, O. A new exploration of licorice metabolome. Food Chem. 2017, 221, 959–968. [Google Scholar] [CrossRef]
- Zhu, Z.; Tao, W.; Li, J.; Guo, S.; Qian, D.; Shang, E.; Su, S.; Duan, J.A. Rapid determination of flavonoids in licorice and comparison of three licorice species. J. Sep. Sci. 2016, 39, 473–482. [Google Scholar] [CrossRef]
- Ota, M.; Mikage, M.; Cai, S.Q. Herbological study on the medicinal effects of roasted licorice and honey-roasted licorice. Yakushigaku Zasshi 2015, 50, 38–45. [Google Scholar]
- Ji, S.; Li, Z.; Song, W.; Wang, Y.; Liang, W.; Li, K.; Tang, S.; Wang, Q.; Qiao, X.; Zhou, D.; et al. Bioactive constituents of Glycyrrhiza uralensis (Licorice): Discovery of the effective components of a traditional herbal medicine. J. Nat. Prod. 2016, 79, 281–292. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Wang, L.Q.; Yuan, B.C.; Liu, Y. The pharmacological activities of licorice. Planta Med. 2015, 81, 1654–1669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.W.; Jin, Y.; Shin, J.H.; Kim, I.D.; Lee, H.K.; Park, S.; Han, P.L.; Lee, J.K. Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via anti-inflammatory effect by inhibiting HMGB1 phosphorylation and secretion. Neurobiol. Dis. 2012, 46, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Jin, Y.; Kim, I.D.; Lee, J.K. Glycyrrhizin attenuates kainic acid-induced neuronal cell death in the mouse hippocampus. Exp. Neurobiol. 2013, 22, 107–115. [Google Scholar] [CrossRef]
- Yu, X.Q.; Xue, C.C.; Zhou, Z.W.; Li, C.G.; Du, Y.M.; Liang, J.; Zhou, S.F. In vitro and in vivo neuroprotective effect and mechanisms of glabridin, a major active isoflavan from Glycyrrhiza glabra (licorice). Life Sci. 2008, 82, 68–78. [Google Scholar] [CrossRef]
- Barakat, W.; Safwet, N.; El-Maraghy, N.N.; Zakaria, M.N.M. Candesartan and glycyrrhizin ameliorate ischemic brain damage through downregulation of the TLR signaling cascade. Eur. J. Pharmacol. 2014, 724, 43–50. [Google Scholar] [CrossRef]
- Lim, C.; Lim, S.; Lee, B.; Kim, B.; Cho, S. Licorice pretreatment protects against brain damage induced by middle cerebral artery occlusion in mice. J. Med. Food. 2018, 21, 474–480. [Google Scholar] [CrossRef]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Ministry of Food and Drug Safety. Korean Pharmacopoeia. Korea Ministry of Food and Drug Safety. 2019. Available online: https://nedrug.mfds.go.kr/ekphome (accessed on 16 August 2022).
- Koizumi, J.Y.; Nakazawa, T.; Ooneda, G. Experimental studies of ischemic brain edema. 1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Jpn. J. Stroke 1986, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, H.X.; Shi, S.T.; Bai, Y.L.; Zhe, X.; Zhang, S.J.; Li, Y.J. Interleukin-11 treatment protected against cerebral ischemia/reperfusion injury. Biomed. Pharmacother. 2019, 115, 108816. [Google Scholar] [CrossRef] [PubMed]
- Ismael, S.; Zhao, L.; Nasoohi, S.; Ishrat, T. Inhibition of the NLRP3-inflammasome as a potential approach for neuroprotection after stroke. Sci. Rep. 2018, 8, 5971. [Google Scholar] [CrossRef] [PubMed]
- Denninger, J.K.; Smith, B.M.; Kirby, E.D. Novel object recognition and object location behavioral testing in mice on a budget. J. Vis. Exp. 2018, 141, e58593. [Google Scholar] [CrossRef] [PubMed]
- Tahamtan, M.; Allahtavakoli, M.; Abbasnejad, M.; Roohbakhsh, A.; Taghipour, Z.; Taghavi, M.; Khodadadi, H.; Shamsizadeh, A. Exercise preconditioning improves behavioral functions following transient cerebral ischemia induced by 4-vessel occlusion (4-VO) in rats. Arch. Iran. Med. 2013, 16, 697–704. [Google Scholar] [PubMed]
- Guo, Z.; Su, Y.; Lou, H. GFAP-positive progenitor cell production is concentrated in specific encephalic regions in young adult mice. Neurosci. Bull. 2018, 34, 769–778. [Google Scholar] [CrossRef]
- Muñoz-Manco, J.I.; Gutiérrez-Vargas, J.A.; Cardona-Gómez, G.P. Neurogenesis and gliogenesis modulation in cerebral ischemia by CDK5 RNAi-based therapy. Biomedica 2018, 38, 388–397. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.Y.; Niu, R.Z.; Wang, J.D.; Jin, Y.; Wang, T.H.; Liu, F. Establishment of brain ischemia model in tree shrew. Brain Res. 2019, 1718, 194–200. [Google Scholar] [CrossRef]
- Doust, Y.V.; Rowe, R.K.; Adelson, P.D.; Lifshitz, J.; Ziebell, J.M. Age-at-injury determines the extent of long-term neuropathology and microgliosis after a diffuse brain injury in male rats. Front. Neurol. 2021, 12, 722526. [Google Scholar] [CrossRef]
- Hoogland, I.C.; Houbolt, C.; van Westerloo, D.J.; van Gool, W.A.; van de Beek, D. Systemic inflammation and microglial activation: Systematic review of animal experiments. J. Neuroinflamm. 2015, 12, 114. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Shen, Y.; Li, R. Targeting TNF. A therapeutic strategy for Alzheimer’s disease. Drug Discov. Today 2014, 19, 1822–1827. [Google Scholar] [CrossRef]
- Su, S.H.; Wu, Y.F.; Lin, Q.; Wang, D.P.; Hai, J. URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion. J. Neuroinflamm. 2019, 16, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Wang, L.; Hu, K.; Yu, C.; Zhu, Y.; Zhang, S.; Shao, A. Mechanisms and therapeutic targets of depression after intracerebral hemorrhage. Front. Psychiatry 2018, 9, 682. [Google Scholar] [CrossRef] [PubMed]
- Costantino, S.; Paneni, F.; Cosentino, F. Ageing, metabolism and cardiovascular disease. J. Physiol. 2016, 594, 2061–2073. [Google Scholar] [CrossRef]
- Harari, O.A.; Liao, J.K. NF-κB and innate immunity in ischemic stroke. Ann. N. Y. Acad. Sci. 2010, 1207, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Yang, J.; Ding, J.W.; Chen, L.H.; Wang, Y.L.; Li, S.; Wu, H. Sequential expression of TLR4 and its effects on the myocardium of rats with myocardial ischemia-reperfusion injury. Inflammation 2008, 31, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, L.; Sun, Y.; Huang, S.; Tang, J.; Yu, P.; Wang, G. Altered molecular expression of the TLR4/NF-κB signaling pathway in mammary tissue of Chinese Holstein cattle with mastitis. PLoS ONE 2015, 10, e0118458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberts, M.J.; Ovbiagele, B. Current strategies for ischemic stroke prevention: Role of multimodal combination therapies. J. Neurol. 2007, 254, 1414–1426. [Google Scholar] [CrossRef]
- Prabhakaran, S.; Ruff, I.; Bernstein, R.A. Acute stroke intervention: A systematic review. JAMA 2015, 313, 1451–1462. [Google Scholar] [CrossRef]
- Shah, F.A.; Li, T.; Kury, L.T.A.; Zeb, A.; Khatoon, S.; Liu, G.; Yang, X.; Liu, F.; Yao, H.; Khan, A.U.; et al. Pathological comparisons of the hippocampal changes in the transient and permanent middle cerebral artery occlusion rat models. Front. Neurol. 2019, 10, 1178. [Google Scholar] [CrossRef]
- Zhan, C.; Yang, J. Protective effects of isoliquiritigenin in transient middle cerebral artery occlusion-induced focal cerebral ischemia in rats. Pharmacol. Res. 2006, 53, 303–309. [Google Scholar] [CrossRef]
- Emberson, J.; Lees, K.R.; Lyden, P.; Blackwell, L.; Albers, G.; Bluhmki, E.; Brott, T.; Cohen, G.; Davis, S.; Donnan, G.; et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: A meta-analysis of individual patient data from randomised trials. Lancet 2014, 384, 1929–1935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goyal, M.; Menon, B.K.; van Zwam, W.H.; Dippel, D.W.; Mitchell, P.J.; Demchuk, A.M.; Dávalos, A.; Majoie, C.B.; van der Lugt, A.; de Miquel, M.A.; et al. Endovascular thrombectomy after large-vessel ischaemic stroke: A meta-analysis of individual patient data from five randomised trials. Lancet 2016, 387, 1723–1731. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.S. tPA helpers in the treatment of acute ischemic stroke: Are they ready for clinical use? J. Stroke 2019, 21, 160–174. [Google Scholar] [CrossRef] [PubMed]
- Huang, S. Shennongbencaojing (Shennong’s Classic of Materia Medica); Zhong yi gu ji Publishing: Beijing, China, 1982. [Google Scholar]
- Takahashi, K.; Yoshino, T.; Maki, Y.; Ishiuchi, K.; Namiki, T.; Ogawa-Ochiai, K.; Minamizawa, K.; Makino, T.; Nakamura, T.; Mimura, M.; et al. Identification of glycyrrhizin metabolites in humans and of a potential biomarker of liquorice-induced pseudoaldosteronism: A multi-centre cross-sectional study. Arch. Toxicol. 2019, 93, 3111–3119. [Google Scholar] [CrossRef]
- Ishiuchi, K.; Morinaga, O.; Yoshino, T.; Mitamura, M.; Hirasawa, A.; Maki, Y.; Tashita, Y.; Kondo, T.; Ogawa, K.; Lian, F.; et al. Identification of an alternative glycyrrhizin metabolite causing liquorice-induced pseudohyperaldosteronism and the development of ELISA system to detect the predictive biomarker. Front. Pharmacol. 2021, 12, 688508. [Google Scholar] [CrossRef]
- Wahab, S.; Annadurai, S.; Abullais, S.S.; Das, G.; Ahmad, W.; Ahmad, M.F.; Kandasamy, G.; Vasudevan, R.; Ali, M.S.; Amir, M. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology. Plants 2021, 10, 2751. [Google Scholar] [CrossRef]
- Kao, T.C.; Wu, C.H.; Yen, G.C. Bioactivity and potential health benefits of licorice. J. Agric. Food Chem. 2014, 62, 542–553. [Google Scholar] [CrossRef]
- Nair, A.; Morsy, M.A.; Jacob, S. Dose translation between laboratory animals and human in preclinical and clinical phases of drug development. Drug Dev. Res. 2018, 79, 373–382. [Google Scholar] [CrossRef]
- Shin, H.; Chung, M.; Rose, D.Z. Licorice root associated with intracranial hemorrhagic stroke and cerebral microbleeds. Neurohospitalist 2019, 9, 169–171. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, M.; Lim, C.; Lee, B.-K.; Cho, S. Amelioration of Brain Damage after Treatment with the Methanolic Extract of Glycyrrhizae Radix et Rhizoma in Mice. Pharmaceutics 2022, 14, 2776. https://doi.org/10.3390/pharmaceutics14122776
Choi M, Lim C, Lee B-K, Cho S. Amelioration of Brain Damage after Treatment with the Methanolic Extract of Glycyrrhizae Radix et Rhizoma in Mice. Pharmaceutics. 2022; 14(12):2776. https://doi.org/10.3390/pharmaceutics14122776
Chicago/Turabian StyleChoi, Myeongjin, Chiyeon Lim, Boo-Kyun Lee, and Suin Cho. 2022. "Amelioration of Brain Damage after Treatment with the Methanolic Extract of Glycyrrhizae Radix et Rhizoma in Mice" Pharmaceutics 14, no. 12: 2776. https://doi.org/10.3390/pharmaceutics14122776
APA StyleChoi, M., Lim, C., Lee, B. -K., & Cho, S. (2022). Amelioration of Brain Damage after Treatment with the Methanolic Extract of Glycyrrhizae Radix et Rhizoma in Mice. Pharmaceutics, 14(12), 2776. https://doi.org/10.3390/pharmaceutics14122776