A New Synergistic Strategy for Virus and Bacteria Eradication: Towards Universal Disinfectants
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Information
2.2. Surface Tension Measurements
2.3. Iterative Algorithm for Fitting Treatment
2.4. Virucidal Assay
2.5. Bactericidal Assay
3. Results and Discussion
3.1. Theoretical Considerations
3.2. Virucidal Performance against Poliovirus
3.3. Virucidal and Biocidal Performance against Norovirus and Pseudomonas aeruginosa
3.4. Comparison with other Disinfection Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Liu, Y. Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol. 2020, 92, 479–490. [Google Scholar] [CrossRef] [Green Version]
- To, K.K.-W.; Tsang, O.T.-Y.; Chik-Yan Yip, C.; Chan, K.-H.; Wu, T.-C.; Chan, J.M.C.; Leung, W.-S.; Chik, T.S.-H.; Choi, C.Y.-C.; Kandamby, D.H.; et al. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020, 71, 841–843. [Google Scholar] [CrossRef] [Green Version]
- Lum, F.-M.; Torres-Ruesta, A.; Tay, M.Z.; Lin, R.T.P.; Lye, D.C.; Rénia, L.; Ng, F.F.P. Monkeypox: Disease epidemiology, host immunity and clinical interventions. Nat. Rev. Immunol. 2022, 22, 597–613. [Google Scholar] [CrossRef]
- Lapa, D.; Carletti, F.; Mazzotta, V.; Matusali, G.; Pinnetti, C.; Meschi, S.; Gagliardini, R.; Colavita, F.; Mondi, A.; Minosse, C.; et al. Monkeypox virus isolation from a semen sample collected in the early phase of infection in a patient with prolonged seminal viral shedding. Lancet Infect. Dis. 2022, 22, 1267–1269. [Google Scholar] [CrossRef]
- Perlman, S.; Netland, J. Coronaviruses post-SARS: Update on replication and pathogenesis. Nat. Rev. Microbiol. 2009, 7, 439–450. [Google Scholar] [CrossRef] [Green Version]
- Geller, C.; Varbanov, M.; Duval, R.E. Human coronaviruses: Insights into environmental resistance and its influence on the development of new antiseptic strategies. Viruses 2012, 4, 3044–3068. [Google Scholar] [CrossRef] [Green Version]
- Merettig, N.; Bockmühl, D.P. Virucidal Efficacy of Laundering. Pathogens 2022, 11, 993. [Google Scholar] [CrossRef]
- Soule, H.; Luu Duc, D.; Mallaret, M.R.; Chanzy, B.; Charvier, A.; Gratacap-Cavallier, B.; Morand, P.; Seigneurin, J.-M. Résistance des virus dans l’environnement hospitalier: Le point sur l’activité virucide des désinfectants utilisés à l’état liquide. Ann. Biol. Clin. 1998, 56, 693–703. [Google Scholar]
- Scheller, C.; Krebs, F.; Minkner, R.; Astner, I.; Gil-Moles, M.; Wätzig, H. Physicochemical properties of SARS-CoV-2 for drug targeting, virus inactivation and attenuation, vaccine formulation and quality control. Electrophoresis 2020, 41, 1137–1151. [Google Scholar] [CrossRef]
- Tamrakar, S.B.; Henley, J.; Gurian, P.L.; Gerba, C.P.; Mitchell, J.; Enger, K.; Rose, J.B. Persistence analysis of poliovirus on three different types of fomites. J. Appl. Microbiol. 2017, 122, 522–530. [Google Scholar] [CrossRef] [Green Version]
- BS EN 14476:2013+A2:2019; Chemical Disinfectants and Antiseptics-Quantitative Suspension Test for the Evaluation of Virucidal Activity in the Medical Area—Test Method and Requirements. British Standards Institution: London, UK, 31 August 2019.
- Leclercq, L.; Nardello-Rataj, V.; Rauwel, G.; Aubry, J.-M. Structure-activity relationship of cyclodextrin/biocidal double-tailed ammonium surfactant host-guest complexes: Towards a delivery molecular mechanism? Eur. J. Pharm. Sci. 2010, 41, 265–275. [Google Scholar] [CrossRef]
- Leclercq, L. Interactions between cyclodextrins and cellular components: Towards greener medical applications? Beilstein J. Org. Chem. 2016, 12, 2644–2662. [Google Scholar] [CrossRef] [Green Version]
- Mounce, B.C.; Olsen, M.E.; Vignuzzi, M.; Connor, J.H. Polyamines and Their Role in Virus Infection. Microbiol. Mol. Biol. Rev. 2017, 81, e00029-17. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, Y.; Akiyoshi, K. Development of an artificial chaperone system based on cyclodextrin. Curr. Pharm. Biotechnol. 2010, 11, 300–305. [Google Scholar] [CrossRef]
- Leclercq, L.; Lubart, Q.; Aubry, J.-M.; Nardello-Rataj, V. Modeling of multiple equilibria in the self-aggregation of di-n-decyldimethylammonium chloride/octaethylene glycol monododecyl ether/cyclodextrin ternary systems. Langmuir 2013, 29, 6242–6252. [Google Scholar] [CrossRef]
- Spearman, C. The method of right and wrong cases (constant stimuli) without Gauss’s formulae. Br. J. Psychol. 1908, 2, 227–242. [Google Scholar] [CrossRef]
- Kärber, G. Beitrag zur kollectiven behandlung pharmakologischer reihenversuche. Arch. Exp. Pathol. Pharmakol. 1931, 162, 480–487. [Google Scholar] [CrossRef]
- Mondin, A.; Bogialli, S.; Venzo, A.; Favaro, G.; Badocco, D.; Pastore, P. Characterization and quantification of N-(3-aminopropyl)-N-dodecyl-1,3-propanediamine biocide by NMR, HPLC/MS and titration techniques. Chemosphere 2014, 95, 379–386. [Google Scholar] [CrossRef]
- Da Cruz, A.F.T.; Sanches, R.D.; Miranda, C.R.; Brochsztain, S. Evaluation of Cyclodextrins as Environmentally Friendly Wettability Modifiers for Enhanced Oil Recovery. Colloids Interfaces 2018, 2, 10. [Google Scholar] [CrossRef] [Green Version]
- Oka, T.; Stoltzfus, G.T.; Zhu, C.; Jung, K.; Wang, Q.; Saif, L.J. Attempts to grow human noroviruses, a sapovirus, and a bovine norovirus in vitro. PLoS ONE 2018, 13, e0178157. [Google Scholar] [CrossRef] [Green Version]
- Obritsch, M.D.; Fish, D.N.; MacLaren, R.; Jung, R. Nosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: Epidemiology and treatment options. Pharmacotherapy 2005, 25, 1353–1364. [Google Scholar] [CrossRef]
- Kang, C.-I.; Kim, S.-H.; Kim, H.-B.; Park, S.-W.; Choe, Y.-J.; Oh, M.; Kim, E.-C.; Choe, K.-W. Pseudomonas aeruginosa Bacteremia: Risk Factors for Mortality and Influence of Delayed Receipt of Effective Antimicrobial Therapy on Clinical Outcome. Clin. Infect. Dis. 2003, 37, 745–751. [Google Scholar] [CrossRef] [Green Version]
- Leclercq, L.; Dewilde, A.; Aubry, J.-M.; Nardello-Rataj, V. Supramolecular assistance between cyclodextrins and didecyldimethylammonium chloride against enveloped viruses: Toward eco-biocidal formulations. Int. J. Pharm. 2016, 512, 273–281. [Google Scholar] [CrossRef]
- Nardello-Rataj, V.; Leclercq, L. Aqueous solutions of didecyldimethylammonium chloride and octaethylene glycol monododecyl ether: Toward synergistic formulations against enveloped viruses. Int. J. Pharm. 2016, 511, 550–559. [Google Scholar] [CrossRef]
- Leclercq, L.; Nardello-Rataj, V. How to improve the chemical disinfection of contaminated surfaces by viruses, bacteria and fungus? Eur. J. Pharm. Sci. 2020, 155, 105559. [Google Scholar] [CrossRef]
- Leclercq, L.; Lubart, Q.; Dewilde, A.; Aubry, J.-M.; Nardello-Rataj, V. Supramolecular effects on the antifungal activity of cyclodextrin/di-n-decyldimethylammonium chloride mixtures. Eur. J. Pharm. Sci. 2012, 46, 336–345. [Google Scholar] [CrossRef]
- Leclercq, L.; Tessier, J.; Nardello-Rataj, V.; Schmitzer, A.-R. Highly active, entirely biobased antimicrobial Pickering emulsions. ChemMedChem 2021, 16, 2223–2230. [Google Scholar] [CrossRef]
- Lin, Q.; Lim, J.Y.C.; Xue, K.; Yew, P.Y.M.; Owh, C.; Chee, P.L.; Loh, X.J. Sanitizing agents for virus inactivation and disinfection. View 2020, 1, e16. [Google Scholar] [CrossRef]
- Perry, K.; Caveney, L. Veterinary Infection: Prevention and Control; Wiley-Blackwell: Ames, IA, USA, 2012; p. 129. [Google Scholar]
- Artasensi, A.; Mazzotta, S.; Fumagalli, L. Back to basics: Choosing the appropriate surface disinfectant. Antibiotics 2021, 21, 613. [Google Scholar] [CrossRef]
- Piret, J.; Roy, S.; Gagnon, M.; Landry, S.; Désormeaux, A.; Omar, R.F.; Bergeron, M.G. Comparative study of mechanisms of herpes simplex virus inactivation by sodium lauryl sulfate and n-lauroylsarcosine. Antimicrob. Agents Chemother. 2002, 46, 2933–2942. [Google Scholar] [CrossRef] [Green Version]
- Bélec, L.; Tevi-Benissan, C.; Bianchi, A.; Cotigny, S.; Beumont-Mauviel, M.; Si-Mohamed, A.; Malkin, J.E. In vitro inactivation of Chlamydia trachomatis and of a panel of DNA (HSV-2, CMV, adenovirus, BK virus) and RNA (RSV, enterovirus) viruses by the spermicide benzalkonium chloride. J. Antimicrob. Chemother. 2000, 46, 685–693. [Google Scholar] [CrossRef]
- Shirai, J.; Kanno, T.; Tsuchiya, Y.; Mitsubayashi, S.; Seki, R. Effects of chlorine, iodine, and quaternary ammonium compound disinfectants on several exotic disease viruses. J. Vet. Med. Sci. 2000, 62, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Wales, A.D.; Davies, R.H. Disinfection to control African swine fever virus: A UK perspective. J. Med. Microbiol. 2021, 70, 001410. [Google Scholar] [CrossRef]
- Schrank, C.L.; Minbiole, K.P.C.; Wuest, W.M. Are quaternary ammonium compounds, the workhorse disinfectants, effective against Severe Acute Respiratory Syndrome-Coronavirus-2? ACS Infect. Dis. 2020, 6, 1553–1557. [Google Scholar] [CrossRef]
- Li, Y.; Ling, J.; Xue, J.; Huang, J.; Zhou, X.; Wang, F.; Hou, W.; Zhao, J.; Xu, Y. Acute stress of the typical disinfectant glutaraldehyde-didecyldimethylammonium bromide (GD) on sludge microecology in livestock wastewater treatment plants: Effect and its mechanisms. Water Res. 2022, 227, 119342. [Google Scholar] [CrossRef]
- Zhou, X.; Hu, S.; Wang, Y.; Ullah, S.; Hu, J.; Liu, H.; Xu, B. The surface adsorption, aggregate structure and antibacterial activity of Gemini quaternary ammonium surfactants with carboxylic counterions. R. Soc. Open Sci. 2019, 6, 190378. [Google Scholar] [CrossRef] [Green Version]
- Zonta, W.; Mauroy, A.; Farnir, F.; Thiry, E. Comparative virucidal efficacy of seven disinfectants against Murine norovirus and Feline calicivirus, surrogates of human norovirus. Food Environ. Virol. 2016, 8, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Health Canada (Government of Canada). Drug Product Database Online Query (Search Criteria: Status = Approved or Marketed, Active Ingredient = Ammonium, Class = Disinfectant). Available online: https://health-products.canada.ca/dpd-bdpp (accessed on 29 November 2022).
- Ostrem. Sanitizers—Disinfectants. Available online: https://ostrem.com/sanitizers-disinfectants-2 (accessed on 29 November 2022).
- Virusend. Available online: https://virusend.co.uk/ (accessed on 29 November 2022).
- Anderson, E.R.; Hughes, G.L.; Patterson, E.I. Inactivation of SARS-CoV-2 on surfaces and in solution with Virusend (TX-10), a novel disinfectant. Access Microbiol. 2021, 26, 000228. [Google Scholar] [CrossRef]
pH | CMC (mM) | σ∞ (mN/m) | |
---|---|---|---|
DDAC | - | 1.2 | 30.0 |
APDA | 1 | 2.5 | 40.0 |
7 | 2.4 | 38.0 | |
12 | 1.0 | 37.2 | |
DDAC/γ-CD | - | 7.5 | 30.4 |
APDA/γ-CD | 1 | 498 | 39.9 |
12 | 1.1 | 37.2 | |
DDAC/APDA | 12 | 0.1 | 34.4 |
DDAC/APDA/γ-CD | 12 | 0.1 | 32.1 |
Surfactant | pH | Surfactant Adsorption Parameters 1 | Binding Paramters with γ-CD 2 | ||||
---|---|---|---|---|---|---|---|
Γmax (mol/m2) | Kads (M−1) | R2 | Type | Kass (M−1) | R2 | ||
DDAC | - | 3.04 × 10−6 | 241,000 | 0.9977 | 1:1 | 6,100 | 0.9980 |
APDA | 1 | 5.16 × 10−6 | 4500 | 0.9927 | 1:1 | 69,000 | 0.9952 |
7 | 4.67 × 10−6 | 8000 | 0.9713 | n.d. | n.d. | n.d. | |
12 | 4.27 × 10−6 | 28,000 | 0.9940 | 1:1 | 210 | 0.9964 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leclercq, L.; Nardello-Rataj, V. A New Synergistic Strategy for Virus and Bacteria Eradication: Towards Universal Disinfectants. Pharmaceutics 2022, 14, 2791. https://doi.org/10.3390/pharmaceutics14122791
Leclercq L, Nardello-Rataj V. A New Synergistic Strategy for Virus and Bacteria Eradication: Towards Universal Disinfectants. Pharmaceutics. 2022; 14(12):2791. https://doi.org/10.3390/pharmaceutics14122791
Chicago/Turabian StyleLeclercq, Loïc, and Véronique Nardello-Rataj. 2022. "A New Synergistic Strategy for Virus and Bacteria Eradication: Towards Universal Disinfectants" Pharmaceutics 14, no. 12: 2791. https://doi.org/10.3390/pharmaceutics14122791
APA StyleLeclercq, L., & Nardello-Rataj, V. (2022). A New Synergistic Strategy for Virus and Bacteria Eradication: Towards Universal Disinfectants. Pharmaceutics, 14(12), 2791. https://doi.org/10.3390/pharmaceutics14122791