Transcutaneous Administration of Imiquimod Promotes T and B Cell Differentiation into Effector Cells or Plasma Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mice
2.2. Reagents and Antibodies
2.3. Preparation of Polyglycolic Acid (PGA)-MN Patches and OVA-Loaded Hydrophilic Gel (HG) Patches
2.4. Immunization (Poke and Patch Method)
2.5. Measuring OVA-Specific Antibody Titers
2.6. Analysis of CD11c+ APC Subsets in Draining Lymph Nodes (dLNs)
2.7. Proliferation Assay for OVA-Specific CD4+ T Cells
2.8. FCM Analysis of T/B Cell Subsets and B Cell Phenotypes
2.9. Immunofluorescence Staining of GCs
2.10. Statistical Analyses
3. Results
3.1. Effect of Combining IMQ Administration with OVA on the OVA Antibody-Production Profile
3.2. Migration and Activation of APCs after Combined OVA + IMQ Administration
3.3. Proliferation and Differentiation of CD4+ T Cells with Combined OVA + IMQ Administration
3.4. Activation and Differentiation of B Cells in IMQ Combination
3.5. Differentiation of T and B Cells after Multiple Immunizations with OVA and IMQ
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
APC | antigen-presenting cell |
Cy7 | cyanine 7 |
DC | dendritic cell |
dDCS | dermal DC |
dLN | draining lymph node |
ELISA | enzyme-linked immunosorbent assay |
FCM | flow cytometry |
FITC | fluorescein isothiocyanate |
GC | germinal center |
GMFI | geometric mean fluorescence intensity |
HG | hydrophilic gel |
HRP | horseradish peroxidase |
IMQ | imiquimod |
LC | Langerhans cell |
MN | microneedle |
OVA | ovalbumin |
pDC | plasmacytoid DC |
PE | phycoerythrin |
PerCP | peridinin-chlorophyll-protein |
PGA | polyglycolic acid |
PNA | peanut agglutinin |
SE | standard error |
TEFF | effector T |
TFH | follicular Th |
TEM | effector memory T |
Th | T helper |
TCM | central memory T |
TN | naive T |
TLR | toll-like receptor |
TSCM | stem cell memory T |
References
- Hirobe, S.; Azukizawa, H.; Matsuo, K.; Zhai, Y.; Quan, Y.S.; Kamiyama, F.; Suzuki, H.; Katayama, I.; Okada, N.; Nakagawa, S. Development and clinical study of a self-dissolving microneedle patch for transcutaneous immunization device. Pharm. Res. 2013, 30, 2664–2674. [Google Scholar] [CrossRef] [PubMed]
- Hirobe, S.; Azukizawa, H.; Hanafusa, T.; Matsuo, K.; Quan, Y.S.; Kamiyama, F.; Katayama, I.; Okada, N.; Nakagawa, S. Clinical study and stability assessment of a novel transcutaneous influenza vaccination using a dissolving microneedle patch. Biomaterials 2015, 57, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Hirobe, S.; Yokota, Y.; Ayabe, Y.; Seto, M.; Quan, Y.S.; Kamiyama, F.; Tougan, T.; Horii, T.; Mukai, Y.; et al. Transcutaneous immunization using a dissolving microneedle array protects against tetanus, diphtheria, malaria, and influenza. J. Control. Release 2012, 160, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, K.; Yokota, Y.; Zhai, Y.; Quan, Y.S.; Kamiyama, F.; Mukai, Y.; Okada, N.; Nakagawa, S. A low-invasive and effective transcutaneous immunization system using a novel dissolving microneedle array for soluble and particulate antigens. J. Control. Release 2012, 161, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.; Hirobe, S.; Kawakita, T.; Saito, M.; Quan, Y.S.; Kamiyama, F.; Ishii, K.J.; Nagao, M.; Fujisawa, T.; Tachibana, M.; et al. Characteristic of K3 (CpG-ODN) as a Transcutaneous Vaccine Formulation Adjuvant. Pharmaceutics 2020, 12, 267. [Google Scholar] [CrossRef] [Green Version]
- Ishii, Y.; Nakae, T.; Sakamoto, F.; Matsuo, K.; Matsuo, K.; Quan, Y.S.; Kamiyama, F.; Fujita, T.; Yamamoto, A.; Nakagawa, S.; et al. A transcutaneous vaccination system using a hydrogel patch for viral and bacterial infection. J. Control. Release 2008, 131, 113–120. [Google Scholar] [CrossRef]
- Busch, D.H.; Frassle, S.P.; Sommermeyer, D.; Buchholz, V.R.; Riddell, S.R. Role of memory T cell subsets for adoptive immunotherapy. Semin. Immunol. 2016, 28, 28–34. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Zhang, Y.; Luo, G.; Li, Y. The roles of stem cell memory T cells in hematological malignancies. J. Hematol. Oncol. 2015, 8, 113. [Google Scholar] [CrossRef] [Green Version]
- Sancho, D.; Gomez, M.; Sanchez-Madrid, F. CD69 is an immunoregulatory molecule induced following activation. Trends Immunol. 2005, 26, 136–140. [Google Scholar] [CrossRef]
- Arens, R.; Nolte, M.A.; Tesselaar, K.; Heemskerk, B.; Reedquist, K.A.; van Lier, R.A.; van Oers, M.H. Signaling through CD70 regulates B cell activation and IgG production. J. Immunol. 2004, 173, 3901–3908. [Google Scholar] [CrossRef] [Green Version]
- Naito, Y.; Takematsu, H.; Koyama, S.; Miyake, S.; Yamamoto, H.; Fujinawa, R.; Sugai, M.; Okuno, Y.; Tsujimoto, G.; Yamaji, T.; et al. Germinal center marker GL7 probes activation-dependent repression of N-glycolylneuraminic acid, a sialic acid species involved in the negative modulation of B-cell activation. Mol. Cell. Biol. 2007, 27, 3008–3022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connell, F.P.; Pinkus, J.L.; Pinkus, G.S. CD138 (syndecan-1), a plasma cell marker immunohistochemical profile in hematopoietic and nonhematopoietic neoplasms. Am. J. Clin. Pathol. 2004, 121, 254–263. [Google Scholar] [CrossRef] [PubMed]
- Talay, O.; Yan, D.; Brightbill, H.D.; Straney, E.E.; Zhou, M.; Ladi, E.; Lee, W.P.; Egen, J.G.; Austin, C.D.; Xu, M.; et al. IgE+ memory B cells and plasma cells generated through a germinal-center pathway. Nat. Immunol. 2012, 13, 396–404. [Google Scholar] [CrossRef] [PubMed]
- Johnston, D.; Bystryn, J.C. Topical imiquimod is a potent adjuvant to a weakly-immunogenic protein prototype vaccine. Vaccine 2006, 24, 1958–1965. [Google Scholar] [CrossRef]
- Nagao, K.; Ginhoux, F.; Leitner, W.W.; Motegi, S.; Bennett, C.L.; Clausen, B.E.; Merad, M.; Udey, M.C. Murine epidermal Langerhans cells and langerin-expressing dermal dendritic cells are unrelated and exhibit distinct functions. Proc. Natl. Acad. Sci. USA 2009, 106, 3312–3317. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Akira, S. TLR signaling pathways. Semin. Immunol. 2004, 16, 3–9. [Google Scholar] [CrossRef]
- Igyarto, B.Z.; Kaplan, D.H. Antigen presentation by Langerhans cells. Curr. Opin. Immunol. 2013, 25, 115–119. [Google Scholar] [CrossRef] [Green Version]
- Ise, W.; Fujii, K.; Shiroguchi, K.; Ito, A.; Kometani, K.; Takeda, K.; Kawakami, E.; Yamashita, K.; Suzuki, K.; Okada, T.; et al. T Follicular Helper Cell-Germinal Center B Cell Interaction Strength Regulates Entry into Plasma Cell or Recycling Germinal Center Cell Fate. Immunity 2018, 48, 702–715.e4. [Google Scholar] [CrossRef] [Green Version]
- Aversa, G.; Punnonen, J.; Carballido, J.M.; Cocks, B.G.; de Vries, J.E. CD40 ligand-CD40 interaction in Ig isotype switching in mature and immature human B cells. Semin. Immunol. 1994, 6, 295–301. [Google Scholar] [CrossRef]
- Suzuki, H.; Wang, B.; Shivji, G.M.; Toto, P.; Amerio, P.; Tomai, M.A.; Miller, R.L.; Sauder, D.N. Imiquimod, a topical immune response modifier, induces migration of Langerhans cells. J. Investig. Dermatol. 2000, 114, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Heib, V.; Becker, M.; Warger, T.; Rechtsteiner, G.; Tertilt, C.; Klein, M.; Bopp, T.; Taube, C.; Schild, H.; Schmitt, E.; et al. Mast cells are crucial for early inflammation, migration of Langerhans cells, and CTL responses following topical application of TLR7 ligand in mice. Blood 2007, 110, 946–953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fenix, K.; Wijesundara, D.K.; Cowin, A.J.; Grubor-Bauk, B.; Kopecki, Z. Immunological Memory in Imiquimod-Induced Murine Model of Psoriasiform Dermatitis. Int. J. Mol. Sci. 2020, 21, 7228. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hirobe, S.; Yamasaki, T.; Ito, S.; Quan, Y.-S.; Kamiyama, F.; Tachibana, M.; Okada, N. Transcutaneous Administration of Imiquimod Promotes T and B Cell Differentiation into Effector Cells or Plasma Cells. Pharmaceutics 2022, 14, 385. https://doi.org/10.3390/pharmaceutics14020385
Hirobe S, Yamasaki T, Ito S, Quan Y-S, Kamiyama F, Tachibana M, Okada N. Transcutaneous Administration of Imiquimod Promotes T and B Cell Differentiation into Effector Cells or Plasma Cells. Pharmaceutics. 2022; 14(2):385. https://doi.org/10.3390/pharmaceutics14020385
Chicago/Turabian StyleHirobe, Sachiko, Taki Yamasaki, Sayami Ito, Ying-Shu Quan, Fumio Kamiyama, Masashi Tachibana, and Naoki Okada. 2022. "Transcutaneous Administration of Imiquimod Promotes T and B Cell Differentiation into Effector Cells or Plasma Cells" Pharmaceutics 14, no. 2: 385. https://doi.org/10.3390/pharmaceutics14020385
APA StyleHirobe, S., Yamasaki, T., Ito, S., Quan, Y. -S., Kamiyama, F., Tachibana, M., & Okada, N. (2022). Transcutaneous Administration of Imiquimod Promotes T and B Cell Differentiation into Effector Cells or Plasma Cells. Pharmaceutics, 14(2), 385. https://doi.org/10.3390/pharmaceutics14020385