Biodegradable and Bioactive Carriers Based on Poly(betulin disuccinate-co-sebacic Acid) for Rifampicin Delivery
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Prepolymer and Polymer Synthesis
2.3. Formulation of Microspheres
2.3.1. Blank Microspheres
2.3.2. Rifampicin (RIF) Loaded Microspheres
2.4. Characterization of Polyanhydrides and Microspheres
2.4.1. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.4.2. Gel Permeation Chromatography (GPC)
2.4.3. Fourier Transform Infrared Spectroscopy (FT-IR)
2.4.4. Differential Scanning Calorimetry (DSC)
2.4.5. SEM Analysis
2.4.6. Particle Size and Particle Size Distribution
2.4.7. Zeta Potential Measurements
2.5. Hydrolytic Degradation of Copolymers
2.6. In Vitro Rifampicin Release
2.7. Estimation of Drug Loading and Encapsulation Efficiency
2.8. Drug Release Kinetics
2.9. Antibacterial Properties
3. Results
3.1. Betulin-Based Polyanhydrides Synthesis and Characterization
3.2. Hydrolytic Degradation of Polymers (In Vitro Degradation and Stability)
3.3. Blank Microspheres Preparation and Characterization
3.4. Rifampicin Loaded Microspheres Preparation and Characterization
3.5. In Vitro Drug Release
3.6. Kinetics of Rifampicin Release
3.7. Antibacterial Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jeromenok, J.; Böhlmann, W.; Antonietti, M.; Weber, J. Intrinsically Microporous Polyesters From Betulin-Toward Renewable Materials for Gas Separation Made From Birch Bark. Macromol. Rapid Commun. 2011, 32, 1846–1851. [Google Scholar] [CrossRef]
- Padach, R.; Kandefer-Szerszeń, M.; Trytek, M.; Fiedurek, J. Terpenes: Substances useful in human healthcare. Arch. Immunol. Ther. Exp. 2007, 55, 315–327. [Google Scholar] [CrossRef]
- Alakurtti, S.; Mäkelä, T.; Koskimies, S.; Yli-Kauhaluoma, J. Pharmacological properties of the ubiquitous natural product betulin. Eur. J. Pharm. Sci. 2006, 29, 1–13. [Google Scholar] [CrossRef]
- Pyo, J.S.; Roh, S.H.; Kim, D.K.; Lee, J.G.; Lee, Y.Y.; Hong, S.S.; Kwon, S.W.; Park, J.H. Anti-cancer effect of betulin on a human lung cancer cell line: A pharmacoproteomic approach using 2 D SDS PAGE coupled with nano-HPLC tandem mass spectrometry. Planta Med. 2009, 75, 127–131. [Google Scholar] [CrossRef]
- Zehra, B.; Ahmed, A.; Sarwar, R.; Khan, A.; Farooq, U.; Ali, S.A.; Al-Harrasi, A. Apoptotic and antimetastatic activities of betulin isolated from Quercus incana against non-small cell lung cancer cells. Cancer Manag. Res. 2019, 11, 1667–1682. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Raj, K.M.; Luscombe, C.A.; Gadawski, I.; Tam, T.; Chu, J.; Gibson, D.; Carlson, R.; Sacks, S.L. The synergistic effects of betulin with acyclovir against herpes simplex viruses. Antivir. Res. 2004, 64, 127–130. [Google Scholar] [CrossRef]
- Luo, R.; Fang, D.; Chu, P.; Wu, H.; Zhang, Z.; Tang, Z. Multiple molecular targets in breast cancer therapy by betulinic acid. Biomed. Pharmacother. 2016, 84, 1321–1330. [Google Scholar] [CrossRef]
- Wang, Y.J.; Liu, J.B.; Dou, Y.C. Sequential treatment with betulinic acid followed by 5-fluorouracil shows synergistic cytotoxic activity in ovarian cancer cells. Int. J. Exp. Pathol. 2015, 8, 252–259. [Google Scholar]
- Kutkowska, J.; Strzadala, L.; Rapak, A. Synergistic activity of sorafenib and betulinic acid against clonogenic activity of non-small cell lung cancer cells. Cancer Sci. 2017, 108, 2265–2272. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.Y.; Cao, D.; Ren, Q.N.; Zhang, S.S.; Zhou, N.N.; Mai, S.J.; Feng, B.; Wang, H.Y. Combination Treatment with Inhibitors of ERK and Autophagy Enhances Antitumor Activity of Betulinic Acid in Non–small-Cell Lung Cancer In Vivo and In Vitro. Front. Pharmacol. 2021, 12, 684243. [Google Scholar] [CrossRef]
- Potocka, J. Biologically active pentacyclic triterpenes and their current medicine signification. J. Appl. Biomed. 2003, 1, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, S.; Mukherjee, T.; Chowdhury, S.R.; Sengupta, S.; Mukhopadhyay, S.; Jaisankar, P.; Majumder, H.K. Disuccinylbetulin triggers metacaspase-dependent endonuclease G-mediated cell death in unicellular protozoan parasite Leishmaniadonovani. Antimicrob. Agents Chemother. 2014, 58, 2186–2201. [Google Scholar] [CrossRef] [Green Version]
- Sun, I.C.; Wang, H.K.; Kashiwada, Y.; Shen, J.K.; Cosentino, L.M.; Chen, C.H.; Yang, L.M.; Lee, K.H. Anti-AIDS agents. 34. Synthesis and structure activity relationships of betulin derivatives as anti-HIV agents. J. Med. Chem. 1998, 41, 4648–4657. [Google Scholar] [CrossRef]
- Domb, A.J.; Kumar, N.; Ezra, A. Biodegradable Polymers in Clinical Use and Clinical Development; Wiley & Sons Inc.: Hoboken, NJ, USA, 2011. [Google Scholar]
- Shikanov, A.; Ezra, A.; Domb, A.J. Poly (sebacic acid-co-ricinoleic acid) biodegradable carrier for paclitaxel—Effect of additives. J. Control. Release 2005, 105, 52–67. [Google Scholar] [CrossRef]
- Shelke, N.B.; Aminabhavi, T.M. Synthesis and characterization of novel poly (sebacic anhydride-co-Pluronic F68/F127) biopolymeric microspheres for the controlled release of nifedipine. Int. J. Pharm. 2007, 345, 51–58. [Google Scholar] [CrossRef]
- Guo, W.X.; Long, Z.J.; Zhang, Z.; Hu, L. Antitumor efficacy of poly (brassylic acid–pentadecandioic acid) copolymer. Mat. Sci. Eng. C 2007, 27, 51–56. [Google Scholar] [CrossRef]
- Shikanov, A.; Vaisman, B.; Shikanov, S.; Domb, A.J. Efficacy of poly (sebacic acid-co-ricinoleic acid) biodegradable delivery system for intratumoral delivery of paclitaxel. J. Biomed. Mater. Res. A 2010, 92, 1283–1291. [Google Scholar] [CrossRef]
- Schmeltzer, R.C.; Uhrich, K.E. Synthesis and characterization of antiseptic-based poly (anhydride-esters). Polym. Bull. 2006, 57, 281–291. [Google Scholar] [CrossRef]
- Krasko, M.Y.; Golenser, J.; Nyska, A.; Nyska, M.; Brin, Y.S.; Domb, A.J. Gentamicin extended release from an injectable polymeric implant. J. Control. Release 2007, 117, 90–96. [Google Scholar] [CrossRef]
- Masters, D.B.; Berde, C.B.; Dutta, S.; Turek, T.; Langer, R. Sustained local anesthetic release from bioerodible polymer matrices: A potential method for prolonged regional anesthesia. Pharm. Res. 1993, 10, 1527–1532. [Google Scholar] [CrossRef]
- Shikanov, A.; Domb, A.J.; Weiniger, C.F. Long acting local anesthetic–polymer formulation to prolong the effect of analgesia. J. Control. Release 2007, 117, 97–103. [Google Scholar] [CrossRef]
- Bota, D.A.; Desjardins, A.; Quinn, J.A.; Affronti, M.L.; Friedman, H.S. Interstitial chemotherapy with biodegradable BCNU (Gliadel®) wafers in the treatment of malignant gliomas. Ther. Clin. Risk Manag. 2007, 3, 707–715. [Google Scholar]
- Niewolik, D.; Krukiewicz, K.; Bednarczyk-Cwynar, B.; Ruszkowski, P.; Jaszcz, K. Novel polymeric derivatives of betulin with anticancer activity. RSC Adv. 2019, 9, 20892–20900. [Google Scholar] [CrossRef] [Green Version]
- Niewolik, D.; Bednarczyk-Cwynar, B.; Ruszkowski, P.; Sosnowski, T.R.; Jaszcz, K. Bioactive Betulin and PEG Based Polyanhydrides for Use in Drug Delivery Systems. Int. J. Mol. Sci. 2021, 22, 1090. [Google Scholar] [CrossRef]
- Niewolik, D.; Bednarczyk-Cwynar, B.; Ruszkowski, P.; Jaszcz, K. Novel Biodegradable Polyanhydrides Based on Betulin Disuccinate and Sebacic Acid for Medical Purpose. Proceedings 2020, 67, 17. [Google Scholar] [CrossRef]
- Abdulla, J.M.A.; Tan, Y.T.F.; Darwis, Y. Rehydrated lyophilized rifampicin-loaded mPEG–DSPE formulations for nebulization. AapsPharmscitech 2010, 11, 663–671. [Google Scholar] [CrossRef] [Green Version]
- Labuschagne, P.W.; Adami, R.; Liparoti, S.; Naidoo, S.; Swai, H.; Reverchon, E. Preparation of rifampicin/poly (d, l-lactice) nanoparticles for sustained release by supercritical assisted atomization technique. J. Supercrit. Fluids 2014, 95, 106–117. [Google Scholar] [CrossRef]
- Pozharitskaya, O.N.; Karlina, M.V.; Shikov, A.N.; Kosman, V.M.; Makarov, V.G.; Casals, E.; Rosenholm, J.M. Pharmacokinetics and tissue disposition of nanosystem-entrapped betulin after endotracheal administration to rats. Eur. J. Drug Metab. Pharmacokinet. 2017, 42, 327–332. [Google Scholar] [CrossRef]
- Modi, S.; Jain, J.P.; Domb, A.J.; Kumar, N. Copolymers of pharmaceutical grade lactic acid and sebacic acid: Drug release behavior and biocompatibility. Eur. J. Pharm. Biopharm. 2006, 64, 277–286. [Google Scholar] [CrossRef]
- Kalam, M.A.; Humayun, M.; Parvez, N.; Yadav, S.; Garg, A.; Amin, S.; Sultana, Y.; Ali, A. Release kinetics of modified pharmaceutical dosage forms: A review. Cont. J. Pharm. Sci. 2007, 1, 30–35. [Google Scholar]
- Paarakh, M.P.; Jose, P.A.; Setty, C.M.; Christoper, G.P. Release kinetics–concepts and applications. Int. J. Pharm. Res. Technol. 2018, 8, 12–20. [Google Scholar]
- Dash, S.; Murthy, P.N.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Pai, R.V.; Jain, R.R.; Bannalikar, A.S.; Menon, M.D. Development and evaluation of chitosan microparticles based dry powder inhalation formulations of rifampicin and rifabutin. J. Aerosol Med. Pulm. Drug Deliv. 2016, 29, 179–195. [Google Scholar] [CrossRef]
- Abdullah, N.A.; Ja’afar, F.; Yasin, H.M.; Taha, H.; Petalcorin, M.I.; Mamit, M.H.; Kusrini, E.; Usman, A. Physicochemical analyses, antioxidant, antibacterial, and toxicity of propolis particles produced by stingless bee Heterotrigona itama found in Brunei Darussalam. Heliyon 2019, 5, e02476. [Google Scholar] [CrossRef] [Green Version]
Polyanhydride | Feed Ratio [% w/w] | Feed Ratio DBB:SEB [mol/mol] | |
---|---|---|---|
DBB | SEB | ||
polyDBB | 100 | 0 | — |
DBB_SEB_20 | 80 | 20 | 1:0.79 |
DBB_SEB_40 | 60 | 40 | 1:2.12 |
DBB_SEB_60 | 40 | 60 | 1:4.77 |
DBB_SEB_80 | 20 | 80 | 1:12.71 |
PSA | 0 | 100 | — |
Large Microspheres 3000 rpm | Small Microspheres 18,000 rpm | ||||
---|---|---|---|---|---|
Sample | SA Content [% w/w] | Rif. Cont. [% w/w] | Sample | SA Content [% w/w] | Rif. Cont. [% w/w] |
SEB_20_1 | 20 | 10 | SEB_20_4 | 20 | 10 |
SEB_20_2 | 30 | SEB_20_5 | 30 | ||
SEB_20_3 | 50 | SEB_20_6 | 50 | ||
SEB_40_1 | 40 | 10 | SEB_40_4 | 40 | 10 |
SEB_40_2 | 30 | SEB_40_5 | 30 | ||
SEB_40_3 | 50 | SEB_40_6 | 50 | ||
SEB_60_1 | 60 | 10 | SEB_60_4 | 60 | 10 |
SEB_60_2 | 30 | SEB_60_5 | 30 | ||
SEB_60_3 | 50 | SEB_60_6 | 50 | ||
SEB_80_1 | 80 | 10 | SEB_80_4 | 80 | 10 |
SEB_80_2 | 30 | SEB_80_5 | 30 | ||
SEB_80_3 | 50 | SEB_80_6 | 50 |
Polyanhydride | Feed Ratio DBB:SA [mol/mol] | DBB:SA in Polymer [mol/mol] Calculated from 1H NMR | Mn (1H NMR) | Molecular Weight (GPC) | DSC | ||||
---|---|---|---|---|---|---|---|---|---|
Mn | Mw | DP | Tg [°C] | Tm [°C] | ΔHm [J/g] | ||||
polyDBB | — | — | 8200 | 8500 | 25,000 | 2.94 | 124.0 | — | — |
DBB_SEB_20 | 1:0.79 | 1:0.78 | 11,000 | 7100 | 23,100 | 3.24 | 85.6 | — | — |
DBB_SEB_40 | 1:2.12 | 1:2.12 | 11,000 | 7600 | 24,900 | 3.29 | 22.5 | — | — |
DBB_SEB_60 | 1:4.77 | 1:4.76 | 13,400 | 11,500 | 50,900 | 4.41 | — | 41.1; 68.0 | −9.03; −27.27 |
DBB_SEB_80 | 1:12.71 | 1:12.41 | 15,000 | 13,000 | 45,200 | 2.24 | 36.8 | 80.3 | −74.96 |
PSA | — | — | 10,000 | 10,800 | 21,600 | 2.06 | — | 80.8 | −98.04 |
Polyanhydride | Acetone | H2O | EtOH | Toluene | Diethyl Ether | THF | DMSO | CHCl3 | CH2Cl2 | Hexane |
---|---|---|---|---|---|---|---|---|---|---|
polyDBB | — | — | — | + | — | + | ± | + | + | — |
DBB_SEB_20 | ± | — | — | + | — | + | ± | + | + | — |
DBB_SEB_40 | ± | — | — | + | — | + | ± | + | + | — |
DBB_SEB_60 | ± | — | — | + | — | + | + | + | + | — |
DBB_SEB_80 | ± | — | — | + | — | + | + | + | + | — |
PSA | ± | — | — | + | — | — | ± | + | + | — |
Polyanhydride | Homogenizer rpm | Dn [μm] | SD | Dv/Dn |
---|---|---|---|---|
DBB_SEB_20 | 3000 | 15.70 | 6.31 | 1.44 |
18,000 | 5.17 | 2.94 | 1.91 | |
DBB_SEB_40 | 3000 | 18.20 | 6.18 | 1.44 |
18,000 | 3.79 | 2.53 | 2.78 | |
DBB_SEB_60 | 3000 | 20.17 | 9.38 | 1.53 |
18,000 | 2.88 | 0.89 | 1.29 | |
DBB_SEB_80 | 3000 | 17.90 | 6.34 | 1.29 |
18,000 | 1.98 | 0.49 | 1.16 |
Sample | Dn ± SD | Dv/Dn | LA ± SD [μg/mg] | LTh [μg/mg] | EE ± SD [%] | DL ± SD [%] |
---|---|---|---|---|---|---|
SEB_20_1 | 20.88 ± 9.61 | 1.39 | 23.8 ± 0.9 | 100 | 23.8 ± 0.7 | 2.38 ± 0.3 |
SEB_20_2 | 18.18 ± 7.17 | 1.44 | 45.6 ± 1.5 | 300 | 15.2 ± 0.4 | 4.56 ± 0.7 |
SEB_20_3 | 14.64 ± 7.30 | 1.62 | 104.6 ± 3.1 | 500 | 20.9 ± 0.5 | 10.46 ± 1.2 |
SEB_40_1 | 17.89 ± 10.02 | 1.67 | 32.9 ± 1.1 | 100 | 32.9 ± 1.4 | 3.29 ± 0.5 |
SEB_40_2 | 16.01 ± 8.18 | 1.55 | 39.8 ± 0.9 | 300 | 13.3 ± 0.5 | 3.98 ± 0.5 |
SEB_40_3 | 13.74 ± 7.51 | 1.73 | 103.3 ± 2.9 | 500 | 20.7 ± 1.0 | 10.33 ± 0.9 |
SEB_60_1 | 17.90 ± 8.30 | 1.48 | 28.9 ± 0.7 | 100 | 28.9 ± 1.1 | 2.89 ± 0.4 |
SEB_60_2 | 17.15 ± 9.28 | 1.61 | 38.5 ± 1.2 | 300 | 12.8 ± 0.3 | 3.85 ± 0.6 |
SEB_60_3 | 9.92 ± 4.82 | 1.58 | 122.3 ± 2.6 | 500 | 24.5 ± 0.9 | 12.23 ± 1.4 |
SEB_80_1 | 17.27 ± 6.19 | 1.32 | 22.1 ± 0.4 | 100 | 22.1 ± 0.8 | 2.71 ± 0.4 |
SEB_80_2 | 16.72 ± 8.61 | 1.54 | 33.7 ± 1.3 | 300 | 11.2 ± 0.4 | 3.37 ± 0.9 |
SEB_80_3 | 15.32 ± 8.38 | 1.70 | 61.7 ± 1.7 | 500 | 12.3 ± 0.5 | 6.17 ± 1.0 |
Sample | Dn ± SD | Dv/Dn | LA ± SD [μg/mg] | LTh [μg/mg] | EE ± SD [%] | DL ± SD [%] |
---|---|---|---|---|---|---|
SEB_20_4 | 2.81 ± 1.30 | 1.57 | 27.5 ± 1.1 | 100 | 27.5 ± 0.8 | 2.75 ± 0.2 |
SEB_20_5 | 2.60 ± 1.19 | 1.59 | 32.7 ± 1.8 | 300 | 10.9 ± 0.5 | 3.27 ± 0.7 |
SEB_20_6 | 2.48 ± 1.09 | 1.48 | 90.2 ± 3.2 | 500 | 18.0 ± 0.7 | 9.02 ± 1.1 |
SEB_40_4 | 2.78 ± 1.15 | 1.43 | 31.6 ± 1.5 | 100 | 31.6 ± 1.3 | 3.16 ± 0.9 |
SEB_40_5 | 1.81 ± 0.71 | 1.36 | 34.7 ± 1.3 | 300 | 11.6 ± 0.7 | 3.47 ± 1.2 |
SEB_40_6 | 2.46 ± 0.99 | 1.54 | 87.7 ± 3.4 | 500 | 17.5 ± 0.9 | 8.77 ± 1.3 |
SEB_60_4 | 2.51 ± 0.83 | 1.28 | 22.8 ± 0.8 | 100 | 22.8 ± 1.1 | 2.28 ± 0.3 |
SEB_60_5 | 3.28 ± 1.25 | 1.43 | 31.4 ± 1.0 | 300 | 10.5 ± 0.3 | 3.14 ± 0.5 |
SEB_60_6 | 3.14 ± 1.33 | 1.57 | 54.1 ± 3.1 | 500 | 10.8 ± 0.5 | 5.41 ± 0.9 |
SEB_80_4 | 4.05 ± 1.50 | 1.31 | 22.6 ± 1.4 | 100 | 22.6 ± 0,8 | 2.26 ± 0.5 |
SEB_80_5 | 3.10 ± 1.35 | 1.53 | 21.3 ± 1.1 | 300 | 7.1 ± 0.2 | 2.13 ± 0.2 |
SEB_80_6 | 3.24 ± 1.46 | 1.52 | 39.6 ± 2.1 | 500 | 7.9 ± 0.1 | 3.96 ± 1.0 |
Blank Microspheres | RIF Loaded Microspheres | ||
---|---|---|---|
Sample | ZP ± SD [mV] | Sample | ZP ± SD [mV] |
SEB_20 | −26.7 ± 0.49 | SEB_20_6 | −20.8 ± 0.1 |
SEB_40 | −16.4 ± 1.88 | SEB_40_6 | −10.5 ± 2.1 |
SEB_60 | −24.8 ± 0.8 | SEB_60_6 | −20.1 ± 1.3 |
SEB_80 | −20.2 ± 0.94 | SEB_80_6 | −18.7 ± 1.14 |
Initial Amount of Drug | ||||||||
---|---|---|---|---|---|---|---|---|
10 wt% | 30 wt% | 50 wt% | ||||||
RIF–MS | K | n | RIF–MS | K | n | RIF–MS | K | n |
SEB_20_1 | 12.05 | 0.34 | SEB_20_2 | 10.93 | 0.29 | SEB_20_3 | 5.89 | 0.40 |
SEB_20_4 | 14.55 | 0.27 | SEB_20_5 | 10.98 | 0.35 | SEB_20_6 | 7.47 | 0.35 |
SEB_40_1 | 7.46 | 0.44 | SEB_40_2 | 5.60 | 0.48 | SEB_40_3 | 3.00 | 0.64 |
SEB_40_4 | 10.82 | 0.33 | SEB_40_5 | 6.84 | 0.44 | SEB_40_6 | 4.90 | 0.47 |
SEB_60_1 | 11.58 | 0.35 | SEB_60_2 | 10.11 | 0.38 | SEB_60_3 | 5.47 | 0.43 |
SEB_60_4 | 8.49 | 0.38 | SEB_60_5 | 11.31 | 0.38 | SEB_60_6 | 11.76 | 0.38 |
SEB_80_1 | 12.48 | 0.35 | SEB_80_2 | 12.27 | 0.38 | SEB_80_3 | 15.50 | 0.39 |
SEB_80_4 | 12.90 | 0.31 | SEB_80_5 | 13.94 | 0.30 | SEB_80_6 | 16.48 | 0.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niewolik, D.; Bednarczyk-Cwynar, B.; Ruszkowski, P.; Kazek-Kęsik, A.; Dzido, G.; Jaszcz, K. Biodegradable and Bioactive Carriers Based on Poly(betulin disuccinate-co-sebacic Acid) for Rifampicin Delivery. Pharmaceutics 2022, 14, 579. https://doi.org/10.3390/pharmaceutics14030579
Niewolik D, Bednarczyk-Cwynar B, Ruszkowski P, Kazek-Kęsik A, Dzido G, Jaszcz K. Biodegradable and Bioactive Carriers Based on Poly(betulin disuccinate-co-sebacic Acid) for Rifampicin Delivery. Pharmaceutics. 2022; 14(3):579. https://doi.org/10.3390/pharmaceutics14030579
Chicago/Turabian StyleNiewolik, Daria, Barbara Bednarczyk-Cwynar, Piotr Ruszkowski, Alicja Kazek-Kęsik, Grzegorz Dzido, and Katarzyna Jaszcz. 2022. "Biodegradable and Bioactive Carriers Based on Poly(betulin disuccinate-co-sebacic Acid) for Rifampicin Delivery" Pharmaceutics 14, no. 3: 579. https://doi.org/10.3390/pharmaceutics14030579
APA StyleNiewolik, D., Bednarczyk-Cwynar, B., Ruszkowski, P., Kazek-Kęsik, A., Dzido, G., & Jaszcz, K. (2022). Biodegradable and Bioactive Carriers Based on Poly(betulin disuccinate-co-sebacic Acid) for Rifampicin Delivery. Pharmaceutics, 14(3), 579. https://doi.org/10.3390/pharmaceutics14030579